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1. Datasets and Experimental Details

In Table 1, we list the datasets used for training and eval-
uation. Next we describe them for each individual task.

Image Deraining. Following [16, 28, 39], we train
Restormer on 13,712 clean-rainy image pairs collected from
numerous datasets [13, 20, 36, 41, 42], as shown in Ta-
ble 1. With this single trained model, we perform eval-
uation on Rain100H [36], Rain100L [36], Test100 [42],
Test2800 [13], and Test1200 [41]. PSNR/SSIM scores are
computed on the Y channel in YCbCr color space as in other
works [16,39].

Single-Image Motion Deblurring. Consistent with exist-
ing methods [17, 33, 34, 39, 40], we use the GoPro [25]
dataset for training our Restormer. It contains 2,103 blurry-
sharp image pairs for training and 1,111 pairs for valida-
tion. To test the generalization ability of Restormer, we
take our GoPro trained model and directly evaluate it on
the testsets of HIDE [32] and RealBlur [31] datasets. The
testset of the HIDE dataset [32] consists of 2,025 images,
and it is particularly gathered for the human-aware motion
deblurring. The blurry images in both the GoPro and HIDE
datasets are synthetically generated. Whereas, the blurry-
sharp image pairs of RealBlur dataset [31] are acquired in
real-world conditions. The RealBlur dataset has two sub-
sets: (1) RealBlur-J contains 980 images that are obtained
directly as camera JPEG outputs, and (2) RealBlur-R is gen-
erated offline by applying white balance, demosaicking, and
denoising operations to the RAW images. It also has 980
images.

Defocus Deblurring. For this task, we use a recently
presented DPDD dataset [2]. DPDD consists of 500 in-
door/outdoor scenes captured with a DSLR camera. Each
scene contains three defocus input images and a corre-
sponding all-in-focus ground-truth image. Three input im-
ages are labeled as left, right and center views. The left
and right defocused sub-aperture views are acquired with
a wide camera aperture setting, and the corresponding all-
in-focus ground-truth image captured with a narrow aper-
ture. We use this sub-aperture data to train Restormer for
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the dual-pixel defocus deblurring task. Whereas, the cen-
ter input image and corresponding ground-truth is used for
training Restormer for the single-image defocus deblurring
task. The DPDD dataset [2] contains 350 images for train-
ing, 74 images for validation, and 76 images for testing (37
indoor and 39 outdoor).

In the dual-pixel defocus deblurring task, the input to
Restormer is of 6-channel (concatenated left and right sub-
aperture views) and the output is a 3-channel deblurred im-
age. Furthermore, instead of using the residual learning on
images I = I+ R (as shown in Fig. 2 of the main paper),
we use skip connection on features, i.e., Fg + F,.

Gaussian Image Denoising. Following [22, 43], both for
the grayscale and color denoising, we use a combined set
of 800 images from DIV2K [4], 2,650 images of Flickr2K,
400 BSD500 images [5] and 4,744 images from WED [23].
Noisy images are generated by adding additive white Gaus-
sian noise with noise level o to clean images. Testing is
performed on Set12 [45], BSD68 [24], Urban100 [15], Ko-
dak24 [12] and McMaster [46] benchmark datasets.

Real Image Denoising. To train our Restormer, we use
320 high-resolution images of the SIDD dataset [1]. With
this SIDD trained model, we perform evaluation on 1,280
patches from the SIDD validation set [1] and 1,000 patches
from the DND benchmark dataset [27]. These test patches
on both datasets are extracted from the full resolution im-
ages by the original authors. Since the ground-truth of
DND images is not publicly available, the PSNR/SSIM
scores are obtained by uploading results to the online server
https://noise.visinf.tu-darmstadt.de/.

2. Baseline vs Proposed Transformer Block

We provide illustrations in Fig. 1 and Fig. 2 to demon-
strate the transition from the baseline to the proposed trans-
former block components i.e., multi-Dconv head transposed
attention (MDTA) and gated-Dconv feed-froward network
(GDEFN) to better illustrate our design contributions.


https://noise.visinf.tu-darmstadt.de/

Table 1. Dataset description for various image restoration tasks.

