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1. Introduction

The supplementary material aims at giving a more thor-

ough insight into the technical details of our work and at

highlighting results obtained using simulated and quantum

annealing. First, we prove that Hessian regularization does

not influence the minimizer of the binary optimization prob-

lem in Section 2. After this, a further analysis of measure-

ments generated using simulated and quantum annealing

is presented in Section 4. Finally, detailed results on the

MOT15 challenge are shown in Section 5 and furthermore,

also visualized in the accompanying video.

2. Hessian Regularization

The following proof shows that the optimum solution is

not influenced by the additional diagonal terms introduced

in Section 5.1 of the main paper. This holds given a binary

optimization problem and the constraints in Equations (6)

and (7).
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3. Post Processing

To allow the handling of long sequences that cannot be

represented as a single optimization problem, the sequence

needs to be split into overlapping subproblems. We split a

long sequence in equally sized subproblems with an overlap

similar to the modeled frame gap. After tracking each sub-

problem separately, tracks are matched between each pair

of neighboring subproblems by solving a linear sum prob-

lem that can be solved in polynomial time. The optimization

goal is to maximize the number of detections that are jointly

assigned to tracks matched in both subproblems. The linear

sum optimization problem for matching subproblems k and

k + 1 is stated as

max
xij∈{0,1}

Tk∑

i=1
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j=1

xij mij s.t.
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j=1 xij ≤ 1,
(8)

where xij are the optimization variables indicating an as-

signment of track i in segment k to track j in segment

k+1, The considered tracks Tk and Tk+1 are the tracks that

have at least one detection assigned to them in the frames

overlapping between both subproblems. mij is the number

of detections shared by tracks i and j in the overlapping

frames, which furthermore is set to a small negative value if

tracks i and j have no overlap.

4. Annealing Energy Distribution

Results from simulated as well as quantum annealing

with synthetic data are presented in Figures 1, 2, 3, and 4. In

each of the figures, the topmost plot shows the probability

of finding the correct solution and the plots below show the

measurement energy for increasing noise levels from top to

bottom.

Fixed Lagrangian. Results for a fixed Lagrangian multi-

plier are shown Figures 1 and 2 for real and synthetic data

respectively. For simulated annealing, the Lagrangian mul-

tiplier is in the range λ ∈ [2, 5] and with noise levels be-
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seq MOTA IDF1 MT ML FP FN IDs Density [2] Tracks [2] Boxes [2] FPS [2]

X
-V

al

Venice-2 41.6 50.0 13 1 2178 1855 135 11.9 26 7141 30

KITTI-17 79.6 83.6 6 0 5 130 4 4.7 9 683 10

KITTI-13 33.5 57.8 13 11 197 293 17 2.2 42 762 10

ADL-Rundle-8 26.7 51.4 18 3 3587 1336 49 10.4 28 6783 30

ADL-Rundle-6 63.3 53.7 11 1 228 1570 40 9.5 24 5009 30

ETH-Pedcross2 46.2 59.9 28 74 127 3216 27 7.5 133 6263 14

ETH-Sunnyday 78.1 87.0 19 6 110 295 2 5.2 30 1858 14

ETH-Bahnhof 47.3 67.5 98 38 1933 895 24 5.4 171 5415 14

PETS09-S2L1 83.2 76.9 17 0 341 351 58 5.6 19 4476 7

TUD-Campus 75.5 75.4 4 0 9 72 7 5.1 8 359 25

TUD-Stadtmitte 81.6 80.8 7 0 5 201 7 6. 10 1156 25

OVERALL 59.7 67.6 234 134 8720 10214 370 7.3 500 39905 -

T
es

t

Venice-1 44.4 49.0 6 3 656 1839 42 10.1 17 4563 30

KITTI-19 48.2 60.1 14 17 528 2191 49 5.0 62 5343 10

KITTI-16 52.7 67.1 3 1 120 666 19 8.1 17 1701 10

ADL-Rundle-3 50.0 47.4 10 7 653 4346 81 16.3 44 10166 30

ADL-Rundle-1 38.2 49.9 12 2 2365 3313 73 18.6 32 9306 30

AVG-TownCentre 52.7 57.0 58 35 363 2767 250 15.9 226 7148 2.5

ETH-Crossing 62.3 75.1 7 8 38 335 5 4.6 26 1003 14

ETH-Linthescher 56.5 62.3 45 89 342 3493 48 7.5 197 8930 14

ETH-Jelmoli 51.0 65.5 18 13 522 701 19 5.8 45 2537 14

PETS09-S2L2 50.1 38.7 2 4 312 4259 243 22.1 42 9641 7

TUD-Crossing 85.7 81.6 12 0 25 122 11 5.5 13 1102 25

OVERALL 49.9 53.5 187 179 5924 24032 840 10.6 721 61440 -

Table 1. Results on the MOT15 [2] training and test set. Results on the training set are generated using leave-one-out cross validation

(X-Val).

tween σ = 0.2 to σ = 1.0. For quantum annealing the

ranges are λ ∈ [1, 5] and σ ∈ [0.0, 0.3] respectively.

