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In this supplemental document, we provide additional in-
formation about datasets, implementation details, extended
sensitivity analysis, failure cases, additional qualitative re-
sults and discussion of potential misuse.

1. Dataset

PiGraphs. PiGraphs [7] consists of 60 RGB-D videos of 30
scenes. The dataset is recorded with a Microsoft Kinect One,
and is designed to capture human and object arrangements
in different kinds of interaction. Each video recording is
about 2-minute long with 5 fps. It contains labeled 3D
bounding boxes of objects in the scene and human poses
represented as 3D skeletons. We use this dataset to evaluate
the scene reconstruction and compare with [5, 8]. Note that
the provided human poses are noisy and not suitable for an
evaluation of 3D human shape and pose estimation.

PROX Qualitative. PROX qualitative contains 61 RGB-D
videos at 30 fps of human motion/interaction in 12 scanned
static 3D scenes. The data has been recorded using the
Microsoft Kinect One and StructurelO sensor. To enable
3D scene reconstruction evaluation on this dataset, we seg-
ment and label each object with its 3D bounding box. Since
there are two scenes (i.e., “BasementSittingBooth” and
“NOSittingBooth”) containing an inseparable object, we eval-
uate all methods on the remaining 10 scenes (see Fig. R.1)
using the corresponding 51 videos as input.

PROX Quantitative. PROX quantitative captures a se-
quence of human-scene interaction RGB-D frames within
a synchronized Vicon marker-based motion capturing sys-
tem. In total, the dataset contains 178 frames and provides
groundtruth body meshes, which accounts for human pose
and shape (HPS) evaluation. For fair evaluation on HPS,
we input all images into HolisticMesh [8] and ours to get a
refined scene and use a refined scene to get refined bodies. In
addition, we also label this scene for 3D scene reconstruction
evaluation, see Fig. R.1.

2. Implementation Details

Loss Terms. The 2D bounding box term Lppey is an £1 norm
between an object’s projected 3D bounding box Proj; and its
detected 2D bounding box Det;, expressed with the top-left
corner coordinate x,,;p, Ymin and width value.

Libox = Z HPI‘O}? — Detf‘H, [OAS {mmin,ymina width}.

K3
The scale term prevents object scales s deviating far from
the initial estimates s*™* from Total3D [5]:
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Initial Estimate of 3D Bodies. We use PARE [4] to ini-
tialize the body poses and shape (shape 3, pose 6, scale
s). Since our approach uses the SMPL-X [6] model, we
apply [!] to convert the SMPL parameter estimated from
PARE. In addition, we use perspective projection with the
calibrated camera intrinsic parameters, K provided by the
datasets (PiGraph and PROX). To convert the estimations of
PARE using a weak perspective camera model, we compute
the corresponding translation t°°% by:

Ik, (s(Ro(J(5))) = Ik ((Re(J(B)) +t*°%) ,

where K denotes the camera intrinsic parameters of the
weak perspective camera model with focal length 5000.
Then we extract the resulting 3D joints to initialize Fqy,.
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Contact Regions of Objects. We automatically calculate
the contact regions of objects based on the normal of the
vertices. Specifically, the vertices, whose normals are along
y-axis, are the bottom or top part of the objects, while the
vertices with along z-axis normal are the back part of the
objects. We term that sofas and chairs have two contact re-
gions, i.e., bottom and back parts, while beds and tables only
have the top part as the contact region, shown in Fig. R.2.

Optimization. We use the Adam optimizer [3] to optimize
the final energy term with a step size of 0.002 and 3000



(A) PROX qualitative dataset

(B) PROX quantitative dataset

Figure R.1. We crop out each object separately and label the corresponding 3D bounding box for 10 scenes in PROX qualitative dataset and

one scene in PROX quantitative dataset.

sofa chair bed table

Figure R.2. Contact regions of different objects.

iterations. We set A1, Ao, A3 as 1000, 0.3, 1000 respectively,
for 2D bounding box term, occlusion-aware term and scale
term. The weights of our proposed depth order constraint,
collision constraint, and contact constraint are set to Ay =
8, A5 = 1000, and A\g = 1leb, respectively.

Our method takes around 30 minutes for 3000 iterations

to optimize a 3D scene with accumulated HSIs constraints.
In comparison, HolisticMesh [8] which jointly optimizes
human and a 3D scene for one single image, directly trains
the parameters of the network in Total3D [5] to regress the
3D scene, which is time-consuming and costs around 40 min-
utes. For the human optimization, it runs twice in 5 minutes,
i.e., the first pass is a HPS initialization used to refine the
scenes, and the second pass is done using the refined scenes.
In total, HolisticMesh takes 45 minutes for one single image.
Our method takes almost the same time for a scene (around
10 objects) regardless how many frames in the input video.
The number of frames in a video only influences the time of
calculating the depth map, the SDF volume and the contact
information of each body. However, this can be done once
and is easily processed in parallel before the optimization.
In contrast, HolisticMesh [8] processes a video sequentially,
i.e., one frame after another. Therefore, the optimization
time increases w.r.t. the number of frames in a video.



