

Supplementary Material of “Learning Canonical \mathcal{F} -Correlation Projection for Compact Multiview Representation”

Yun-Hao Yuan¹, Jin Li¹, Yun Li¹, Jipeng Qiang¹, Yi Zhu¹, Xiaobo Shen², Jianping Gou³

¹School of Information Engineering, Yangzhou University, Yangzhou, China

²School of Computer Science, Nanjing University of Science and Technology, Nanjing, China

³School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, China

{yhyuan, liyun, jpqiang, zhuyi}@yzu.edu.cn
cvjinli@outlook.com, njust.shenxiao@outlook.com, goujianping@ujs.edu.cn

Appendix A. Proof of Theorem 1

Before demonstrating the Theorem 1, let us first provide the following theorem:

Theorem 4 [1]. Suppose $\psi(z)$ is continuous on $z \geq 0$ and positive on $z > 0$ for $z \in \mathbb{R}$, $d\psi/dz$ is completely monotonic but not constant w.r.t. $z > 0$. Then for a set of any distinct vectors $\{\mathbf{f}^i \in \mathbb{R}^n\}_{i=1}^q$,

$$(-1)^{q-1} \det(\mathbf{H}) > 0 \quad (\text{A1})$$

holds for any n and q , where $\det(\cdot)$ denotes the determinant of a matrix, $\mathbf{H} \in \mathbb{R}^{q \times q}$ with (i, j) -th entry as $\psi(||\mathbf{f}^i - \mathbf{f}^j||^2)$ and $||\cdot||$ denotes the 2-norm of a vector.

Theorem 4 reveals that the matrix \mathbf{H} , generated by some function $\psi(\cdot)$, must be nonsingular due to its nonzero determinant. Using Theorem 4, we can prove Theorem 1 as follows:

Proof of Theorem 1. In CCP, the (j, t) -th entry of $\mathbf{K}_{ii}^{\mathcal{F}}$ is calculated by

$$\ker(\mathbf{f}_i^j, \mathbf{f}_i^t) = \exp\left(\frac{-||\mathbf{f}_i^j - \mathbf{f}_i^t||^2}{2\sigma^2}\right), \quad (\text{A2})$$

where $i = 1, 2$ and $j, t = 1, 2, \dots, d_i$. Let $\psi(z)$ be

$$\psi(z) = \exp\left(\frac{-z}{2\sigma^2}\right), \quad z \in \mathbb{R}. \quad (\text{A3})$$

It follows from (A2) and (A3) that

$$\mathbf{K}_{ii}^{\mathcal{F}}(j, t) = \ker(\mathbf{f}_i^j, \mathbf{f}_i^t) = \psi\left(||\mathbf{f}_i^j - \mathbf{f}_i^t||^2\right). \quad (\text{A4})$$

In addition, it is easy to show that $\psi(z)$ is continuous on $z \geq 0$ and positive on $z > 0$. Also, the derivative of $\psi(z)$ is

$$\frac{d\psi}{dz} = -\frac{1}{2\sigma^2} \exp\left(\frac{-z}{2\sigma^2}\right), \quad (\text{A5})$$

which is strictly increasing on $z > 0$. Hence, $\det(\mathbf{K}_{ii}^{\mathcal{F}}) \neq 0$ holds according to Theorem 4. It follows immediately that $\mathbf{K}_{11}^{\mathcal{F}}$ and $\mathbf{K}_{22}^{\mathcal{F}}$ are nonsingular. ■

Appendix B. Proof of Theorem 2

Proof. Let the i -th singular value of $\tilde{\mathbf{W}}_1 \tilde{\mathbf{W}}_2^T \in \mathbb{R}^{d_1 \times d_2}$ be η_i , $i = 1, 2, \dots, \min(d_1, d_2)$. Since $\tilde{\mathbf{W}}_1^T \tilde{\mathbf{W}}_1 = \mathbf{I}_d$ and $\tilde{\mathbf{W}}_2^T \tilde{\mathbf{W}}_2 = \mathbf{I}_d$, it is easy to show that $\tilde{\mathbf{W}}_1 \tilde{\mathbf{W}}_2^T$ has d unit singular values and the rest are zero, i.e., $\eta_1 = \eta_2 = \dots = \eta_d = 1$. Using the Von-Neumann’s trace inequality [2], we have

