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1. Implementation Details

Here we describe more details of the model implemen-
tation. As introduced in Section 3, the 3D proxy pro-
vides depth, texture, and also light/viewpoint predicted
from Φl,Φω , respectively. During the learning procedure of
ARN and GRN, we directly use the lo, ωo from pre-trained
Φl,Φω proxy for rendering. Then, we jointly train Φl,Φω

with ARN and GRN in the final mutual learning process.
For the lighting Λ and rasterization Π operation used in

Eqns. (1) and (2), we follow a same setting as Unsup3D [6].
Here we provide more details. The lighting Λ is conducted
at the canonical view, where we shade the canonical albedo
a with the predicted light l by the Lambertian function flam.
Concretely, we first transform the predicted canonical depth
d to the normal n, then perform S = flam(n, l) to get a
shading map S. Finally, the canonical texture t is obtained
by t = S ⊙ a. For the rasterization Π function, we set the
Field of View (FOV) of the camera as 10◦ to calculate the
camera matrix. The corresponding projection and warping
operations is implemented by neural mesh renderer [4].

2. Details of the Experiment on MICC

In Fig. 1 of the main paper, we perform a cross-view
geometry analysis on MICC [1] dataset. MICC is a 3D
face dataset containing 53 subjects with its ground truth
3D mesh acquired from a structured light scanning system.
Similar to [3], we render a provided face to -45◦, 0◦, and
+45◦ respectively, each of which contains 3 rendered faces.
To evaluate the performance of cross-view geometry mod-
elling, we use the image of one pose for reconstruction and
measure the modelled geometry on the other two poses. For
instance, we first use the image of 0◦ as input to recover the
geometry, and then calculate the errors with ground truth
geometry of -45◦ and +45◦, respectively. The errors are
then averaged as the final result. In the experiment, we eval-
uate our method, Unsup3D [6] and LAP [7], each of which
is directly tested on MICC using the pre-trained weights
without fine-tuning.

We further show examples in Fig. 1. As illustrated, our
method models better facial geometry and organ shapes,

GT Ours LAP + DFDNet Ours LAP + DFDNetGT

Figure 1. Visual comparison on MICC dataset.

while LAP [7] cannot precisely recover the corresponding
face structure.

3. More Results
In Fig. 2, we show more results and comparisons with the

state-of-the-art methods. Our method predicts finer details
and more precise facial shapes against the degraded images.
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Figure 2. More comparisons with Unsup3D [6], LAP [7] and DECA [2]. Our method uses the low-resolution input, while other approaches
leverage DFDNet [5] to pre-process the input.
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