
Point-BERT : Pre-Training 3D Point Cloud Transformers
with Masked Point Modeling

Supplementary Material

A. More Analysis

More Visual Results: We provide more visual results on
the real-world ScanObjectNN dataset [7] to show the gener-
ality of our Point-BERT model. Since our model is trained
on the synthetic dataset ShapeNet [1], the masked point
prediction results on ScanObjectNN can reflect the perfor-
mance of our model on challenging scenarios with both un-
seen objects and domain gap. The results are illustrated
in Figure 1. Our Point-BERT model can correctly predict
the point tokens of the masked regions and reconstruct the
input point cloud through the pre-trained dVAE decoder.
The generic knowledge of local point cloud structure can
be learned by our model, for it also works well on the cross-
domain data that it have not been seen during the MPM
training. It further confirms our claim that the proposed
Point-BERT can encode the local geometric patterns into
discrete tokens, and a point cloud (even never seen before)
can be represented as a sequence of such tokens.

Complexity Analysis: We provide the detailed complexity
analysis of our method in the following table. As shown in
the table, even with more parameters, our method with pure
Transformer is still competitive in ‘FLOPs’ and much faster
on GPU. Besides, more parameters facilitate Transformer to
learn more general knowledge for a superior result.

Methods Params GFLOPs Throughput ModelNet40 Acc.

PointNet++ 1.5M 0.9 108.7 pcs 91.9
PCT 2.9M 2.3 520.3 pcs 93.2
KPConv 14.3M – 140.0 pcs 92.9
DGCNN 1.8M 2.7 315.1 pcs 92.9
Point-BERT 22.1M 2.3 1237.9 pcs 93.2

B. Implementation Details
B.1. Discrete VAE

Architecture: Our dVAE consists of a tokenizer and a
decoder. Specifically, the tokenizer contains a 4-layer
DGCNN [9], and the decoder involves a 4-layer DGCNN
followed by a FoldingNet [10]. The detailed network ar-

Figure 1. Visual results of masked point clouds reconstruction on
the ScanObjectNN dataset, using our Point-BERT model trained
on ShapeNet. Taking a point cloud as original input (top), we
mask a portion of the original point cloud (middle) and apply
Point-BERT model to predict the masked point tokens. We can
obtain the reconstructed point cloud (bottom) by feeding the com-
plete point tokens to the decoder of dVAE.

chitecture of our dVAE is illustrated in Table 1, where
Cin and Cout are the dimension of input and output fea-
tures, Cmiddle is the dimension of the hidden layers. Nout

is the number of point patches in each layer, and K is
the number of neighbors in kNN operation. Additionally,
FoldingLayer concatenates a 2D grids to the inputs and
finally generates 3D point clouds.

Optimization: During the training phase, we consider re-
construction loss and distribution loss simultaneously. For
reconstruction, we follow PoinTr [11] to supervise both
coarse-grained prediction and fine-grained prediction with
the ground-truth point cloud. The ℓ1-form Chamfer Dis-
tance is adopted, which is calculated as:

dℓ1CD(P,G) = 1

|P|
∑
p∈P

min
g∈G

∥p− g∥+ 1

|G|
∑
g∈G

min
p∈P

∥g − p∥, (1)

where P represents the prediction point set and G represents
the ground-truth point set. Except for the reconstruction
loss, we follow [5] to optimize the KL-divergence LKL be-
tween the predicted tokens’ distribution and a uniform prior.
The final objective function is

LdVAE = dℓ1CD(Pfine,G) + dℓ1CD(Pcoarse,G) + αLKL. (2)

1

Table 1. Detailed architecture of our models. Cin/Cout represents
the dimension of input/output features, and Nout is the number of
points in the query point cloud. K is the number of neighbors in
kNN operation. Cmiddle is the dimension of the hidden layers for
MLPs.

Module Block Cin Cout K Nout Cmiddle

Linear 256 128
DGCNN 128 256 4 64

dVAE Tokenizer DGCNN 256 512 4 64
DGCNN 512 512 4 64
DGCNN 512 1024 4 64
Linear 2304 8192

Linear 256 128
DGCNN 128 256 4 64
DGCNN 256 512 4 64

dVAE Decoder DGCNN 512 512 4 64
DGCNN 512 1024 4 64
Linear 2304 256
MLP 256 48 1024

FoldingLayer 256 3 1024

Classification Head MLP 768 Ncls 256

MLP 387 384 384×4
DGCNN 384 512 4 128 -
DGCNN 512 384 4 128
DGCNN 384 512 4 256

Segmentation Head DGCNN 512 384 4 256
DGCNN 384 512 4 512
DGCNN 512 384 4 512
DGCNN 384 512 4 2048
DGCNN 512 384 4 2048

Table 2. Experiment setting for training the dVAE.

config value

optimizer AdamW [4]
learning rate 5e-4
weight decay 5e-4
learning rate schedule cosine [3]
warmingup epochs 10
augmentation RandSampling
batch size 64
number of points 1024
number of patches 64
patch size 32
training epochs 300
dataset ShapeNet [1]

Experiment Setting: We report the default setting for
dVAE training in Table 2.

