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1. Datasets and Evaluation Metrics

Datasets. We evaluate the proposed method on Driving-
Stereo [12], KITTI raw [5], and Virtual KITTI [2, 4]
datasets.

DrivingStereo is a large-scale outdoor stereo dataset
in driving scenarios containing ∼ 17K sequential training
pairs and ∼ 8K testing paris. From the entire dataset, we
use the specially selected 2000 frames with four different
kinds of weather (cloudy, foggy, rainy, sunny) for continual
stereo. Each scene includes 500 stereo pairs with 400 pairs
for training and 100 pairs for testing. The resolution of the
image is 881× 400.

KITTI raw collects real-world outdoor stereo video se-
quences covering heterogeneous environments, namely res-
idential, city, road and campus. It contains about 43k video
frames with sparse depth labels [11] converted into dispari-
ties by knowing the camera parameters. Since the labels of
the real-world data are hard to obtain, we extract two videos
from each scene as training and testing to mimic the real
environments. Table 1 shows the specific division with ∼
1000 pairs for training and ∼ 100 pairs for testing on each
scene. The resolution of the image is about 1248× 384.

Virtual KITTI is a synthetic clone of the real KITTI
dataset containing five sequences named Scene 01, 02, 06,
18, and 20. Each scene has nine variants with five different
kinds of weather and four modified camera configurations.
Since the weather condition has been considered in Driv-
ingStereo, we select the five scenes with four camera con-
figurations and divide them into 80% training sets and 20%
testing sets for continual stereo.

Metrics. We use the following metrics for evauation.
The end-point-error (EPE) metric measures the average

pixel error between the predicted disparity and the ground
truth disparity. The bad pixel error for all pixels (D1-all)
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Table 1. Division of the KITTI raw dataset.

Scene Training Sequence Testing Sequence

Residential 2011 09 30 drive 0034 2011 09 26 drive 0079

City 2011 09 29 drive 0071 2011 09 26 drive 0113

Road 2011 10 03 drive 0042 2011 09 26 drive 0027

Campus All sequences except testing 2011 09 28 drive 0037

metric calculates the percentage of outliers averaged over
all ground truth pixels.

For continual stereo evaluation, we construct a matrix
R ∈ RN×N where Ri,j is the error rate (EPE or D1) of the
model hi on the task T j . If i = j, Ri,j represents the per-
formance of the model on the current scene. If i > j, Ri,j

represents the performance of the model on the previously
learned scenes. Then we have the final average error (FAE)
formulated as:

FAE =
1

N

∑N

i=1
RN,i. (1)

The metric of Backward Transfer (BWT) is formulated as:

BWT =
1

N − 1

∑N−1

i=1
RN,i −Ri,i. (2)

To evaluate the reusability of the learned cells, the aver-
age reuse rate (ARR) is introduced to calculate the average
proportion of the parameters of the old cells in the current
architecture. Define the number of parameters of the current
model ht as ϕt, then we have ARR formulated as:

ARR =
1

N − 1

∑N

t=2

∑t−1
j=1 ϕj ∩ ϕt

ϕt
, (3)

where ϕj ∩ϕt refers to the number of parameters of cells in
hj that are resued in ht.
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2. Training Details

The training protocol of our RAG framework consists of
three stages. In the cell level search stage, the searching
batch size is set to 12, and the total sampling times are set
to 100. In the network level growth stage, the searching
batch size is 8, and the total sampling times are also set to
100. In the task-specific model training stage, the training
batch size is 8. We train our model for 400 epochs on the
DrivingStereo dataset and 300 epochs on the KITTI raw and
Virtual KITTI datasets. The total training requires 1.2 GPU
days for each scene of DrivingStereo on a single TITAN
RTX GPU.

For the Scene Router module, the left images are ran-
domly cropped to the size of 380 × 380. Then they are
resized to 224 × 224 as the inputs of the feature extractor
used in [1] to yield the feature representation xn with size
of 256× 13× 13. The subsequent training protocol follows
the description in Section 4.3 of the manuscript. Each task-
specific autoencoder is trained for 40 epochs with a batch
size of 15. At deployment, the left testing image is cropped
to the size of 380× 380 from the center of the image.

3. Design Analysis of Validation Score

Here we give the design analysis of the validation score
in the network level growth. Our model inevitably leads
to an increase in the number of parameters during growth.
To break this dilemma, we design the Eq. (4) to explicitly
incorporate the model parameters into the validation score
to yield a compact architecture with high reusability. The
validation score can be regarded as a function f(σ∗, ϕm∗

)
of the error rate σ∗ and the number of parameters of selected
old cells ϕm∗

. They satisfy 0 < σ∗ < 1 and 0 < ϕm∗
< Φ,

where Φ is the number of parameters of a single base model.
And f(σ∗, ϕm∗

) should obey the following properties:

• 0 < f(σ∗, ϕm∗
) < 1.

• f(σ∗, ϕm∗
) should be negatively correlated with the

error rate σ∗.

