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Appendix A. Proof of Theorem 1

Before demonstrating the Theorem 1, let us first provide
the following theorem:

Theorem 4 [1]. Suppose ¢(z) is continuous on z > 0
and positive on z > 0 for z € R, d¢/dz is completely
monotonic but not constant w.r.t. z > 0. Then for a set of
any distinct vectors {f* € R"}{_,,

(=1)9" det(H) > 0 (A1)

holds for any n and ¢, where det(-) denotes the deter-
minant of a matrix, H € R9%? with (4, j)-th entry as
¥ (||f* — £7]|?) and || - || denotes the 2-norm of a vector.
Theorem 4 reveals that the matrix H, generated by some
function ¢ (-), must be nonsingular due to its nonzero de-
terminant. Using Theorem 4, we can prove Theorem 1 as
follows:
Proof of Theorem 1. In CCP, the (j, t)-th entry of Ki is
calculated by

J gt —||£) — £
ker(f, ;) = exp 952 | (A2)
where i = 1,2and j,t = 1,2,--- ,d;. Let ¢)(z) be
—z
Y(z) = exp <%¢2) , z € R. (A3)

It follows from (A2) and (A3) that
K7 (5,6) = ker (£,6) = (1167 — £112) . (a%)

In addition, it is easy to show that ¢(z) is continuous on
z > 0 and positive on z > 0. Also, the derivative of 1(z) is

dy 1 -z
T 22 (20) ! (A5)

which is strictly increasing on z > 0. Hence, det(K?;) # 0
holds according to Theorem 4. It follows immediately that
K7, and K, are nonsingular. [ |

Appendix B. Proof of Theorem 2

Proof. Let the i-th singular value of W, W1 ¢ R xd>
ben;, i =1,2,--- ,min(dy,ds). Since W/'W, = I, and
W2TW2 = I, it is easy to show that W1W2T has d unit
singular values and the rest are zero, i.e.,n; =1y = -+ =
ng = 1. Using the Von-Neumann’s trace inequality [2], we
have

Tr (V~V1TI~(1I2V~V2) =Tr ((Wlwg)TK{;)

r d
< ZTHUz‘ = Zai,
i=1 i=1

(B1)

where the first equality applies the matrix property
Tr(AB) = Tr(BA).

This means that the maximum value of optimization
problem in (12) is the sum of the top d singular values of
K{—Q Using (13), we have

Tr (vvmgm)

= Tr ((U(:, 1:d)"usvT (V(;,1: d)))

(ol )

d
= Tr(Ed) = ZO',L',
i=1

where ¥; = diag(oy,09,---,04) and X, 4 =
diag(oay1,- -+ ,0,). Hence, Wy = U(;;1 : d) and
Wy, = V{(:,1: d) are a solution of optimization problem in
(12). n



Appendix C. Derivation of Updating Rules in
(18) and (19)

For optimization problem in (17), using the Lagrange
multiplier technique we can obtain the following

m m m

L= W/PIKIP;W,;—> N(W/wi—1), (CD)
=1

i=1 j=1

where {\; € R}, are the Lagrange multipliers. Taking
the derivative of £ w.r.t. w; and setting it to 0, we obtain

oL _, Z PIKP;w; — 2\,W; =0 (C2)
j=1

ow;
withi =1,2,--- ,m. It follows from (C2) that

ZP?KZ@PM =AW, i=1,2,---,m.  (C3)

j=1

According to (C3) and v~vfrv~vz = 1, we can obtain the fol-
lowing updating rules:

)

A H S PIKIP;w,
j=1
1 & -

Wi > PIK]P;w;.

i =1

Appendix D. Proof of Theorem 3

We can rewrite (C3) as the following concise form:
Kw = Aw, (D1)

where K € R"*" ig a block matrix with the (¢, j)-th block
element as P?K{;Pj, w = [Wf,wg, e ,WT]T € R,

m
A = diag (MTg,, Aolgy, -, Amla, ) € R?™" and h =
21'11 d.

Next, let us first provide the following two important
lemmas, which play the key roles to complete the proof of
Theorem 3.

Lemma 1. The matrix K in (D1) is symmetric positive
semi-definite.