$$\begin{aligned} \text{Tr}(\tilde{\mathbf{W}}_1^T \tilde{\mathbf{K}}_{12}^{\mathcal{F}} \tilde{\mathbf{W}}_2) &= \text{Tr}((\tilde{\mathbf{W}}_1 \tilde{\mathbf{W}}_2^T)^T \tilde{\mathbf{K}}_{12}^{\mathcal{F}}) \\ &\leq \sum_{i=1}^r \eta_i \sigma_i = \sum_{i=1}^d \sigma_i, \end{aligned} \quad (\text{B1})$$

where the first equality applies the matrix property $\text{Tr}(\mathbf{AB}) = \text{Tr}(\mathbf{BA})$.

This means that the maximum value of optimization problem in (12) is the sum of the top d singular values of $\tilde{\mathbf{K}}_{12}^{\mathcal{F}}$. Using (13), we have

$$\begin{aligned} \text{Tr}(\tilde{\mathbf{W}}_1^T \tilde{\mathbf{K}}_{12}^{\mathcal{F}} \tilde{\mathbf{W}}_2) &= \text{Tr}((\mathbf{U}(:, 1 : d))^T \mathbf{U} \Sigma \mathbf{V}^T (\mathbf{V}(:, 1 : d))) \\ &= \text{Tr}\left([\mathbf{I}_d \quad \mathbf{0}] \begin{bmatrix} \Sigma_d & \\ & \Sigma_{r-d} \end{bmatrix} \begin{bmatrix} \mathbf{I}_d \\ \mathbf{0} \end{bmatrix}\right) \\ &= \text{Tr}(\Sigma_d) = \sum_{i=1}^d \sigma_i, \end{aligned} \quad (\text{B2})$$

where $\Sigma_d = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_d)$ and $\Sigma_{r-d} = \text{diag}(\sigma_{d+1}, \dots, \sigma_r)$. Hence, $\tilde{\mathbf{W}}_1 = \mathbf{U}(:, 1 : d)$ and $\tilde{\mathbf{W}}_2 = \mathbf{V}(:, 1 : d)$ are a solution of optimization problem in (12). ■

Appendix C. Derivation of Updating Rules in (18) and (19)

For optimization problem in (17), using the Lagrange multiplier technique we can obtain the following

$$\mathcal{L} = \sum_{i=1}^m \sum_{j=1}^m \tilde{\mathbf{w}}_i^T \mathbf{P}_i^T \tilde{\mathbf{K}}_{ij}^{\mathcal{F}} \mathbf{P}_j \tilde{\mathbf{w}}_j - \sum_{i=1}^m \lambda_i (\tilde{\mathbf{w}}_i^T \tilde{\mathbf{w}}_i - 1), \quad (\text{C1})$$

where $\{\lambda_i \in \mathbb{R}\}_{i=1}^m$ are the Lagrange multipliers. Taking the derivative of \mathcal{L} w.r.t. $\tilde{\mathbf{w}}_i$ and setting it to $\mathbf{0}$, we obtain

$$\frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{w}}_i} = 2 \sum_{j=1}^m \mathbf{P}_i^T \tilde{\mathbf{K}}_{ij}^{\mathcal{F}} \mathbf{P}_j \tilde{\mathbf{w}}_j - 2\lambda_i \tilde{\mathbf{w}}_i = \mathbf{0} \quad (\text{C2})$$

with $i = 1, 2, \dots, m$. It follows from (C2) that

$$\sum_{j=1}^m \mathbf{P}_i^T \tilde{\mathbf{K}}_{ij}^{\mathcal{F}} \mathbf{P}_j \tilde{\mathbf{w}}_j = \lambda_i \tilde{\mathbf{w}}_i, \quad i = 1, 2, \dots, m. \quad (\text{C3})$$

According to (C3) and $\tilde{\mathbf{w}}_i^T \tilde{\mathbf{w}}_i = 1$, we can obtain the following updating rules:

$$\begin{aligned} \lambda_i &\leftarrow \left\| \sum_{j=1}^m \mathbf{P}_i^T \tilde{\mathbf{K}}_{ij}^{\mathcal{F}} \mathbf{P}_j \tilde{\mathbf{w}}_j \right\|, \\ \tilde{\mathbf{w}}_i &\leftarrow \frac{1}{\lambda_i} \sum_{j=1}^m \mathbf{P}_i^T \tilde{\mathbf{K}}_{ij}^{\mathcal{F}} \mathbf{P}_j \tilde{\mathbf{w}}_j. \end{aligned}$$

