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Appendix A. Proof of Theorem 1
Before demonstrating the Theorem 1, let us first provide

the following theorem:
Theorem 4 [1]. Suppose ψ(z) is continuous on z ≥ 0

and positive on z > 0 for z ∈ R, dψ/dz is completely
monotonic but not constant w.r.t. z > 0. Then for a set of
any distinct vectors {f i ∈ Rn}qi=1,

(−1)q−1det(H) > 0 (A1)

holds for any n and q, where det(·) denotes the deter-
minant of a matrix, H ∈ Rq×q with (i, j)-th entry as
ψ
(
||f i − f j ||2

)
and || · || denotes the 2-norm of a vector.

Theorem 4 reveals that the matrix H, generated by some
function ψ(·), must be nonsingular due to its nonzero de-
terminant. Using Theorem 4, we can prove Theorem 1 as
follows:
Proof of Theorem 1. In CCP, the (j, t)-th entry of KF

ii is
calculated by

ker(f ji , f
t
i ) = exp

(
−||f ji − f ti ||2

2σ2

)
, (A2)

where i = 1, 2 and j, t = 1, 2, · · · , di. Let ψ(z) be

ψ(z) = exp

(
−z
2σ2

)
, z ∈ R. (A3)

It follows from (A2) and (A3) that

KF
ii (j, t) = ker

(
f ji , f

t
i

)
= ψ

(
||f ji − f ti ||2

)
. (A4)

In addition, it is easy to show that ψ(z) is continuous on
z ≥ 0 and positive on z > 0. Also, the derivative of ψ(z) is

dψ

dz
= − 1

2σ2
exp

(
−z
2σ2

)
, (A5)

which is strictly increasing on z > 0. Hence, det(KF
ii ) ̸= 0

holds according to Theorem 4. It follows immediately that
KF

11 and KF
22 are nonsingular. ■

Appendix B. Proof of Theorem 2

Proof. Let the i-th singular value of W̃1W̃
T
2 ∈ Rd1×d2

be ηi, i = 1, 2, · · · ,min(d1, d2). Since W̃T
1 W̃1 = Id and

W̃T
2 W̃2 = Id, it is easy to show that W̃1W̃

T
2 has d unit

singular values and the rest are zero, i.e., η1 = η2 = · · · =
ηd = 1. Using the Von-Neumann’s trace inequality [2], we
have

Tr
(
W̃T

1 K̃
F
12W̃2

)
= Tr

(
(W̃1W̃

T
2 )

T K̃F
12

)
≤

r∑
i=1

ηiσi =

d∑
i=1

σi,
(B1)

where the first equality applies the matrix property
Tr(AB) = Tr(BA).

This means that the maximum value of optimization
problem in (12) is the sum of the top d singular values of
K̃F

12. Using (13), we have

Tr
(
W̃T

1 K̃
F
12W̃2

)
= Tr

(
(U(:, 1 : d))

T
UΣVT (V(:, 1 : d))

)
= Tr

([
Id 0

] [Σd

Σr−d

] [
Id
0

])
= Tr(Σd) =

d∑
i=1

σi,

(B2)

where Σd = diag(σ1, σ2, · · · , σd) and Σr−d =
diag(σd+1, · · · , σr). Hence, W̃1 = U(:, 1 : d) and
W̃2 = V(:, 1 : d) are a solution of optimization problem in
(12). ■
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Appendix C. Derivation of Updating Rules in
(18) and (19)

For optimization problem in (17), using the Lagrange
multiplier technique we can obtain the following

L =

m∑
i=1

m∑
j=1

w̃T
i P

T
i K̃

F
ijPjw̃j−

m∑
i=1

λi(w̃
T
i w̃i−1), (C1)

where {λi ∈ R}mi=1 are the Lagrange multipliers. Taking
the derivative of L w.r.t. w̃i and setting it to 0, we obtain

∂L
∂w̃i

= 2

m∑
j=1

PT
i K̃

F
ijPjw̃j − 2λiw̃i = 0 (C2)

with i = 1, 2, · · · ,m. It follows from (C2) that

m∑
j=1

PT
i K̃

F
ijPjw̃j = λiw̃i, i = 1, 2, · · · ,m. (C3)

According to (C3) and w̃T
i w̃i = 1, we can obtain the fol-

lowing updating rules:

λi ←
∣∣∣∣∣∣ m∑
j=1

PT
i K̃

F
ijPjw̃j

∣∣∣∣∣∣,
w̃i ←

1

λi

m∑
j=1

PT
i K̃

F
ijPjw̃j .

Appendix D. Proof of Theorem 3
We can rewrite (C3) as the following concise form:

K̃w̃ = Λw̃, (D1)

where K̃ ∈ Rh×h is a block matrix with the (i, j)-th block
element as PT

i K̃
F
ijPj , w̃ =

[
w̃T

1 , w̃
T
2 , · · · , w̃T

m

]T ∈ Rh,
Λ = diag (λ1Id1 , λ2Id2 , · · · , λmIdm) ∈ Rh×h, and h =∑m

i=1 di.
Next, let us first provide the following two important

lemmas, which play the key roles to complete the proof of
Theorem 3.

Lemma 1. The matrix K̃ in (D1) is symmetric positive
semi-definite.

