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A. Details of Encoding Network.
Let f↓ : RW×H×R|F|→RK×N be the output (of layer

4 of ResNet-50) of Encoder Network in Figure 2a. W and
H are the width and height of an input, N = NW ·NH
and K are the total number of spatial locations and fea-
tures (channel size) in the feature map, respectively. F
are network parameters. Support and query maps from
layer 4 are denoted by Φ↓ ∈ RK×N and Φ↓∗ ∈ RK×N∗ ,
where Φ↓= f↓(X;F) and Φ↓∗= f↓(X∗;F). The sup-
port crop and the query image are denoted as X ∈ RW×H
and X∗ ∈ RW∗×H∗. Query features from layer 4 are used
by ARPN. Moreover, let Φ = Upscale(Φ↓)+f(X;F) and
Φ∗= Upscale(Φ↓∗)+f(X∗;F), where Φ ∈ RK×4N and
Φ∗ ∈ RK×4N∗, f is the output of layer 3 passed via 1×1
convolution (512→ 1024 channel size) combined with the
upsampled (by 2×) output f↓ of layer 4. Such mixed feature
maps (support and query) are used for formation of RKHS
matrices and k-autocorrelations (via IRA and/or KA units)
passed to ARPN (support representaions only) and MRN
(both query and support representations).

B. Full KFSOD Pipeline
Figure 8 illustrates our full pipeline. In the main paper

the individual blocks correspond to the Encoding Network
(Fig. 2a), the Kernelized Block (Fig. 3a) with the KA unit
(Fig. 4) and the Multi-head Relation Net (Fig. 2b).

C. Count sketching as Feature-level Augmen-
tation

1. To see that
〈
K
K′P

†Pφ,φ′
〉

is a point-wise noisy convo-
lution with variance σ†2 = 1

K′ (
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+1)≤ 2

K′ , we notice〈
Pφ,Pφ′
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= φTPTPφ′ =
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We also notice that the inverse of the sketching projection is
given by P† = K′

K PT because P contains the orthonormal
basis by design (which is scaled by K

K′ ).

*Equal contribution. PK is the corresponding author.
Code: https://github.com/ZS123-lang/KFSOD.

Given that §3 tells us that the mean of
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2. For injecting the Gaussian noise [46], we have〈
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Now let ‖φ‖22 =‖φ′‖22)=1, we readily obtain〈
φ+∆φ,φ′

〉
∼ N (

〈
φ,φ′

〉
, σ‡2).

The above two derivations exploit the well-known rules
for operating on random variables that are independent and
normally distributed:

• if x ∼ N (µ1, σ
2
1) and y ∼ N (µ2, σ

2
2) then x + y ∼

N (µ1 + µ2, σ
2
1 + σ2

2) ,

• if x ∼ N (µ, σ2) and k > 0 is a constant then k · x ∼
N (kµ, k2σ2).

The above two derivations complete the proof.
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Figure 8. The full KFSOD pipeline includes the Encoding Network, the Kernelization Block, and the Multi-head Relation Network. The
Kernelization Autocorrelation (KA) unit includes IRA to process the large number of region proposals in the query image. Note that we
have also indicated the inverse count sketching step in KA for better clarity.

D. Details of Multi-head Relation Net
Figure 9a is the Multi-head Relation Network that con-

tains the Global head (Fig. 9b), the Local head (Fig. 9c) and
the Patch head (Fig. 9c). The role of each head is described
in the caption below Figure 9. The individual blocks and
their parameters are also included.

E. Class-wise performance on PASCAL VOC
2007

Table 9 shows the performance of our KFSOD on novel
and base classes. The table shows that on average, we
achieve almost 8.4% boost over PSND given the novel
classes protocol, and 4.1% boost over PSND given the base
classes protocol.

F. Performance of Group of Kernels
Table 10 demonstrates that it is beneficial to use numer-

ous kernels in our pipeline. Firstly, we note that all ker-
nelized representations were equipped with MLP to learn

their hyper-parameters. Moreover, the kernel pooling step
uses MLP and default parameters (as in the main paper).
Any other parameters were selected by the crossvalidation
on the validation split of the PASCAL VOC 2007.