For quantum as well as for simulated annealing, the spec-

tral gap decreases with increasing noise levels, and thus,

also the corresponding solution probability. When compar-

ing the two approaches with each other, it becomes apparent

that quantum annealing often returns high energy solutions,

which corresponds to a higher temperature of the currently

available systems.

Optimized Lagrangian. Results for optimized La-

grangian multipliers are shown in Figures 3 and 4 for real

and synthetic data respectively. Noise parameters are the

same as for fixed Lagrangian multipliers and the Lagrangian

offset λoff is in the range λoff ∈ [0, 2] for both approaches.

Following the same rules as for fixed Lagrangian mul-

tipliers, the spectral gap and corresponding solution prob-

ability decreases with increasing noise level. Comparing

Figure 3 to Figure 1 reveals that in simulation a consider-

able improvement can be achieved by using optimized La-

grangian multipliers. Also for quantum annealing an ad-

vantage can be achieved, nevertheless, it is smaller than in

simulated annealing, which can be explained by the higher

noise level that results in high energy solutions.

5. MOTChallenge 2015

Detailed results for our method on each sequence in the

MOT15 [2] training and test set are provided in Table 1.

While the results on both sets are competitive with current

state-of-the-art methods [1], the performance on the training

set with leave one out cross-validation is higher than on the

test set.

The difference can be explained by the harder examples

represented by it. While both splits contain a similar num-

ber of frames (5500 frames and 5783 frames respectively),

the number of tracks, detected boxes and the correspond-

ing density is approximately 45% higher in the test set and

thus, also the complexity and size of the optimization prob-

lem. As our formulation is designed for AQC using an Ising

model, the resulting optimization problem is a quadratic bi-

nary program and thus, hard to solve on classical hardware.

This becomes apparent for two sequences in the test set,

AVG-TownCentre and PETS09-S2L2 with a high density of

15.9 and 22.1 and low frame rate of 2.5 fps and 7 fps re-

spectively. The two sequences account for only 27.3% of

the total detections, but for 58.7% of the ID switches. ID

switches are a good measure for the tracker’s performance

in this case, as they are less influenced by the performance



1 2 3 4 5
0

1

p

=0.2 = 0.4 = 0.6 = 0.8 = 1.0

2.0 2.5 3.0 3.5 4.0 4.5 5.0
50

40

30

20

E

2.0 2.5 3.0 3.5 4.0 4.5 5.0
50

40

30

20

E

2.0 2.5 3.0 3.5 4.0 4.5 5.0
50

40

30

20

E

2.0 2.5 3.0 3.5 4.0 4.5 5.0
50

40

30

20

E

2.0 2.5 3.0 3.5 4.0 4.5 5.0
50

40

30

20

E

Figure 1. Solution probability and energy levels using simulated

annealing for noise levels σ ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and chang-

ing λ.

of the object detector than FP and FN. Due to the larger

size of these problems, the optimization cannot finish for

all segments within the given time frame and thus, returns a

sub-optimal solution.

Even though the problem size is a limitation when solv-

ing the problem on classical hardware, it can be resolved

when future AQCs become available. As the overall per-

formance is similar to current state-of-the-art methods on
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Figure 2. Solution probability and energy levels using quantum

annealing for noise levels σ ∈ {0.0, 0.1, 0.2} over λ.

MOT15 [2], it can be expected that it scales up to larger

datasets accordingly and thus, provides the basis to develop

AQC based formulations of the MOT task.
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Figure 3. Solution probability and energy levels using sim-

ulated annealing and optimized λi for noise levels σ ∈
{0.2, 0.4, 0.6, 0.8, 1.0} over λoff.
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Figure 4. Solution probability and energy levels using quantum

annealing and optimized λi for noise levels σ ∈ {0.0, 0.1, 0.2}
over λoff.
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