
Supplementary Materials for
Critical Regularizations for Neural Surface Reconstruction in the Wild

1. Additional Implementation Details

Distance of Boundary points. In Sec. 3.2, we calculate
nearest neighbor distances d(xB) = |(xB − xnn

B ) · nnn
B |

for the boundary points xB ∈ B, which may suffer from
missing geometry or inaccurate estimation of normals. In
practice, we draw k nearest neighbors and take the aver-
age of each distances. Also, we consider the angle between
(xB − xnn

B ) and nnn
B , and exclude the neighbors with large

angle because they are very likely not the nearest neighbors.
These two techniques enhance the robustness against miss-
ing points and noisy normal.

Computation of Hessian. In Sec. 3.3, we introduced
that the Hessian matrices can be computed by auto-
differentiation, which is similar to computing gradient of
the SDF. This process is done by the service provided by
Pytorch that a scalar function f can be differentiated with
respect to each input (x, y, z), and the calculated gradient
(∂f∂x ,

∂f
∂y ,

∂f
∂z ) can be added as a part of the computation

graph. By further differentiating each entry of the gradient
as (∇∂f

∂x ,∇
∂f
∂y ,∇

∂f
∂z ) and concatenate the vectors together,

we can get the Hessian matrix Hf(x, y, z).

Parameter Tuning. In Sec. 4.1, we introduced the weights
of the losses. This configuration can handle most of the
cases when the input point cloud does not contain se-
vere noise or incompleteness. Otherwise, we can tune the
weights to get better reconstruction. If the geometry is com-
plex and the render loss is not stable, we scale the gradient
back-propagated from the differentiable intersection by 0.1.
The three scenes Church, Courthouse and Meetingroom of
Tanks and Temples dataset [4] are reconstructed under this
setting. If the input point cloud is noisy, we change the
weight of the normal data term λn to 0.1 in the second half
of the training process, and let the render loss correct the
surface normal. The four scenes Barn, Caterpillar, Ignatius
and Truck of Tanks and Temples dataset are reconstructed
under this setting.

2. Baselines

In this section, we provide more details on how to con-
duct experiments for the baseline methods on BlendedMVS

and Tanks and Temples datasets.

SPSR and SSD. We test sPSR [3] and SSD [1] by their
official implementation1 and default setting. The resolu-
tion is the same as other experiments, which is described
in Sec. 4.1.

NeuS. We use an unofficial implementation2 for NeuS [6].
The system is trained for a fix number of 300k iterations,
which takes 20 hours for each scene.

SIREN. We use the official implementation3 for SIREN [5]
The number of training steps is proportional to the number
of points in the input point cloud. We add an upper bound
of 50k steps. The whole training process takes at most 8
hours for each scene.

3. Details of Evaluation Metrics

In Sec. 4.1, we introduced the metric for evaluating the
similarity between meshes, which is used in the comparison
on BlendedMVS [7] and Tanks and Temples [4] datasets.
Specifically, we first sample points from both meshes with
uniform density and preserve their normal. The target den-
sity depends on the size of each scene. Then for each point
in one point cloud, we find its nearest neighbor in the other
one, and check the distance and the normal consistency. The
threshold for distances is set to be three times as the down-
sample density, and the threshold for angular differences is
30◦.

We run the same evaluation script, which is self-
implemented, on both datasets. For Tanks and Temples,
our script is different from the official one. First, we only
run ICP between the camera trajectories to align the pre-
dicted mesh and the ground truth, so the alignments for all
the methods are the same. Second, instead of voxel down-
sampling, we calculate nearest neighbor distances within
the point cloud and discard one of the points in the pair with
small distance.

1https://github.com/mkazhdan/PoissonRecon
2https://github.com/ventusff/neurecon
3https://github.com/vsitzmann/siren
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4. Sensitivity to the Quality of Point Clouds
We conduct an experiment to examine the sensitivity

to the quality of the input point clouds and the results
are shown in Fig. 1. Assuming the point cloud from vis-
MVSNet is state-of-the-art, we degrade its accuracy by ran-
domly jittering the point positions within a certain radius.