Hyper-parameters of dVAE: We set the size of the learn-
able vocabulary to 8192, and each ‘word’ in it is a 256-dim
vector. The most important and sensitive hyper-parameters
of dVAE are α for LKL and the temperature τ for Gumbel-
softmax. We set α to 0 in the first 18 epochs (about 10,000
steps) and gradually increase to 0.1 in the following 180
epochs (about 100,000 steps) using a cosine schedule. As

config value

optimizer AdamW
learning rate 5e-4
weight decay 5e-2
learning rate schedule cosine
warmingup epochs 3
augmentation ScaleAndTranslate
batch size 128
number of points 1024
number of patches 64
patch size 32
mask ratio [0.25, 0.45]
mask type rand mask
training epochs 300
dataset ShapeNet

Table 3. Experiment setting for Point-BERT pre-training

for τ , we follow [5] to decay it from 1 to 0.0625 using a co-
sine schedule in the first 180 epochs (about 100,000 steps).

B.2. Point-BERT:

Architecture: We follow the standard Transformer [2] ar-
chitecture in our experiments. It contains a stack of Trans-
former blocks [8], and each block consists of a multi-head
self-attention layer and a FeedForward Network (FFN). In
these two layers, LayerNorm (LN) is adopted.

Multi-head Attention: Multi-head attention mechanism
enables the network to jointly consider information from
different representation subspaces [8]. Specifically, given
the input values V , keys K and queries Q, the multi-head
attention is computed by:

MultiHead(Q,K, V) = W oConcat(head1, ..., headh), (3)

where W o is the weights of the last linear layer. The feature
of each head can be obtained by:

headi = softmax(
QWQ

i (KWK
i)T√

dk
)VWV

i , (4)

where WQ
i , WK

i and WV
i are the linear layers that project

the inputs to different subspaces and dk is the dimension of
the input features.

Feed-forward network (FFN): Following [8], two linear
layers with ReLU activations and dropout are adopted as the
feed-forward network.

Point-BERT pre-training: We report the default setting
for our experiments in Point-BERT pretraining in Table 3.
The pre-training are conducted on ShapeNet.

End-to-end finetuning: We finetune our Point-BERT
model follow the common practice of supervised models

config value

optimizer AdamW
learning rate 5e-4
weight decay 5e-2
learning rate schedule cosine
warmingup epochs 10
augmentation ScaleAndTranslate
batch size 32(C),16(S)
number of points 1024(C),2048 (S)
number of patches 64(C),128(S)
patch size 32
training epochs 300

Table 4. Experiment setting for end-to-end finetuning. S repre-
sents segmentation task, C represents classification task.

strictly. The default setting for end-to-end finetuning is in
Table 4.

Hyper-parameters of Transformers: We set the number
of blocks in the Transformer to 12. The number of heads
in each multi-head self-attention layer is set to 6. The fea-
ture dimension of the transformer layer is set to 384. We
follow [6] to adopt the stochastic depth strategy with a drop
rate of 0.1.

Classification Head: An two-layer MLP with dropout is
applied as our classification head. In classification tasks,
we first take the output feature of [CLS] token out, and max-
pool the rest of nodes’ features. These two features are then
combined together and sent into the classification head. The
detailed architecture of classification head is shown in Ta-
ble 1, where Ncls is the number of class for a certain dataset.

Segmentation Head: There are no downsampling layers
in the standard Transformers, making it challenging to per-
form dense prediction based on a single-resolution feature
map. We adopt an upsampling-propagation strategy to solve
this problem, consisting of two steps: 1) Geometry-based
feature upsampling and 2) Hierarchical feature propagation.

We extract features from different layers of the Trans-
former, where features from shallow layers tend to capture
low-level information, while features from deeper layers in-
volve more high-level information. To upsample the feature
maps to different resolutions, we first apply FPS to the ori-
gin point cloud and obtain point clouds at various resolu-
tions. Then we upsample the feature maps from different
layers to different resolutions accordingly. As shown in the
left part of Figure 2, ‘A’ is a point from the dense point
cloud, and ‘a’,‘b’,‘c’ are its nearest points in the sparser
point cloud, with distance of da, db and dc respectively. We
obtain the point feature of ‘A’ based on weighted addition
of those features, which can be written as:

Figure 2. Two main operations of our segmentation head: 1) Up-
sampling: upsample the feature map for the sparse point cloud to
the dense point cloud. 2) Propagation: propagate the feature hier-
archically from deep layers to shallow layers for dense prediction.

FA = MLP(Concat(

∑
i∈[a,b,c]

1
di
Fi∑

i∈[a,b,c]
1
di

, pA)), (5)

where pA represents the coordinates of point ‘A’.
After obtaining the feature maps at different resolutions,

we perform feature propagation from coarse-grained feature
maps to fine-grained feature maps. As shown in the right
part of Figure 2, for a point ‘A’ in the dense point cloud, we
find its k nearest points in the sparser point cloud. Then a
lightweight DGCNN [9] is used to update the feature of ‘A’.
We hierarchically update the feature with the resolution in-
creases and finally obtain the dense feature map, which can
be used for segmentation tasks. The detailed architecture
for the segmentation head is shown in Table 1.

References
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 1, 2

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2

[3] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 2

[4] Ilya Loshchilov and Frank Hutter. Fixing weight decay reg-
ularization in adam. 2018. 2

[5] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. arXiv
preprint arXiv:2102.12092, 2021. 1, 2

[6] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, 2021. 3

[7] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Duc Thanh Nguyen, and Sai-Kit Yeung. Revisiting point
cloud classification: A new benchmark dataset and classifi-
cation model on real-world data. In ICCV, 2019. 1

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 2

[9] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. TOG, 2019. 1, 3

[10] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In CVPR, 2018. 1

[11] Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen Lu,
and Jie Zhou. Pointr: Diverse point cloud completion with
geometry-aware transformers. In ICCV, 2021. 1

	. More Analysis
	. Implementation Details
	. Discrete VAE
	. Point-BERT:

