
The Supplementary Material for
Deep 3D-to-2D Watermarking: Embedding Messages in 3D Meshes and

Extracting Them from 2D Renderings

The detailed architectures of our encoders and decoder
are in Sec. 1. The parameters and implementation details
are in Sec. 2. Thorough evaluations of each distortion are
in Sec. 3. The bit accuracy and message bits are discussed
in Sec. 4. Lastly, more results generated by our watermark
encoders and the differences are in Sec. 5.

1. Architectures

As described in the paper, we used variations of Point-
Net [4] as backbone architectures for the vertex encoder
network. For the texture encoder, we use CNN-based ar-
chitectures such as HiDDeN [6]’s encoder, or a fully convo-
lutional U-Net [5].

1.1. 3D Vertex Encoder

PointNet Fig. 1 shows the PointNet architecture, i.e., our
encoder backbone network. Most parts are similar to [4],
yet, there are a few differences: 1) we changed the shape
of input points which originally only accept 3D positional
element, {x, y, z}, and now could accept any numbers of
vertex elements Cv; 2) the pooling layer (marked as red in
Fig. 1) in the architecture can be either max pooling (Point-
Net) or global pooling (PointNet v2 in the paper) for accept-
ing mesh inputs with different size.
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Figure 1. PointNet architecture

1.2. 2D Texture Encoder

CNN Encoder Our CNN encoder is based on HiD-
DeN [6]’s encoder architecture. The input texture is first
passed by four CBR blocks containing 3 × 3 convolution,
batch normalization, and ReLU activation. Each block has
64 units per layer. Then, input messages are repeated to
have a same dimensions of height × width of the input
textures, and concatenated in the channel dimension. The
message appended feature maps are further connected to
two CBR blocks. The last CBR block has the unit of 3 so
that the output has the same shape of input texture (which is
the message embedded texture). For the convolutional lay-
ers in the encoder architecture, we use ‘VALID‘ padding.

U-Net U-Net [5] architecture systematically combines
the autoencoder architecture and skip-connection scheme as
shown in [2]. For our texture encoder, we modified U-Net
architecture to make it fully convolutional through: 1) re-
moving the fully-connected layer which generates the latent
space vector in between the autoencoder’s encoder and de-
coder; 2) using {64, 128, 256, 512} units per U-Net block
with max pooling by 2 in each block.

1.3. Image Decoder

CNN Decoder Our CNN decoder is based on HiD-
DeN [6]’s decoder architecture. The base CBR block is
same as the CNN encoder as described in Sec. 1.2. We
use seven CBR blocks. The last two CBR blocks are ap-
plying stride with 2. Then, global pooling is applied to the
last CBR block to accept any image dimensions. Lastly, a
fully-connected layer is used to generate the output mes-
sage logits. To have the same dimension of message bits,
the output unit of fully-connected layer is Nb.

2. Differentiable Rendering
As mentioned in the paper, we leverage the state-of-the-

art work in differentiable rendering and follow the work by
Genova et al. [1]. We explain the steps in more details here:

• The differentiable renderer first takes Nv × 3 world-
space vertices and a sampled camera position as input,
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and computes Nv × 4 projected vertices using camera
projection P , following OpenGL convention [3].

• Then it rasterizes the triangles by identifying the front-
most triangle ID T at each pixel and computing the
barycentric coordinates of the pixel inside triangles B.

• After rasterization, we interpolate Nv × 5 vertex at-
tributes, i.e. normals and uvs, at the pixels using the
barycentric coordinates B and triangle IDs T . We take
the interpolated per-vertex attributes and the lighting
parameters L to compute the shaded colors C. Here
we use a Phong model with parameters ka = 0.8,
kd = 1.4 and kr = 0, and set the constant term
Kc = 1.0, the linear termKl = 0.07, and the quadratic
term Kq = 0.017 to calculate attenuation value.

• Finally, we form a h × w × 4 buffer of per-pixel clip-
space positions V , then apply perspective division and
viewport transformation to produce a h×w×2 screen-
space splat position buffer S. In our implementation,
the rendered height h and w is 400 and 600.

3. Evaluations of Distortions
We verified the robustness of our networks for distor-

tions. Our network is trained with four distortions: additive
noise, scaling, rotation, and cropping. As described in the
paper, we trained our network with two different types of
textures: real and noise textures. Fig. 5 shows the graphs
between bit accuracy and distortion strength. The results are
trained with message length 8, real textures (left) and noise
textures (right). Note that noise distortion plots in Fig. 5 are
based on µ = {±0.1,±0.15,±0.2,±0.25,±0.3,±0.4},
and σ = {0.03, 0.05, 0.06, 0.0833, 0.1, 0.133}. As we can
see in the Fig. 5, the bit accuracy for network trained with
real textures is lower than noise textures, however, the ten-
dencies between bit accuracy and distortion strength are
similar. Overall, our network is robust to noise, rotation,
scaling, and cropping distortions.

4. Bit Capacity
Fig. 4 shows the bit accuracy and the length of message

bits under different encoder settings. For the experiments,
we trained 10 times of the vertex-only, the texture-only, and
the vertex + texture encoders. Then calculated the best,
mean, and standard deviation of the bit accuracy. As we can
see in Fig. 4a, vertex-only encoders can encode a few bits
and cannot handle more than 8-bits (below 60% accuracy).
On the other hand, texture-only encoders (Fig. 4b) can en-
code more bits, yet showed unstable training based on the
standard deviation. The vertex + texture encoders (Fig. 4c)
showed the nearly same bit accuracy, with narrower stan-
dard deviation area.

(a) Not Watermarked (b) Watermarked (c) Difference (4x)

Figure 2. The rendered images from input meshes (a), water-
marked meshes (b) , and the difference images (c), with real tex-
tures.

(a) Not Watermarked (b) Watermarked (c) Difference (4x)

Figure 3. Comparisons between not watermarked and water-
marked real textures.

5. More Results

We provide more rendered results that rendered from
original meshes, watermarked meshes, and the differences
between the two images (Fig. 2). Also original textures, wa-
termarked textures, and the difference are shown in Fig. 3.



(a) Mesh vertex encoder (b) Mesh texture encoder (c) Mesh vertex + texture encoders

Figure 4. The relationship between bit accuracy and the length of message.
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Figure 5. Bit accuracy against distortion strength.
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