

Supplemental Material CVPR2022 Paper

Unifying Panoptic Segmentation for Autonomous Driving

1. Unified Label Policy

Table 1 lists all WD2 labels including mappings to MVD, IDD, Cityscapes, and WD2_{eval} as well as each label's supercategory and visualization color.

WD2	color	MVD	IDD	Cityscapes	WD2 _{eval}	WD2	color	MVD	IDD	Cityscapes	WD2 _{eval}
person		person	person	person	person	pole		pole	pole	pole	pole
motorcyclist		motorcyclist	rider	rider	rider	utilitypole		utilitypole	pole	pole	pole
bicyclist		bicyclist	rider	rider	rider	trafficsignframe		trafficsignframe	pole	pole	pole
otherrider		otherrider	rider	rider	rider	trafficlight		trafficlight	trafficlight	trafficlight	trafficlight
egovehicle		egovehicle	egovehicle	egovehicle	egovehicle	billboard		billboard	billboard	billboard	billboard
dashcammount		dashcammount	cammount	egovehicle	egovehicle	streetlight		streetlight	streetlight	streetlight	streetlight
car		car	car	car	car	manhole		manhole	road	road	road
truck		truck	truck	truck	truck	trafficsign		trafficsign	trafficsign	trafficsign	trafficsign
bus		bus	bus	bus	bus	trafficsignfront		trafficsignfront	static	static	unlabeled
motorcycle		motorcycle	motorcycle	motorcycle	motorcycle	trafficsignback		trafficsignback	obsstrbarf.	obsstrbarf.	obsstrbarf.
bicycle		bicycle	bicycle	bicycle	bicycle	trafficsignany		trafficsignany	otherbarrier	otherbarrier	otherbarrier
pickup		pickup	truck	truck	truck	otherbarrier		otherbarrier	wall	wall	wall
van		van	car	car	car	catchbasin		catchbasin	road	road	road
autorickshaw		autorickshaw	othervehicle	autorickshaw	motorcycle	manholesidewalk		manholesidewalk	sidewalk	sidewalk	sidewalk
caravan		caravan	caravan	caravan	motorcycle	junctionbox		junctionbox	obsstrbarf.	obsstrbarf.	obsstrbarf.
trailer		trailer	trailer	trailer	motorcycle	mailbox		mailbox	static	static	unlabeled
onrails		onrails	train	train	motorcycle	phonebooth		phonebooth	obsstrbarf.	obsstrbarf.	obsstrbarf.
othervehicle		othervehicle	vehiclef.	vehiclef.	motorcycle	bikerack		bikerack	static	static	unlabeled
wheeledslow		wheeledslow	vehiclef.	vehiclef.	motorcycle	pothole		pothole	road	road	road
boat		boat	unlabeled	unlabeled	motorcycle	trashcan		trashcan	obsstrbarf.	obsstrbarf.	obsstrbarf.
road		road	road	road	road	bench		bench	static	static	unlabeled
sidewalk		sidewalk	sidewalk	sidewalk	sidewalk	banner		banner	obsstrbarf.	obsstrbarf.	obsstrbarf.
roadmarking		roadmarking	road	road	road	firehydrant		firehydrant	dynamic	dynamic	unlabeled
markinggeneral		markinggeneral	road	road	road	cctvcamera		cctvcamera	static	static	unlabeled
curb		curb	curb	sidewalk	sidewalk	building		building	building	building	building
tramtrack		tramtrack	railtrack	road	road	wall		wall	wall	wall	wall
bikelane		bikelane	bikelane	road	road	fence		fence	fence	fence	fence
bikelanesidewalk		bikelanesidewalk	sidewalk	sidewalk	sidewalk	guardrail		guardrail	guardrail	guardrail	guardrail
pedestrianarea		pedestrianarea	road	road	road	bridge		bridge	bridge	bridge	unlabeled
crosswalkplain		crosswalkplain	road	road	road	tunnel		tunnel	tunnel	tunnel	unlabeled
crosswalkzebra		crosswalkzebra	road	road	road	vegetation		vegetation	vegetation	vegetation	vegetation
curbterrain		curbterrain	curb	curb	terrain	terrain		terrain	terrain	terrain	terrain
servicelane		servicelane	servicelane	road	road	groundanimal		groundanimal	dynamic	dynamic	unlabeled
curbcut		curbcut	curbcut	curb	road	bird		bird	dynamic	dynamic	unlabeled
ground		ground	unlabeled	unlabeled	sidewalk	mountain		mountain	static	static	unlabeled
parking		parking	parking	parking	unlabeled	sky		sky	sky	sky	sky
railtrack		railtrack	railtrack	railtrack	unlabeled	dynamic		unlabeled	dynamic	dynamic	unlabeled
water		water	nondrivablef.	ground	unlabeled	overlay		unlabeled	rect.border	rect.border	unlabeled
sand		sand	drivablef.	ground	unlabeled	outofroi		unlabeled	outofroi	outofroi	unlabeled
snow		snow	unlabeled	ground	unlabeled	static		unlabeled	unlabeled	static	unlabeled
unlabeled		unlabeled	unlabeled	unlabeled	unlabeled	unlabeled		unlabeled	unlabeled	unlabeled	unlabeled
polegroup		polegroup	polegroup	polegroup	pole	void		void	unlabeled	unlabeled	unlabeled