T
Proof. Let ¢(X:) = |@(£1). 6(£7), -, @(£")] €
R%*N =12 -..  m. Let us denote
P = dlag (Pl, PQ, s 7Pm) c RhXh7
D = diag ((Kfl)—%, (KL) 3, 7(Kﬁm)_%> € RMN

P(X) = [p(X1)". p(X2)", -, $(X)T] € RPN

with X = [XT, X7, .- ,Xﬁ]T € R"*"_ Note that DT =

D due to the symmetry of each (K7 )~ z. Then, we have
that

K = PTD¢(X)p(X)"DP. (D2)

Clearly K is symmetric. For an arbitrary nonzero vector
¢ € R", it follows from (D2) that

¢"K¢ = ¢"PTDg(X)¢(X)"DP¢
= (¢(X)TDP£)T (¢(X)TDPE) (D3)
> 0.

Hence, K is symmetric positive semi-definite. ]
Lemma 2. Let the largest eigenvalue of K be 6; and
wlw; =1,i=1,2,--- ,m. Then, WTKw < md,, where
w is defined in (D1).
Proof. Let the eigenvalue decomposition of K be

h
K=GAG" =Y gl (D4)
i=1

where G = [g1, 82, ,gn] € R"*" is an orthogonal ma-
trix, and A = diag(dy,da,- -+ ,6) € RM¥" is a diagonal
matrix consisting of h nonnegative eigenvalues in descend-
ing order.

Using (D4), we have

h h
WKW = owgglw=> 5i(w'g)’

i=1 i=1
h h
<6y (Wig)?=aw" Zg@?) W
=1 i=1
=W GG W =6, ) W/ W; =mé
i=1
(Ds)
Thus, Lemma 2 is true. |

Using Lemmas 1 and 2, now let us prove the Theorem 3:
Proof of Theorem 3. Using (D1), we can rewrite the up-
dating rules in (18) and (19) as

Kw® = A(t)\;v(tﬂ)7 (D6)

T & @OT

T
where w(® = [W{"" %", wT] and A®) =

diag (/\gt)Idl,)\g)Idz, e ,/\g)ldm), and ¢ is an iterative
variable.
For optimization problem in (17), let us define

fw) =>">"w/PIK/P;w; =w'Kw. (D7)



It follows from (D7) that

f(\il(t)) = wTKw®, (D8)
f(W(t+1)) — W(t+1)TK‘X’(t+1). (D9)

Using (D6), we are able to obtain the following

FEWED) — f(w)
— w(t—&-l)TK“*‘,(t—&-l) - (t)TK‘X,(t)
_ W(t+1)TK“~,(t+1) W(t+1)TA(t) (t)

w
LT (A(t) S (t41) ) (D10)
— wtrDTR (V~V(t+1) B V~V(t))

L wEHDT A () <v~v(t+l) _ ‘;V(t)) .

In addition, it is easy to obtain that w()TANw®) =
S A = WEHDTAO (D Together with (D6), we
have

0= <V~V(t+1)T AOwEHD) _ {OT A(t>v~v(t))
4 (w<t>TKw<t> _ v~v<t>Tf<v~v<t>)
_ (vv(t)Tf{vWH) _w®T A<t>v~v(t>)
(W(t)T AD D) V;,(t)TK‘;Vm)
— wOTK ( (t+1) _ W(t))

WOTA® ( (t+1) _ <t>) .

(D11)

_|_

Subtracting (D11) from (D10) leads to
FOFED) — (W)
_ <v~v(t+1)T _ V~V(t)T) K (V~V(t+1) _ V~V(t))

n (V~V(t+1)T _ V~V(t)T) A® (V~V(t+1) _ V~V(t))

_ (v~v<t+1> _ v~v<t>>T (K n A(t)) (V~V(t+1) _ v~v<t>) _
(D12)
In (D12), A® is a positive semi-definite diagonal matrix
because its each diagonal entry is not less than O (see the up-
dating rule in (18)). Together with Lemma 1, we have that
K + A® is bound to be symmetric positive semi-definite.
Thus, we obtain

FE@UD) = f(%0) > 0 5 f(&UD) > f(w®),
(D13)
which shows that the objective function in (17) is nonde-
creasing. In terms of Lemma 2, the objective function has a
upper bound. Putting these two conclusions together results
in the convergence of the objective function. This completes

the proof of Theorem 3. ]
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