Appendix D. Proof of Theorem 3

We can rewrite (C3) as the following concise form:

$$\tilde{\mathbf{K}} \tilde{\mathbf{w}} = \Lambda \tilde{\mathbf{w}}, \quad (\text{D1})$$

where $\tilde{\mathbf{K}} \in \mathbb{R}^{h \times h}$ is a block matrix with the (i, j) -th block element as $\mathbf{P}_i^T \tilde{\mathbf{K}}_{ij}^{\mathcal{F}} \mathbf{P}_j$, $\tilde{\mathbf{w}} = [\tilde{\mathbf{w}}_1^T, \tilde{\mathbf{w}}_2^T, \dots, \tilde{\mathbf{w}}_m^T]^T \in \mathbb{R}^h$, $\Lambda = \text{diag}(\lambda_1 \mathbf{I}_{d_1}, \lambda_2 \mathbf{I}_{d_2}, \dots, \lambda_m \mathbf{I}_{d_m}) \in \mathbb{R}^{h \times h}$, and $h = \sum_{i=1}^m d_i$.

Next, let us first provide the following two important lemmas, which play the key roles to complete the proof of Theorem 3.

Lemma 1. The matrix $\tilde{\mathbf{K}}$ in (D1) is symmetric positive semi-definite.

Proof. Let $\phi(\mathbf{X}_i) = [\phi(\mathbf{f}_i^1), \phi(\mathbf{f}_i^2), \dots, \phi(\mathbf{f}_i^{d_i})]^T \in \mathbb{R}^{d_i \times N}$, $i = 1, 2, \dots, m$. Let us denote

$$\mathbf{P} = \text{diag}(\mathbf{P}_1, \mathbf{P}_2, \dots, \mathbf{P}_m) \in \mathbb{R}^{h \times h},$$

$$\mathbf{D} = \text{diag}((\mathbf{K}_{11}^{\mathcal{F}})^{-\frac{1}{2}}, (\mathbf{K}_{22}^{\mathcal{F}})^{-\frac{1}{2}}, \dots, (\mathbf{K}_{mm}^{\mathcal{F}})^{-\frac{1}{2}}) \in \mathbb{R}^{h \times h},$$

$$\phi(\mathbf{X}) = [\phi(\mathbf{X}_1)^T, \phi(\mathbf{X}_2)^T, \dots, \phi(\mathbf{X}_m)^T]^T \in \mathbb{R}^{h \times N}$$

with $\mathbf{X} = [\mathbf{X}_1^T, \mathbf{X}_2^T, \dots, \mathbf{X}_m^T]^T \in \mathbb{R}^{h \times n}$. Note that $\mathbf{D}^T = \mathbf{D}$ due to the symmetry of each $(\mathbf{K}_{ii}^{\mathcal{F}})^{-\frac{1}{2}}$. Then, we have that

$$\tilde{\mathbf{K}} = \mathbf{P}^T \mathbf{D} \phi(\mathbf{X}) \phi(\mathbf{X})^T \mathbf{D} \mathbf{P}. \quad (\text{D2})$$

Clearly $\tilde{\mathbf{K}}$ is symmetric. For an arbitrary nonzero vector $\xi \in \mathbb{R}^h$, it follows from (D2) that

$$\begin{aligned} \xi^T \tilde{\mathbf{K}} \xi &= \xi^T \mathbf{P}^T \mathbf{D} \phi(\mathbf{X}) \phi(\mathbf{X})^T \mathbf{D} \mathbf{P} \xi \\ &= (\phi(\mathbf{X})^T \mathbf{D} \mathbf{P} \xi)^T (\phi(\mathbf{X})^T \mathbf{D} \mathbf{P} \xi) \\ &\geq 0. \end{aligned} \quad (\text{D3})$$

Hence, $\tilde{\mathbf{K}}$ is symmetric positive semi-definite. \blacksquare

Lemma 2. Let the largest eigenvalue of $\tilde{\mathbf{K}}$ be δ_1 and $\tilde{\mathbf{w}}_i^T \tilde{\mathbf{w}}_i = 1$, $i = 1, 2, \dots, m$. Then, $\tilde{\mathbf{w}}^T \tilde{\mathbf{K}} \tilde{\mathbf{w}} \leq m\delta_1$, where $\tilde{\mathbf{w}}$ is defined in (D1).