Firstly, we notice that the single RKHS linear kernel,
denoted as Lin/k, is the worst performer despite utilizing
1024 dimensions of the feature map channel mode. Using
four linear kernels (Lin/k) is marginally better and six linear
kernels (Lin/k) are even better. Despite this may feel unex-
pected, in fact, six linear kernels enjoy 6 MLP units in the
kernel pooling step, each likely yielding somewhat different
η′ which makes each of these six kernels act differently.

Moreover, using two kernelized representations RBF/k
and RBF/a, denoted as RBF/k+a, each enjoying sepa-
rate 512 dimensions of the feature map channel mode,
appears to be better that any number of linear kernels
combined. Moreover, polynomial representations appear
slightly worse than RBF representations.

Combining four kernelized representations, that is 2×
RBF/k and 2× RBF/a improves resutls further. However,
combining four distinct kernelized representations, that is



Table 9. Comparison with SOTA on the PASCAL VOC 2007 testing set (class split 1, 5-shot protocol) in terms of mAP %.
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FR ICCV19 20.0 48.7 29.2 47.9 24.6 33.9±12.0 65.3 73.5 54.7 39.5 75.7 81.1 35.3 62.5 72.8 78.8 68.6 41.5 59.2 76.2 69.2 63.6±14.3
FRCN ICCV12 31.3 36.9 54.1 26.5 36.2 36.9±9.3 68.4 75.2 59.2 54.8 74.1 80.8 42.8 56.0 68.9 77.8 75.5 34.7 66.1 71.2 66.2 64.8±12.9
LSTD AAAI18 22.8 52.5 31.3 45.6 40.3 38.5±10.5 70.9 71.3 59.8 41.1 77.1 81.9 45.1 67.2 78.0 78.9 70.7 41.6 63.8 79.7 66.8 66.3±13.3
Meta ICCV19 48.5 49.9 49.7 48.6 41.6 45.7±3.7 68.1 73.9 59.8 54.2 80.1 82.9 48.8 62.8 80.1 81.4 77.2 37.2 65.7 75.8 70.6 67.9±12.9

NP-RepMet NeurIPS20 16.8 62.1 49.1 55.8 52.7 47.3±15.8 71.9 79.1 64.9 70.8 73.6 49.5 53.5 67.3 62.7 78.7 74.8 58.3 76.2 72.5 67.9 68.3±8.6
FSOD CVPR20 56.5 57.9 53.7 56.6 52.8 55.5±5.2 67.0 72.3 57.6 53.1 78.5 80.7 47.4 61.9 78.1 82.6 75.3 35.6 64.2 74.4 69.1 66.1±13.0
PNSD ACCV20 57.6 60.2 54.3 55.6 54.8 56.5±5.9 69.3 74.8 61.5 53.4 80.2 82.3 49.6 61.8 80.8 82.6 77.9 35.8 68.6 78.2 70.9 68.5±13.3
KFSOD (Ours) 60.5 66.7 59.6 62.3 55.4 60.9±3.7 72.5 78.1 66.7 68.3 81.0 85.1 52.2 67.7 83.3 84.0 82.5 41.3 76.6 82.5 70.5 72.6±12.1

(a) Multi-head Relation Net (b) Global head

(c) Local head (d) Patch head

Figure 9. Multi-head Relation Net (Fig. 9a) receives first-order
representations (Ψ for support, Ψ∗ for the query) and kernelized
representations (Ψ′ for support, Ψ′∗ for the query) from the Ker-
nelization Block. From first-order maps, layer L5 of ResNet-50
generates feature maps with 2048 channels. Similarly, an FC layer
maps representations of 1024 to 2048 dimensional space. Such
feature maps are fed into the global, local and patch heads in Fig.
9b, 9c and 9d. Operators ⊕, � and ⊗ are addition, channel-wise
concatenation and element-wise multiplication. Block (Expand
Bx) replicates the support feature map B times to match its size
with the query map containing descriptors ofB candidate regions.

RBF/k, RBF/a, Poly/k and Poly/a is much better than utiliz-
ing the same kernelized representation twice.

