CVPR
#5664

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CVPR 2022 Submission #5664. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Supplementary Material of Paper 5664

Anonymous CVPR submission

Paper ID 5664

1. Implementation Details

Here we describe more details of the model implemen-
tation. As introduced in Section 3, the 3D proxy pro-
vides depth, texture, and also light/viewpoint predicted
from ®!, &~ respectively. During the learning procedure of
ARN and GRN, we directly use the [,, w, from pre-trained
®!, ®“ proxy for rendering. Then, we jointly train ®!, d«
with ARN and GRN in the final mutual learning process.

For the lighting A and rasterization IT operation used in
Eqgns. (1) and (2), we follow a same setting as Unsup3D [6].
Here we provide more details. The lighting A is conducted
at the canonical view, where we shade the canonical albedo
a with the predicted light [ by the Lambertian function f,,.
Concretely, we first transform the predicted canonical depth
d to the normal n, then perform S = fi,m(n,l) to get a
shading map S. Finally, the canonical texture ¢ is obtained
by t = S ® a. For the rasterization II function, we set the
Field of View (FOV) of the camera as 10° to calculate the
camera matrix. The corresponding projection and warping
operations is implemented by neural mesh renderer [4].

2. Details of the Experiment on MICC

In Fig. 1 of the main paper, we perform a cross-view
geometry analysis on MICC [1] dataset. MICC is a 3D
face dataset containing 53 subjects with its ground truth
3D mesh acquired from a structured light scanning system.
Similar to [3], we render a provided face to -45°, 0°, and
+45° respectively, each of which contains 3 rendered faces.
To evaluate the performance of cross-view geometry mod-
elling, we use the image of one pose for reconstruction and
measure the modelled geometry on the other two poses. For
instance, we first use the image of 0° as input to recover the
geometry, and then calculate the errors with ground truth
geometry of -45° and +45°, respectively. The errors are
then averaged as the final result. In the experiment, we eval-
uate our method, Unsup3D [6] and LAP [7], each of which
is directly tested on MICC using the pre-trained weights
without fine-tuning.

We further show examples in Fig. 1. As illustrated, our
method models better facial geometry and organ shapes,
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Figure 1. Visual comparison on MICC dataset.

while LAP [7] cannot precisely recover the corresponding
face structure.

3. More Results

In Fig. 2, we show more results and comparisons with the
state-of-the-art methods. Our method predicts finer details
and more precise facial shapes against the degraded images.
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