Table 1. Wilddash2 label policy and mapping to MVD, IDD, CS, and WD2_{eval}. Bold labels have instance annotations, italic labels are not evaluated at their respective benchmark. Negative test cases do evaluate areas labeled as *unlabeled* in WD2_{eval} (see paper's Section 4.2 on Negative Testing); Supercategories: **†** human; **▲** vehicle; **■** flat; **☒** object; **⌂** construction; **▢** nature; **▢** sky; **✗** void

2. Category definitions

The WD2 label policy unifies MVD, IDD, and Cityscapes category labels (in addition to the new vehicle labels *pickup* and *van*). The definition for most labels can be found in existing label definitions. Others need clarification or clear rules for differentiation in borderline cases. This leads to the following category definitions:

- The categories *person*, *egovehicle*, *car*, *truck*, *bus*, *motorcycle*, *bicycle*, *caravan*, *trailer*, *onrails*, *road*, *sidewalk*, *ground*, *parking*, *railtrack*, *polegroup*, *billboard*, *streetlight*, *building*, *wall*, *fence*, *guardrail*, *bridge*, *tunnel*, *vegetation*, *terrain*, *sky*, *unlabeled*, *outofroi*, *static*, and *dynamic* are described in the supplemental material to the Cityscapes [1] paper.
- The categories *motorcyclist*, *bicyclist*, *otherrider*, *othervehicle*, *wheeledslow*, *boat*, *roadmarking* (==*marking general*) *curb*, *bikelane*, *pedestrianarea*, *crosswalkplain*, *crosswalkzebra*, *servicelane*, *curbcut*, *water*, *sand*, *snow*, *pole*, *utilitypole*, *trafficlight*, *trafficsign* (== *traffic sign front*), *manhole*, *pothole*, *trafficsignback*, *trafficsignframe*, *otherbarrier*, *catchbasin*, *junctionbox*, *mailbox*, *phonebooth*, *bikerack*, *trashcan*, *bench*, *banner*, *firehydrant*, *cctvcamera*, *groundanimal*, *bird*, *mountain*, *dashcammount* (== *car mount*) are described in the supplemental material to the MVD [2] paper.

	↑ human	→ vehicle	▲ flat	฿ object	🏗 construction	🌳 nature	☁️ sky	average
mvd100 PQ_{Cat}	46.0%	55.3%	71.6%	32.3%	52.8%	66.5%	79.5%	57.7%
mix150 PQ_{Cat}	49.7%	61.4%	86.2%	34.1%	62.5%	71.9%	87.3%	64.7%
mvd100 RQ_{Cat}	60.2%	67.0%	84.1%	48.2%	70.0%	82.1%	86.3%	71.1%
mix150 RQ_{Cat}	65.2%	73.6%	97.5%	50.9%	79.8%	87.1%	93.6%	78.2%
mvd100 SQ_{Cat}	76.4%	82.6%	85.1%	67.1%	75.4%	80.9%	92.2%	80.0%
mix150 SQ_{Cat}	76.2%	83.4%	88.4%	66.9%	78.2%	82.6%	93.3%	81.3%

Table 2. Per-supercategory PQ, RQ and SQ metrics evaluated on the hidden WD2 benchmark set for both models *mvd100* and *mix150* presented in the main paper.

- The labels *curb* and *curbterrain* both are described by the MVD *curb* label (i.e. curb stones; including all visible faces of a curb). If the curb encases an area labeled with terrain (or other vegetation), then the curb receives the *curbterrain* label. Otherwise use *curb*.
- The labels *bikelane* and *bikelanesidewalk* are both described by the MVD *curb* label. Use *bikelanesidewalk* if the bikelane is on a sidewalk. Otherwise use *bikelane*.
- The labels *manhole* and *manholesidewalk* are both described by the MVD *manhole* label. Use *manholesidewalk* if the manhole is on a sidewalk. Otherwise use *manhole*.
- The *traintrack* is described by the Cityscapes *traintrack* label (i.e. track of raised rails, not drivable by cars). The *tramtrack* label is used for the track area between embedded rails (drivable by cars) including the rails themselves.
- The *autorickshaw* category is described in the IDD [3] paper.
- The *trafficsignany* category is a fallback category used for cases where either *trafficsign* (=front) or *trafficsignback* could be correct.
- Vehicle class *pickup*: This label is used for light commercial vehicles (LCV) with an open cargo area. It only applies to motorized, car-sized vehicles with a visible un-roofed cargo area (also for open cages). Pickup trucks have regular car front wheels and a regular car wheelbase (distance). Cargo vehicles with larger tires or a truck motor housing (driver sitting above motor with a vertical windscreens and bonnet) retain the *truck* label.
- Vehicle class *van*: This label applies to motorized LCV without an open cargo area. Vans have a boxy shape with regular car tires and their wheel-base is typically larger than those of regular cars. The front of vans is often inclined but straight and they are distinctively higher (i.e. the van’s ceiling) than regular cars. Vehicles sold under the term “mini-van” with a regular car height remain at the *car* label. Hybrid vehicles with a fully separated, non-continuous, driver cabin are still labeled as *truck* (e.g. many ambulance vehicles, police, some delivery trucks).

3. Supercategory Scores

Table 2 shows individual per-supercategory scores of mvd100 and mix150 on the *WD2_{bench}* set. Table 3 in the main paper contains the right-most column (arithmetic mean over all supercategories) denoted as PQ_{cat} .

4. Further Experiments

The following Table 3 mirrors the layout of Table 3 in the main paper. Experiments were conducted for WD2, Cityscapes, and IDD in the same way as for MVD: first 100 epochs on only the original dataset using the standard training label policy (plus *van* and *pickup*). This results in 66 labels for MVD, 29 for IDD, and 22 for Cityscapes. The validation results are calculated on the original validation dataset using the original training label policy while the WD2 benchmark evaluation remaps the algorithm outputs to the WD2_{eval} label policy (26 labels) and reports the results for the hidden WD2 benchmark dataset. The models after 100 epochs are fine-tuned for 50 epochs using WD2 individually remapped to each of the dataset’s training label policies mixed with the same amount of frames from the original dataset (i.e. 50%/50% split). The model for the first column *wd2_100* uses only WD2 frames with the WD2_{eval} label policy during training. The same train/val split is used both for *wd2_100* as well as in all fine-tunings.

	Original Validation					WD2 Benchmark						
	PQ	SQ	RQ	PQ_{van}	PQ_{pickup}	PQ	SQ	RQ	PQ_{van}	PQ_{pickup}	PQ_{neg}	PQ_{cat}
wd2_100	38.0%	75.6%	48.2%	36.9%	33.4%	37.0%	75.5%	47.7%	35.1%	37.3%	16.9%	61.1%
cs100	55.7%	76.4%	68.2%	53.7%	0.0%	10.7%	69.5%	15.0%	10.6%	0.0%	5.4%	22.8%
cs150	56.1%	77.4%	68.2%	55.2%	0.0%	32.2%	76.9%	41.1%	34.4%	41.1%	15.5%	58.4%
idd100	47.7%	75.6%	59.5%	48.8%	0.0%	15.3%	72.8%	20.1%	14.1%	0.0%	7.2%	35.7%
idd150	46.4%	75.7%	57.9%	40.4%	0.0%	29.4%	76.1%	37.7%	33.7%	33.7%	14.2%	54.8%
mvd100	35.1%	74.2%	43.9%	26.6%	29.9%	37.6%	75.6%	48.3%	34.0%	38.1%	17.1%	57.7%
mix150	34.1%	73.5%	42.8%	24.7%	29.7%	42.2%	77.5%	53.2%	38.9%	49.2%	21.1%	64.7%

Table 3. Comparison of performances for multiple models first trained on the respective original datasets (WD2, Cityscapes, IDD, MVD) and later fine-tuned for 50 additional epochs on a 50%/50% mixture of the original dataset and WD2. The left side shows results when evaluated on the original validation sets and the right side shows scores on the hidden WD2 benchmark set. The label policy on the left is not constant across the rows while the right side all evaluate using the same labels: WD2_{eval}. Results for MVD are duplicated from the main paper to improve comparability.

References

- [1] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 3213–3223, 2016. [1](#)
- [2] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and Peter Kontschieder. The mapillary vistas dataset for semantic understanding of street scenes. In *IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 4990–4999, 2017. [1](#)
- [3] Girish Varma, Anbumani Subramanian, Anoop Namboodiri, Manmohan Chandraker, and CV Jawahar. IDD: A dataset for exploring problems of autonomous navigation in unconstrained environments. In *IEEE Winter Conference on Applications of Computer Vision (WACV)*, pages 1743–1751. IEEE, 2019. [2](#)