Finally, combining five distinct kernelized representa-
tions, that is Lin/k, RBF/k, RBF/a, Poly/k and Poly/a re-
sulted in the best performance. Thus, we use this combi-
nation of kernelized representations on all datasets.

G. Ablation Study on Encoding Network

Below we perform ablations of the backbone (Encod-
ing Network, termed as EN in main paper). We use Con-
vNet (ResNet-50) and Transformer network [26] (Swin-B7/
Swin-B12 pre-trained on ImageNet-22K [4] with window
size of 7/12), as shown in Table 11. The comparisons are
conducted by changing the backbone, whereas other set-
tings remain unchanged. When ResNet-50 is replaced by

kernels size
Kernel Shot/5

Lin/k RBF/k+a Poly/k+a Pair All Novel Base

one 1024 X 50.8 64.8

two 512×2 X 52.5 66.3

two 512×2 X 52.2 66.0

four 256×4 X 51.4 65.2

four 256×4 X 52.9 67.3

four 256×4 X 53.1 67.5

four 256×4 X 54.9 69.2

six (128+192+192)×2 X 51.8 65.7

six (128+192+192)×2 X 53.3 68.1

six (128+192+192)×2 X 53.8 68.0

five 256+192×4 X 57.1 70.3

Table 10. Ablations (mAP) on PASCAL VOC 2007 (5-shot,
novel and base classes) w.r.t. the different number of RKHS
kernels and k-autocorrelations combined. As we split feature
maps along the channel mode by operator } to obtain several
groups, each per one kernelized representation, we indicate how
many channel dimensions are used by the column (size). Note
that all kernelized representations used in this ablation study
are equipped with MLP (except for Lin/k that has no hyper-
parameter). By (Pair) we denote four kernelized representations
(RBF/k+a)+(Poly/k+a). By (All) we denote five kernelized repre-
sentations (Lin/k)+(RBF/k+a)+(Poly/k+a).

Resnet-50 Swin-B7 Swin-B12

5-shot
(VOC)

5-shot
(FSOD)

10-shot
(COCO)

5-shot
(VOC)

5-shot
(FSOD)

10-shot
(COCO)

5-shot
(VOC)

5-shot
(FSOD)

10-shot
(COCO)

60.9 31.7 22.9 62.1 32.6 24.1 61.2 31.8 22.5

Table 11. Ablations w.r.t. different EN backbones on PASCAL
VOC 2007, FSOD, and COCO dataset (5/10-shot, novel classes).

Swin-B7, we gain an improvement of ∼1.0% on all three
dataset, in the 5/10-shot setting (novel classes).

H. Implementation details
KFSOD uses ResNet-50 pre-trained on ImageNet [4]

and MS COCO [24]. We fine-tune the network with a learn-
ing rate of 0.002 for the first 56000 iterations and 0.0002 for
another 4000 iterations. Images are resized to 600 pixels
(shorter edge) and the longer edge is capped at 1000 pix-
els. Each support image is cropped based on ground-truth
boxes, bilinearly interpolated and padded to 320×320.



I. Hyper-parameters used in experiments
• PASCAL VOC 2007:

RBF/k+a (σ=σ′=0.1 only in ablations where MLP is
indicated as not used, otherwise κ=κ′= 0.2 is set for
MLP);
Poly/k+a r = r′ = 10, (λ = λ′ = 1 only in ablations
where MLP is indicated as not used, otherwise κ =
κ′=1 is set for MLP);
kernel pooling η=9 and κ′′=700.

• FSOD:
RBF/k+a (σ= σ′ = 1 only in ablations where MLP is
indicated as not used, otherwise κ=κ′= 1.3 is set for
MLP);
Poly/k+a r=r′=3, (λ=λ′=1 only in ablations where
MLP is indicated as not used, otherwise κ= κ′ = 4 is
set for MLP);
kernel pooling η=5 and κ′′=500.

• COCO:
RBF/k+a (σ=σ′=0.2 only in ablations where MLP is
indicated as not used, otherwise κ=κ′= 0.4 is set for
MLP);
Poly/k+a r=r′=7, (λ=λ′=1 only in ablations where
MLP is indicated as not used, otherwise κ=κ′ = 1 is
set for MLP);
kernel pooling η=5 and κ′′=500.