Proof. Let ϕ(Xi) =
[
ϕ(f1i ),ϕ(f

2
i ), · · · ,ϕ(f

di
i )
]T
∈

Rdi×N , i = 1, 2, · · · ,m. Let us denote

P = diag (P1,P2, · · · ,Pm) ∈ Rh×h,

D = diag
(
(KF

11)
− 1

2 , (KF
22)

− 1
2 , · · · , (KF

mm)−
1
2

)
∈ Rh×h,

ϕ(X) =
[
ϕ(X1)

T ,ϕ(X2)
T , · · · ,ϕ(Xm)T

]T ∈ Rh×N

with X =
[
XT

1 ,X
T
2 , · · · ,XT

m

]T ∈ Rh×n. Note that DT =

D due to the symmetry of each (KF
ii )

− 1
2 . Then, we have

that
K̃ = PTDϕ(X)ϕ(X)TDP. (D2)

Clearly K̃ is symmetric. For an arbitrary nonzero vector
ξ ∈ Rh, it follows from (D2) that

ξT K̃ξ = ξTPTDϕ(X)ϕ(X)TDPξ

=
(
ϕ(X)TDPξ

)T (
ϕ(X)TDPξ

)
≥ 0.

(D3)

Hence, K̃ is symmetric positive semi-definite. ■
Lemma 2. Let the largest eigenvalue of K̃ be δ1 and

w̃T
i w̃i = 1, i = 1, 2, · · · ,m. Then, w̃T K̃w̃ ≤ mδ1, where

w̃ is defined in (D1).
Proof. Let the eigenvalue decomposition of K̃ be

K̃ = G∆GT =

h∑
i=1

δigig
T
i , (D4)

where G = [g1,g2, · · · ,gh] ∈ Rh×h is an orthogonal ma-
trix, and ∆ = diag(δ1, δ2, · · · , δh) ∈ Rh×h is a diagonal
matrix consisting of h nonnegative eigenvalues in descend-
ing order.

Using (D4), we have

w̃T K̃w̃ =

h∑
i=1

δiw̃
Tgig

T
i w̃ =

h∑
i=1

δi(w̃
Tgi)

2

≤ δ1
h∑

i=1

(w̃Tgi)
2 = δ1w̃

T

(
h∑

i=1

gig
T
i

)
w̃

= δ1w̃
TGGT w̃ = δ1

m∑
i=1

w̃T
i w̃i = mδ1.

(D5)
Thus, Lemma 2 is true. ■

Using Lemmas 1 and 2, now let us prove the Theorem 3:
Proof of Theorem 3. Using (D1), we can rewrite the up-
dating rules in (18) and (19) as

K̃w̃(t) = Λ(t)w̃(t+1), (D6)

where w̃(t) =
[
w̃

(t)T
1 , w̃

(t)T
2 , · · · , w̃(t)T

m

]T
and Λ(t) =

diag
(
λ
(t)
1 Id1

, λ
(t)
2 Id2

, · · · , λ(t)m Idm

)
, and t is an iterative

variable.
For optimization problem in (17), let us define

f(w̃) =

m∑
i=1

m∑
j=1

w̃T
i P

T
i K̃

F
ijPjw̃j = w̃T K̃w̃. (D7)



It follows from (D7) that

f(w̃(t)) = w̃(t)T K̃w̃(t), (D8)

f(w̃(t+1)) = w̃(t+1)T K̃w̃(t+1). (D9)

Using (D6), we are able to obtain the following

f(w̃(t+1))− f(w̃(t))

= w̃(t+1)T K̃w̃(t+1) − w̃(t)T K̃w̃(t)

= w̃(t+1)T K̃w̃(t+1) − w̃(t+1)TΛ(t)w̃(t)

+ w̃(t+1)T
(
Λ(t)w̃(t+1) − K̃w̃(t)

)
= w̃(t+1)T K̃

(
w̃(t+1) − w̃(t)

)
+ w̃(t+1)TΛ(t)

(
w̃(t+1) − w̃(t)

)
.

(D10)

In addition, it is easy to obtain that w̃(t)TΛ(t)w̃(t) =∑m
i=1 λ

(t)
i = w̃(t+1)TΛ(t)w̃(t+1). Together with (D6), we

have

0 =
(
w̃(t+1)TΛ(t)w̃(t+1) − w̃(t)TΛ(t)w̃(t)

)
+
(
w̃(t)T K̃w̃(t) − w̃(t)T K̃w̃(t)

)
=
(
w̃(t)T K̃w̃(t+1) − w̃(t)TΛ(t)w̃(t)

)
+
(
w̃(t)TΛ(t)w̃(t+1) − w̃(t)T K̃w̃(t)

)
= w̃(t)T K̃

(
w̃(t+1) − w̃(t)

)
+ w̃(t)TΛ(t)

(
w̃(t+1) − w̃(t)

)
.

(D11)

Subtracting (D11) from (D10) leads to

f(w̃(t+1))− f(w̃(t))

=
(
w̃(t+1)T − w̃(t)T

)
K̃
(
w̃(t+1) − w̃(t)

)
+
(
w̃(t+1)T − w̃(t)T

)
Λ(t)

(
w̃(t+1) − w̃(t)

)
=
(
w̃(t+1) − w̃(t)

)T (
K̃+ Λ(t)

)(
w̃(t+1) − w̃(t)

)
.

(D12)
In (D12), Λ(t) is a positive semi-definite diagonal matrix
because its each diagonal entry is not less than 0 (see the up-
dating rule in (18)). Together with Lemma 1, we have that
K̃ + Λ(t) is bound to be symmetric positive semi-definite.
Thus, we obtain

f(w̃(t+1))− f(w̃(t)) ≥ 0⇔ f(w̃(t+1)) ≥ f(w̃(t)),
(D13)

which shows that the objective function in (17) is nonde-
creasing. In terms of Lemma 2, the objective function has a
upper bound. Putting these two conclusions together results
in the convergence of the objective function. This completes
the proof of Theorem 3. ■
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