Proof. Let the eigenvalue decomposition of $\tilde{\mathbf{K}}$ be

$$\tilde{\mathbf{K}} = \mathbf{G} \Delta \mathbf{G}^T = \sum_{i=1}^h \delta_i \mathbf{g}_i \mathbf{g}_i^T, \quad (\text{D4})$$

where $\mathbf{G} = [\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_h] \in \mathbb{R}^{h \times h}$ is an orthogonal matrix, and $\Delta = \text{diag}(\delta_1, \delta_2, \dots, \delta_h) \in \mathbb{R}^{h \times h}$ is a diagonal matrix consisting of h nonnegative eigenvalues in descending order.

Using (D4), we have

$$\begin{aligned} \tilde{\mathbf{w}}^T \tilde{\mathbf{K}} \tilde{\mathbf{w}} &= \sum_{i=1}^h \delta_i \tilde{\mathbf{w}}^T \mathbf{g}_i \mathbf{g}_i^T \tilde{\mathbf{w}} = \sum_{i=1}^h \delta_i (\tilde{\mathbf{w}}^T \mathbf{g}_i)^2 \\ &\leq \delta_1 \sum_{i=1}^h (\tilde{\mathbf{w}}^T \mathbf{g}_i)^2 = \delta_1 \tilde{\mathbf{w}}^T \left(\sum_{i=1}^h \mathbf{g}_i \mathbf{g}_i^T \right) \tilde{\mathbf{w}} \\ &= \delta_1 \tilde{\mathbf{w}}^T \mathbf{G} \mathbf{G}^T \tilde{\mathbf{w}} = \delta_1 \sum_{i=1}^m \tilde{\mathbf{w}}_i^T \tilde{\mathbf{w}}_i = m\delta_1. \end{aligned} \quad (\text{D5})$$

Thus, Lemma 2 is true. \blacksquare

Using Lemmas 1 and 2, now let us prove the Theorem 3:

Proof of Theorem 3. Using (D1), we can rewrite the updating rules in (18) and (19) as

$$\tilde{\mathbf{K}} \tilde{\mathbf{w}}^{(t)} = \Lambda^{(t)} \tilde{\mathbf{w}}^{(t+1)}, \quad (\text{D6})$$

where $\tilde{\mathbf{w}}^{(t)} = [\tilde{\mathbf{w}}_1^{(t)T}, \tilde{\mathbf{w}}_2^{(t)T}, \dots, \tilde{\mathbf{w}}_m^{(t)T}]^T$ and $\Lambda^{(t)} = \text{diag}(\lambda_1^{(t)} \mathbf{I}_{d_1}, \lambda_2^{(t)} \mathbf{I}_{d_2}, \dots, \lambda_m^{(t)} \mathbf{I}_{d_m})$, and t is an iterative variable.

For optimization problem in (17), let us define

$$f(\tilde{\mathbf{w}}) = \sum_{i=1}^m \sum_{j=1}^m \tilde{\mathbf{w}}_i^T \mathbf{P}_i^T \tilde{\mathbf{K}}_{ij}^{\mathcal{F}} \mathbf{P}_j \tilde{\mathbf{w}}_j = \tilde{\mathbf{w}}^T \tilde{\mathbf{K}} \tilde{\mathbf{w}}. \quad (\text{D7})$$

It follows from (D7) that

$$f(\tilde{\mathbf{w}}^{(t)}) = \tilde{\mathbf{w}}^{(t)T} \tilde{\mathbf{K}} \tilde{\mathbf{w}}^{(t)}, \quad (\text{D8})$$

$$f(\tilde{\mathbf{w}}^{(t+1)}) = \tilde{\mathbf{w}}^{(t+1)T} \tilde{\mathbf{K}} \tilde{\mathbf{w}}^{(t+1)}. \quad (\text{D9})$$