Tasks Datasets ‘ Train Samples Test Samples Testset Rename
Rain14000 [13] 11200 2800 Test2800
Rain1800 [36] 1800 0 -
Rain800 [42] 700 100 Test100
Deraining Rain100H [36] 0 100 Rain100H
Rain100L [36] 0 100 Rain100L
Rain1200 [41] 0 1200 Test1200
Rain12 [20] 12 0 -
Motion GoPro [25] 2103 1111 -
Deblurrin HIDE [32] 0 2025 -
urring RealBlur [31] 0 1960 -
SIDD [1] 320 1280 patches from 40 images -
DND [27] 0 1000 patches from 50 images -
DIV2K [4] 800 0 -
Flickr2K 2650 0 -
BSD500 [5] 400 0 -
Denoising WED [23] 4744 0 -
Set12 [45] 0 12 -
BSD68 [24] 0 68 -
Urban100 [15] 0 100 -
Kodak24 [12] 0 24 -
McMaster [46] 0 18 -
Defocus
Deblurring DPDD [2] 350 76 -
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Figure 1. Comparisons between (a) the conventional multi-head self attention [11] and (b) the proposed multi-Dconv head transposed
attention (MDTA). Our MDTA module implicitly models global context by applying self-attention across channels rather than the spatial
dimension, thus having linear complexity rather than quadratic.
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Figure 2. Comparisons among (a) conventional feed-forward network [11], (b) Dconv feed-forward network [21] and (c) the proposed
gated-Dconv feed-forward network (GDEN). Since the proposed GDFN performs more operations as compared to (a) and (b), we reduce
the expansion ratio «y so as to have similar parameters and identical compute burden.

3. Computational Comparisons

Table 2 shows that, compared to existing Transformer-
based methods, our Restormer is more efficient and effec-

tive.

4. Additional Visual Results

We present images reproduced by the proposed

Restormer and those of other competing approaches for dif-
ferent image restoration tasks as qualitative examples.



Table 2. Computational comparison of Transformer-based image
restoration models.

Params | FLOPs Time (s) PSNR (Denoising; Table 5)
M) (B) 256 %256 patch Urban100, o = 50
IPT [8] 115.3 379 3.35 29.71
SwinIR [22] | 11.50 444 1.80 29.82
Restormer 26.11 141 0.11 30.02

* Image deraining: Figures 3,4,5

¢ Single-image motion deblurring: Figures 6, 7, 8, 9.

* Dual-pixel defocus deblurring: Figures 10, 11.

* Gaussian grayscale image denoising: Figures 12, 13.
* Gaussian color image denoising: Figures 14, 15.

* Real image denoising: Figures 16, 17, 18.

5. Limitations and Future Work

While Restormer emerges as a competitive backbone ar-
chitecture across several benchmarks, it can be further im-
proved with the specific complimentary modules. For ex-
ample, feature aggregation approaches can be incorporated
which seek to resolve the spatial feature misalignment that
occurs when the high-resolution encoder features are ag-
gregated with the low-resolution decoder features (via skip
connections). This could be achieved by employing de-
formable convolutions [10] or by using cross-scale attention
mechanism [7] instead of concatenation used in our archi-
tecture. While the potential feature misalignment is not spe-
cific to Restormer, but a common issue of encoder-decoder
designs, our approach can further improve with better fea-
ture alignment techniques.

In this work, we use L, loss, AdamW optimizer, GeLU
non-linearity and Layer normalization following default
choices in the existing literature. Other choices (specific
to image restoration) might yield improved results, that can
be explored in the future work. As an example, one sim-
ple experiment using the H-Swish [14,21] non-linearity can
lead to better than our reported results, however, we opt
for GeLU since our goal is to provide a generic and strong
backbone instead of a heavily tuned architecture. Restormer
employs deep-narrow architecture design which applies se-
quential operations and have higher latency which can be
improved. Further, a multi-stream Transformer (better par-
allelizable) can be explored without compromising accu-
racy.
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Figure 3. Image deraining. Top image is from Rain100L [36], middle is from Test100 [42] and the bottom is from Test1200 [41].
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Figure 4. Image deraining. Top image is from Rain100L [36], middle is from Test100 [42] and the bottom is from Rain100H [36].
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Figure 5. Image deraining. Top two images are from Rain100H [36], and the bottom is from Test1200 [41].
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Figure 6. Single-image motion deblurring comparisons on the GoPro dataset [25].
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Figure 7. Single-image motion deblurring comparisons on the GoPro dataset [25].
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Figure 8. Single-image motion deblurring comparisons on the RealBlur dataset [31].
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Figure 9. Single-image motion deblurring comparisons on the RealBlur dataset [31].
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Figure 10. Dual-pixel defocus deblurring on DPDD [2].
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Figure 11. Dual-pixel defocus deblurring on DPDD [2].
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Figure 12. Gaussian grayscale image denoising comparisons on the Urban100 dataset [15].
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Figure 13. Gaussian grayscale image denoising comparisons on the Urban100 dataset [15].
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Figure 14. Gaussian color image denoising comparisons on the Urban100 dataset [15].
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Figure 15. Gaussian color image denoising comparisons on the Urban100 dataset [15].
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Figure 16. Real image denoising on the SIDD dataset [1].
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Figure 17. Real image denoising on the SIDD dataset [1].
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Figure 18. Real image denoising on the DND benchmark dataset [27].
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