Dist-PU: Positive-Unlabeled Learning from a Label Distribution Perspective
(Supplementary Material)

A. Proof of Proposition 1
A.1. Preliminaries

Definition 1 (Bounded Difference Condition [9]). Given
m-sample datasets X = (x1,..,&;,..,&y) and X' =
(x1,..,x}, .., @) with only the i-th sample being different,
a function ¢ : R¥ — R satisfies the bounded difference
condition if the following inequality holds:
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Definition 2 (Rademacher Variables [I1]). Rademacher
variables o = (071, ..,0,,) consist of randoml variables in
{—1, 41} with the same probability Pr(c = £+1) = 0.5.

Definition 3 (Rademacher Complexity [ 1]). By introduc-
ing the Rademacher variables o, the Empirical Rademacher
Complexity estimates the richness of a function class F by
measuring the ability to fit to random noise on a m-sample
dataset X = (@1, .., T ):

Rx(F) =Es lﬁgg Lz_:l Jif(wi)H . (25)

The Rademacher complexity is then defined as its expecta-
tion w.r.t. the dataset:

R, (F) = Ex {s%x (f)} . (26)

Theorem 1 (McDiarmid Inequality [9]). Let a function ¢
satisifies the bounded difference condition, given a m-
sample dataset X = (x1, .., &y,) consisting of m indepen-
dent random variables, Then Ve > 0,

Pr(¢(X)—Ex [¢6(X)]>¢) <e 2. (27)

Lemma 1 (Talagrand’s Contraction Lemma [10]). For a k-
Lipschitz function ¢ : R — R, it holds that

E)%m(c o ‘F) S k : 9({m(]:) (28)

A.2. Bounding the expected risk R

Let the sign of f(x) determine its predicted la-
bel, since y € {0,1}, the classification error could
be reformulated by the zero-one loss 0~ 1(f(x),y) =
1(1—(2y—1)sgn[f(x)]). Recall that we approximate
Pr (g = 1|x) through a sigmoid function over f(x), it is
equivalent with adopting the sigmoid loss as the surrogate
of the zero-one loss, which is defined as:
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Depending on the value of y, it could be rewritten as:
; =5 y=20
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ool YT
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Consequently, the expected risk R in the label-distribution-
alignment manner using the sigmoid loss is formulated as:

R5Y =2p (1 — Ew~pp(m) [S]) + (]EmNPU(m) [S] — ﬂ'p)
<27p [Eonpp(a) [5] = 1| + [Eanpy (@) [s] — 7P|
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Since (071 (f(x),y) < 2059(f(x),y), we have R <
2R*". Hence R is bounded by R%Y and R;/:

R < 2R < dnpRyY + 2Ry, (32)

Note that based on Eq.(32), once we obtain the upper bound
of R using Ry, R;? could be bounded with Ry; analog-
ically. So in the following we mainly show how to bound
R7Y with Ry
A.3. Bounding R} with R,

In this subsection, we follow the standard process to use
McDiarmid inequality (Thm. 1) to bound R}Y with Ry,

Let ¢ denote the sigmoid function, then the class of models
in F followed by ( is defined as G = (o F. Namely, g() is



s defined in Eq.(14) of the main paper. To achieve our goal,
we first bound R3? through the supremum of the difference

between R and Ry given any g € G:
¢(Xr) =sup[Rp? — Ry). (33)
geg

Obviously, Rj;ig is bounded by the sum of Ry, and ¢(X).
We then show that ¢ satisfies the bounded difference con-
dition (Def.1). Let X1 = (@1, .., %4, .., &y, ) and X} =
(x1,.., 2}, .., @y, ) be ny-sample datasets with only the i-th
sample being different, the following inequality holds:

(X 1) — (Xl <|Re — Ry
< |[Ezex; [s] — Earexy [5]]
/
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=2 < — (34)
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where * is based on the triangle inequality (i.e., ||a| —
| — b))
According to McDiarmid inequality, we then have:
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#(Xr) <Ex, [¢o(XL)] + (35)

with probability at least 1 — 6/2. In other words, R;fg is
bounded by Ry, and Ex, [¢(X )] with probability at least
1-0/2:
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Ry < Ry +Ex, [6(X1)] + (36)

Obviously, the problem turns to bound the expectations

of ¢.
A.4. Bounding with Rademacher complexity

In this subsection, we bound Ex, [¢(X)] using
Rademacher complexity (Def.3). Firstly, we have:
Ex, [¢(XL)] <EXL [bup[ﬂ‘:x' [R/L] - RL@
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where * is based on the inequality that R3Y < E X []A%’L} ;
Then we introduce the Rademacher variables o =

, Opn,) into the supremum in Eq.(37):