Using (D6), we are able to obtain the following

$$\begin{aligned} & f(\tilde{\mathbf{w}}^{(t+1)}) - f(\tilde{\mathbf{w}}^{(t)}) \\ &= \tilde{\mathbf{w}}^{(t+1)T} \tilde{\mathbf{K}} \tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t)T} \tilde{\mathbf{K}} \tilde{\mathbf{w}}^{(t)} \\ &= \tilde{\mathbf{w}}^{(t+1)T} \tilde{\mathbf{K}} \tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t+1)T} \Lambda^{(t)} \tilde{\mathbf{w}}^{(t)} \\ &\quad + \tilde{\mathbf{w}}^{(t+1)T} (\Lambda^{(t)} \tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{K}} \tilde{\mathbf{w}}^{(t)}) \quad (\text{D10}) \\ &= \tilde{\mathbf{w}}^{(t+1)T} \tilde{\mathbf{K}} (\tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t)}) \\ &\quad + \tilde{\mathbf{w}}^{(t+1)T} \Lambda^{(t)} (\tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t)}). \end{aligned}$$

In addition, it is easy to obtain that $\tilde{\mathbf{w}}^{(t)T} \Lambda^{(t)} \tilde{\mathbf{w}}^{(t)} = \sum_{i=1}^m \lambda_i^{(t)} = \tilde{\mathbf{w}}^{(t+1)T} \Lambda^{(t)} \tilde{\mathbf{w}}^{(t+1)}$. Together with (D6), we have

$$\begin{aligned} 0 &= \left(\tilde{\mathbf{w}}^{(t+1)T} \Lambda^{(t)} \tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t)T} \Lambda^{(t)} \tilde{\mathbf{w}}^{(t)} \right) \\ &\quad + \left(\tilde{\mathbf{w}}^{(t)T} \tilde{\mathbf{K}} \tilde{\mathbf{w}}^{(t)} - \tilde{\mathbf{w}}^{(t)T} \tilde{\mathbf{K}} \tilde{\mathbf{w}}^{(t)} \right) \\ &= \left(\tilde{\mathbf{w}}^{(t)T} \tilde{\mathbf{K}} \tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t)T} \Lambda^{(t)} \tilde{\mathbf{w}}^{(t)} \right) \quad (\text{D11}) \\ &\quad + \left(\tilde{\mathbf{w}}^{(t)T} \Lambda^{(t)} \tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t)T} \tilde{\mathbf{K}} \tilde{\mathbf{w}}^{(t)} \right) \\ &= \tilde{\mathbf{w}}^{(t)T} \tilde{\mathbf{K}} (\tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t)}) \\ &\quad + \tilde{\mathbf{w}}^{(t)T} \Lambda^{(t)} (\tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t)}). \end{aligned}$$

Subtracting (D11) from (D10) leads to

$$\begin{aligned} & f(\tilde{\mathbf{w}}^{(t+1)}) - f(\tilde{\mathbf{w}}^{(t)}) \\ &= \left(\tilde{\mathbf{w}}^{(t+1)T} - \tilde{\mathbf{w}}^{(t)T} \right) \tilde{\mathbf{K}} (\tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t)}) \\ &\quad + \left(\tilde{\mathbf{w}}^{(t+1)T} - \tilde{\mathbf{w}}^{(t)T} \right) \Lambda^{(t)} (\tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t)}) \\ &= \left(\tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t)} \right)^T \left(\tilde{\mathbf{K}} + \Lambda^{(t)} \right) (\tilde{\mathbf{w}}^{(t+1)} - \tilde{\mathbf{w}}^{(t)}). \quad (\text{D12}) \end{aligned}$$

In (D12), $\Lambda^{(t)}$ is a positive semi-definite diagonal matrix because its each diagonal entry is not less than 0 (see the updating rule in (18)). Together with Lemma 1, we have that $\tilde{\mathbf{K}} + \Lambda^{(t)}$ is bound to be symmetric positive semi-definite. Thus, we obtain

$$f(\tilde{\mathbf{w}}^{(t+1)}) - f(\tilde{\mathbf{w}}^{(t)}) \geq 0 \Leftrightarrow f(\tilde{\mathbf{w}}^{(t+1)}) \geq f(\tilde{\mathbf{w}}^{(t)}), \quad (\text{D13})$$

which shows that the objective function in (17) is nondecreasing. In terms of Lemma 2, the objective function has a upper bound. Putting these two conclusions together results in the convergence of the objective function. This completes the proof of Theorem 3. \blacksquare

References

- [1] C. A. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions. *Constructive Approximation*, 2:11–12, 1986. 1
- [2] J. Von Neumann. Some matrix-inequalities and metrization of matrix-space. *Tomsk University Review*, 1:286–300, 1937. 1