As can be seen, the sPSR method is sensitive as the noise
level goes up, but our method is robust against such noises
and provides more consistent results both quantitatively and
qualitatively. This again supports the argument that pro-
posed regularizations are robust to random noises.

5. Ablation and Sensitivity Study of Regular-
izations

In Tab. 1, we provide a more comprehensive quantita-
tive ablation and sensitivity study on DTU and Tanks and
Temples datasets. Generally, different hyperparameters do
have influence on the result. For DTU, we can lower the
weight of Hessian or even disable it because the point cloud
quality is relatively high. For Tanks and Temples, however,
changing the weight of Hessian loss do have notable influ-
ence on the results. Apart from the Hessian loss, other con-
figurations are worse than or comparable with the default
setting. Overall, the default setting achieves good results in
all the datasets (which is shown in the main paper). And we
believe the default setting will perform well for other new
data.

6. More Results
We provide more results of DTU [2], BlendedMVS [7]

and Tanks and Temples [4] datasets in Fig. 2, 3, 4.
In the supplementary video, we show novel view render-

ing results, and the geometry with respect to training steps.
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Figure 1. Influence of point cloud quality on mesh accuracy. The two numbers are the evaluation results with and without normal (details
are in Sec. 4.1).

No Hessian LH Minimal Surface LM Sharpness of LM Default
LH and LM λH=1e-1 λH=1e-3 No LH λM=1e-1 λM=1e-3 No LM ε=1 ε=100 Config.

24 0.808 0.777 0.586 0.573 0.587 0.631 0.682 0.687 0.595 0.597
37 1.780 1.818 1.326 1.516 1.584 1.572 1.600 1.696 1.441 1.410
40 0.721 0.865 0.623 0.610 1.132 0.659 0.675 0.671 0.633 0.637
55 0.480 0.483 0.390 0.401 0.412 0.487 0.452 0.462 0.410 0.428
63 1.287 1.703 1.143 1.108 1.440 1.144 1.201 1.371 1.431 1.342
65 0.615 1.005 0.611 0.620 1.575 0.742 0.742 0.673 0.632 0.623
69 0.765 0.771 0.576 0.551 0.783 0.674 0.636 0.708 0.566 0.599
83 1.247 1.042 0.904 0.900 0.890 1.154 1.229 1.145 0.897 0.895
97 0.986 1.372 0.848 0.866 1.206 0.909 0.895 0.948 0.942 0.919

105 1.324 1.196 0.976 0.940 1.205 1.172 1.230 1.223 0.970 1.020
106 0.645 0.947 0.535 0.564 0.844 0.686 0.726 0.698 0.611 0.600
110 0.748 0.635 0.677 0.572 0.537 0.720 0.786 0.673 0.580 0.594
114 0.335 0.360 0.293 0.302 0.315 0.297 0.300 0.299 0.302 0.297
118 0.438 0.591 0.398 0.392 0.513 0.373 0.406 0.370 0.376 0.406
122 0.443 0.525 0.383 0.379 0.387 0.438 0.465 0.394 0.379 0.389

Mean 0.841 0.939 0.685 0.686 0.894 0.777 0.802 0.801 0.718 0.717

Caterpillar 14.33% 9.93% 16.67% 16.47% 14.26% 16.92% 16.64% 16.92% 17.62% 16.75%
Truck 33.47% 36.01% 40.78% 40.55% 36.40% 41.42% 41.86% 41.99% 41.24% 42.03%
Mean 23.90% 22.97% 28.72% 28.51% 25.33% 29.17% 29.25% 29.45% 29.43% 29.39%

Table 1. Ablation and sensitivity study on DTU and Tanks and Temples datasets. The value reported for DTU is the overall Chamfer
distance (the lower the better), and for Tanks and Temples is the inlier percentage with normal criterion (the higher the better). The default
configuration achieves overall good results.
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Figure 2. Qualitative results on DTU [2] dataset. Brand names are blurred.
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Figure 3. Qualitative results on DTU [2] dataset (cont.).
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Figure 4. Qualitative results on BlendedMVS [7] and Tanks and Temples [4] dataset.
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