Assuming that Vo € X, for any f € F, there exists another
f € Fsuch that f(x) = — f(x), then the absolute symbol
in Eq.(38) could be eliminated. By this, we further have:
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According to Eq.(3.14) in [1 1], with probability at least 1 —
§/2:
. In2/6
R (G) <Rx, () + 5 / : (40
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Therefore, Ex, [¢(XL)] can be bound by the empirical
Rademacher complexity with probability at least 1 — §/2:

In2/é
2’1’LL '
(41)

Ex, [#(X1)] < 2R, (9) < 2%x, (G) +2

Combined with Eq.(36), Rfﬁg can be bounded by the empir-
ical Rademacher complexity with probability at least 1 — §:
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(42)

Similarly, we have the bound for R’

least 1 — §:

with probability at
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In conclusion, by gathering Eq.(32,42,43), we finally de-
duce the bound of R using R;,; and Rademacher complex-
ity with probability at least 1 — §:
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A.5. Bounding with VC dimension

According to Talagrand’s contraction lemma (Lem.1),
since the sigmoid loss ( is 1-Lipschitz,

9AC{XL (g) < Z)A/{XL (‘F)v

. . (45)
ERXU (g) < E):{XU(]:)

By substituting Rx, (G) and Rx,, (G) into Eq.(44), with
probability at least 1 — §, we have:
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According to Lemma 13, 16, and 17 in [7], for a class of
b-uniformly bounded functions F and a universal constant
C, we have:

Fx, (F) <Cy/ 2, @)
nr,
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Ry, (F) <Cy/ -, 48)
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where )V denotes the VC-dimension of F.
By incorporating Eq.(47,48) into Eq.(46), with probabil-
ity at least 1 — &, the following inequality holds:
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This completes the proof. O

B. Description of Competitors

In this section, we descibe the 10 competitive PU algo-
rithms as follows:

e naive constructs the negative class with randomly sam-
pled unlabeled data. Some underlying positives are likely
to be included, thus resulting in training label noise.

e uPU [3] proposes a general unbiased risk estimator for
PU learning.

e nnPU [&] improves uPU by forcing the estimated risk of
negative class to be non-negative, increasing model ro-
bustness against overfitting.

e RP [12] treats labeled data as clean positives and unla-
beled data as noisy negatives. It ranks the training data
by confidence and selects the most confident samples as
positives or negatives. Then traditional supervised learn-
ing could work on the chosen data.

e PUSB [6] focuses on selection bias during the labeling
process. It aims to learn a score function that maintains
the order-preserving property and proposes a threshold
estimating algorithm for classification.

e PUDbN [5] is a two-step approach that firstly estimates the
class posterior probability of x to partition the data into
confident positives, confident negatives, and samples un-
sure of their labels. It then minimizes a risk approximated
by the above three partitions.

o Self-PU [2] incorporates a self-paced training strategy,
self-calibration of a mentor-net-like manner, and self-
distillation with several teacher-student networks to exert
the learning capability of the deep model itself.

e aPU [4] deals with an arbitrary positive shift between
source and target distributions.

e VPU [!] designs an optimization objective without class
prior by introducing a variational principle.

o ImbPU [13] adapts the nnPU loss to enable learning from
imbalanced data. It is equivalent to oversampling the mi-
nority class for the balance of the data.

C. Sensitivity Analysis

We study the impact of misspecified class prior on our
model in Fig.(7). Dist-PU appears more stable than other
competitors, especially when the prior is underestimated.
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Figure 7. Sensitivity to prior (CIFAR-10).

D. Stability Analysis

A model shows the ability to rectify the negative-
prediction preference if it tends to maintain a relatively
good Precision-Recall balance during the training since the
number of predicted positives will be around that of ground-
truth ones when the predicted prior is close to mp. Such a
trend can be captured exactly by our Riap in Fig.8. By con-
trast, other models are with increasing Prec and decreasing
Rec because their negative-prediction preference causes a
reduction in predicted positives. Besides, all metrics of our
Rlab are more stable.
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Figure 8. Stability analysis on CIFAR-10.
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E. Implementation Details of Fig.1.

The batch size is 256. We use Adam as the optimizer
with a cosine annealing scheduler, where the initial learning
rate is set as 5 x 10~%; weight decay is set as 5 x 1073,

F. Comparison with uPU and nnPU

Our essential differences are two-fold: a) To adopt the
class prior as learning supervision, we need to reformulate
the 0-1 risk with L1 distances between E[¢] and E[y] over
Xp and X . In this way, alignments based on class pri-
ors are established, with E[§] being the predicted prior and
E[y] being the ground-truth one. b) Without such a trans-
lation in a), uPU[3] and nnPU[&] lack an absolute function
on E;, [j] — 7p, directly leading to the negative-prediction
preference. In contrast, our formulation pursues the label
distribution consistency on unlabeled data by |E,,, [4]—7p|,
and thus rectifies the negative-prediction preference shown
in Fig.(8). These key points essentially set our method apart
from the other two.
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