3. Sensitivity Analysis.

Our approach uses HSIs observed in a video. A longer
video potentially has more HSIs, which results in more con-
straints for our objective function. In Tab. R.1, we analyze
how different video lengths influence scene reconstruction,
by reporting the 3D intersection-over-union (IoU) metric.
Specifically, we use 10 sequences of the PROX qualitative
dataset (one sequence per scene) and randomly sample 10
segments of 10s, 20s, 30s length from each sequence. We
observe that longer sequences result in better performance,
i.e., higher IoU and lower standard deviation. We observe
that the performance of 3D scene reconstruction depends on
the number of HSIs and not the video length, i.e., a short
video with many HSIs results in a better reconstruction than
a long video with a few unique HSIs.

10s 20s 30s ‘ entire videos (51s)

3DIoUmean 1 | 0.389 0.395 0.407 0.424
3DIoUstd. | | 0.018 0.015 0.010 -

Table R.1. Ablation study on different length of videos as input.
The average length of entire videos is 51s.

We also do a sensitivity study w.r.t. noise in the initial-
ization. In Tab. R.2, we add uniform noise on the initial
scale, translation and orientation of objects predicted by
Total3D [5], and report the 3D IoU. MOVER is robust to
noisy orientation and translation estimates from Total3D [5],
but sensitive to the scale variation. This is because we cur-
rently regularize the optimization to the initial scale relatively
strongly; i.e., we cannot deviate much from a noisy estimate
to “correct” it. Relaxing L, easily resolves this.

4. More Evaluation Results on PROX Quanti-
tative Dataset.

We also evaluate 3D scene reconstruction and human-
scene interaction on PROX quantitative, as shown in Tab. R.3.
Our method improves our input baseline [5] significantly
and outperforms the previous method [8] with a big margin
in both 3D scene reconstruction metrics and human-scene
interaction metrics.

5. Failure Cases

In this section, we discuss and show the failure cases of
our method. Besides optimizing the 3D scene layout, we
do not change the initial shape estimate of an object. Thus,
wrong estimated geometry shape can still violate human’s
interaction, as shown in (A) in Fig. R.3. A more flexible and
adjustable geometry representation, e.g., an implicit repre-
sentation, would be needed. Human motion reconstruction
struggles with severe occlusions in the input, that leads to
wrong body poses as well as poor estimations of HSIs, and,

scale noise | =+ 25% +15% £ 0.05%
3D IoU 1 0.345 0.3805 0.4105
transl. + 30cm 4+ 20cm +10m
3D IoU 1 0.4175 0.416 0.415
orien. +45° +30° +15°
3D IoU 1 0.4205 0.418 0.4205

Table R.2. Sensitivity analysis on scene reconstr. with uniform
noise on input scale, translation and orientation from Total3D [5]
(Werkraum_03301_01 video). Scene w/o noise has 0.417 3D IoU.

Methods Scene Recon. HSI
TIoUspt P2S) ToUyp T Non-Colt Cont. T
HolisticMesh [8] 0.239  0.133  0.533 0.948 0.951
Total3D [5] 0.063  0.409 0.342 0.940 0.436
Ours 0.390 0.095 0.862 0.972 0.934

Table R.3. Quantitative results for 3D scene understanding (3D ob-
ject detection) and human-scene interaction on the PROX quantita-
tive dataset. P2S, Non-Col and Cont denote point2surface distance,
Non-Collision and Contactness respectively.

Figure R.3. Failure cases. (A) The estimated sofa has arms, which
does not match the unarmed sofa in the input image. (B) The half
bottom body is occluded, that leads to a wrong pose estimation as
well as HSI observation. (C) The body is sitting “in the air”, where
the chair is missing.

thus, influences our 3D scene layout prediction, see (B) in
Fig. R.3. While not the scope of our work, the robustness
and accuracy of human motion estimation can be improved
by incorporating human motion priors or learning-based
probabilistic human pose and estimation network. Severe
occlusion can also cause missing objects in the scene, like
the chair in Fig. R.3(C).

In our pipeline, we currently consider the contact between
detected objects and bodies. As a potential future extension
of our method, one can also leverage the information from



2D learning-based human-object interaction (HOI) detection
network [9], by using contacted bodies to discover missing
objects; or learn a model that jointly regress human-object
interaction and their geometry shape.

6. Additional Qualitative Results

In Fig. R.4 and Fig. R.5, we present additional qualitative
results on PROX [2] qualitative and PiGraphs [7] respec-
tively. As can be seen, our method performs well on a
variety of different scenes and predicts a physically plausible
scene layout. We also refer to the suppl. video for results.

7. Discussion of Potential Misuse

Our approach is not intended for any surveillance appli-
cation. Our goal is to understand how humans interact and
move in scenes from videos (e.g., from TV sitcoms, movies,
etc.), to this end both the scene geometry and the human
pose and shape need to be reconstructed. Our method could
be misused in potential surveillance applications that curtail
human rights and civil liberties, but we will restrict the usage
of our method in a legal way.
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Figure R.4. More qualitative results on PROX qualitative dataset.
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Figure R.5. More qualitative results on PiGraphs dataset.
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