• f(σ∗, ϕm∗
) should be positively correlated with the

number of parameters of old cells ϕm∗
.

To this end, we have designed the following validation
score:

δm
∗

j =
√
1− σ∗ · log

(
ϕm∗

ϕ
+ 1

)
. (4)

The target number of parameters ϕ in the above formula
controls the compactness of the model. A larger target num-
ber can yield a higher reuse rate, which is suitable for con-
tinual scenes with higher correlation. Conversely, setting
a smaller target number will reduce the reuse rate of the
model, but it can achieve better performance for continual

Table 2. Comparison of the two forms of validation scores on the
DrivingStereo dataset.

δm
∗

j EPE↓ D1↓ ARR↑

Eq. (4) 0.637 1.21% 50.1%

Eq. (5) 0.731 1.78% 54.1%

scenes with lower correlation. According to the ablation
study, we set it as Φ/2 for trade-offs.

We have also explored another simple implementation
form, that is, a weighted linear combination of the model
parameters and the error rates, i.e.,

δm
∗

j = µ ·
√

(1− σ∗) + (1− µ) · log
(
ϕm∗

ϕ
+ 1

)
, (5)

where µ = 0.9. Table 2 lists the comparison of Eq. (4) and
Eq. (5) in terms of the performance and reusability. It can
be seen that our proposed method in Eq. (4) achieves bet-
ter balance between the model performance and parameter
efficiency using the form of dot product.

4. Detailed Structure of Base Model

Our base model comes from the variety of LEAStereo [3]
for its good scalability. To better deploy on resource-limited
edge devices, we adopt a lightweight version including 4-
layer Feature Net and 8-layer Matching Net. Following the
training protocol in the original paper, the searched archi-
tecture of the base model is shown in Fig 1. For the con-
venience of description, we use the same schematic dia-
gram as in the original paper. The top two graphs are the
searched cell structures for the Feature Net and Matching
Net, respectively. The bottom is the searched network-level
structure for both networks. The yellow dots refer to the
”stem” structure and the blue dots refer to searchable cells.
There are three ”stem” layers for the Feature Net, which are
a 3 × 3 convolution layer with the stride of three and two
layers of 3 × 3 convolution with the stride of one. For the
Matching Net, there are two ”stem” layers of 3×3×3 con-
volution with the stride of one. In the continual stereo, the
task-specific cell structures are searched for each scene.

5. Implementations of Baselines

We describe the detailed implementations of the contin-
ual learning baselines.

EWC [6]: The main idea of the EWC algorithm is to im-
pose constraints over gradient updates so that the gradient
updates on the new task do not increase the loss on the old
tasks. Only one model with a fixed network structure is
adopted and no additional memory space is required. We
use the base model to implement it for continual stereo.



Feature 
N

et

M
atching 
N

et

1         2        3        4                                   1         2        3        4        5         6        7        8    
 1/3

 1/6

 1/12

R
esolution 

0

1

2

C
oncat

0

1

2

C
oncat

data flow

conv 3×3

conv 3×3×3

skip connection

Figure 1. The searched architecture of the base model following the training protocol in [3].

iCaRL [9]: The iCaRL algorithm uses a memory bank
to store representative samples of the old tasks. They are
trained with the data of the new tasks to alleviate forgetting.
The memory bank has a fixed size (we set it to 10% of the
training set in each task), and old samples will be replaced
by samples from new tasks. Similar to the EWC algorithm,
we use the base model to implement it.
Expert Gate [1]: Compared with the previous two base-
lines, the Expert Gate algorithm trains a task-specific model
for each scene. It uses the autoencoder gate to judge the
relevance of the new task to the old tasks, and further de-
termines whether to use finetuning or Lwf [8] method. We
use the output disparity of the previous models on the new
scene as the pseudo-label for distillation.
Learn to Grow [7]: It is an architecture growth method
close to ours. When a new task arrives, each layer of the
network has three candidate operations: ”reuse”, ”adap-
tation”, and ”new”. The reuse choice reuses the old cells
while the adaptation choice adds a small adaptor to the orig-
inal layer output. The new choice will expand new cells. We
re-implement this method using the same search strategy as
in our cell-level search.

6. More Visual Comparisons with the Contin-
uous Adaptation

As shown in Fig. 2, we provide more visual compar-
isons with the continuous adaptation method [10] on the
previous scenes and novel scenes, respectively. Our method
can overcome forgetting the previously learned challenging
scenes to predict good disparity maps, such as rainy and
foggy scenes. In addition, when exposed to a novel scene
like overcast days at dusk, our method can adaptively select
scene-specific architecture paths to obtain better results. In
the four samples, the selected architecture are trained on
cloudy, foggy, rainy, and rainy, respectively.
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Figure 2. More visual comparisons of the disparity maps of previously learned scenes (top three rows) and novel scenes (bottom three
rows) with the continuous adaptation method [10]. The yellow box marks areas that are significantly improved.
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