
Dist-PU: Positive-Unlabeled Learning from a Label Distribution Perspective
(Supplementary Material)

A. Proof of Proposition 1
A.1. Preliminaries

Definition 1 (Bounded Difference Condition [9]). Given
m-sample datasets X = (x1, ..,xi, ..,xm) and X ′ =
(x1, ..,x

′
i, ..,xm) with only the i-th sample being different,

a function ϕ : Rdm → R satisfies the bounded difference
condition if the following inequality holds:

|ϕ (X)− ϕ (X ′)| ≤ 1

m
. (24)

Definition 2 (Rademacher Variables [11]). Rademacher
variables σ = (σ1, .., σm) consist of randoml variables in
{−1,+1} with the same probability Pr(σ = ±1) = 0.5.

Definition 3 (Rademacher Complexity [11]). By introduc-
ing the Rademacher variables σ, the Empirical Rademacher
Complexity estimates the richness of a function class F by
measuring the ability to fit to random noise on a m-sample
dataset X = (x1, ..,xm):

R̂X(F) = Eσ

[
sup
f∈F

[
m∑
i=1

σif(xi)

]]
. (25)

The Rademacher complexity is then defined as its expecta-
tion w.r.t. the dataset:

Rm(F) = EX

[
R̂X(F)

]
. (26)

Theorem 1 (McDiarmid Inequality [9]). Let a function ϕ
satisifies the bounded difference condition, given a m-
sample dataset X = (x1, ..,xm) consisting of m indepen-
dent random variables, Then ∀ϵ > 0,

Pr (ϕ (X)− EX [ϕ (X)] > ϵ) ≤ e−2mϵ2 . (27)

Lemma 1 (Talagrand’s Contraction Lemma [10]). For a k-
Lipschitz function ζ : R → R, it holds that

Rm(ζ ◦ F) ≤ k ·Rm(F). (28)

A.2. Bounding the expected risk R

Let the sign of f(x) determine its predicted la-
bel, since y ∈ {0, 1}, the classification error could
be reformulated by the zero-one loss ℓ0−1(f(x), y) =
1
2 (1− (2y − 1)sgn [f(x)]). Recall that we approximate
Pr (ŷ = 1|x) through a sigmoid function over f(x), it is
equivalent with adopting the sigmoid loss as the surrogate
of the zero-one loss, which is defined as:

ℓsig(f(x), y) =
1

1 + exp [(2y − 1)f(x)]
. (29)

Depending on the value of y, it could be rewritten as:

ℓsig(f(x), y) =


1

1 + exp [−f(x)]
= s y = 0,

1

1 + exp [f(x)]
= 1− s y = 1.

(30)
Consequently, the expected risk R in the label-distribution-
alignment manner using the sigmoid loss is formulated as:

Rsig =2πP

(
1− Ex∼pP (x) [s]

)
+

(
Ex∼pU (x) [s]− πP

)
≤2πP

∣∣Ex∼pP (x) [s]− 1
∣∣︸ ︷︷ ︸

Rsig
P

+
∣∣Ex∼pU (x) [s]− πP

∣∣︸ ︷︷ ︸
Rsig

U

.

(31)

Since ℓ0−1(f(x), y) ≤ 2ℓsig(f(x), y), we have R ≤
2Rsig . Hence R is bounded by Rsig

P and Rsig
U :

R ≤ 2Rsig ≤ 4πPR
sig
P + 2Rsig

U . (32)

Note that based on Eq.(32), once we obtain the upper bound
of Rsig

P using R̂L, Rsig
U could be bounded with R̂U analog-

ically. So in the following we mainly show how to bound
Rsig

P with R̂L.

A.3. Bounding Rsig
P with R̂L

In this subsection, we follow the standard process to use
McDiarmid inequality (Thm. 1) to bound Rsig

P with R̂L.
Let ζ denote the sigmoid function, then the class of models
in F followed by ζ is defined as G = ζ ◦F . Namely, g(x) is
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s defined in Eq.(14) of the main paper. To achieve our goal,
we first bound Rsig

P through the supremum of the difference
between Rsig

P and R̂U given any g ∈ G:

ϕ(XL) = sup
g∈G

[Rsig
P − R̂L]. (33)

Obviously, Rsig
P is bounded by the sum of R̂L and ϕ(XL).

We then show that ϕ satisfies the bounded difference con-
dition (Def.1). Let XL = (x1, ..,xi, ..,xnL

) and X ′
L =

(x1, ..,x
′
i, ..,xnL

) be nL-sample datasets with only the i-th
sample being different, the following inequality holds:

|ϕ(XL)− ϕ(X ′
L)| ≤

∣∣∣R̂L − R̂′
L

∣∣∣
∗
≤
∣∣Ex∈XL

[s]− Ex′∈X′
L
[s′]

∣∣
=

∣∣∣∣si − s′i
nP

∣∣∣∣ ≤ 1

nL
, (34)

where ∗ is based on the triangle inequality (i.e., ||a| − |b|| ≤
|a− b|).

According to McDiarmid inequality, we then have:

ϕ(XL) ≤ EXL
[ϕ(XL)] +

√
ln 2/δ

2nL
, (35)

with probability at least 1 − δ/2. In other words, Rsig
P is

bounded by R̂L and EXL
[ϕ(XL)] with probability at least

1− δ/2:

Rsig
P ≤ R̂L + EXL

[ϕ(XL)] +

√
ln 2/δ

2nL
. (36)

Obviously, the problem turns to bound the expectations
of ϕ.

A.4. Bounding with Rademacher complexity

In this subsection, we bound EXL
[ϕ(XL)] using

Rademacher complexity (Def.3). Firstly, we have:

EXL
[ϕ(XL)]

∗
≤EXL

[
sup
g∈G

[EX′
L

[
R̂′

L

]
− R̂L]

]
≤EXL

EX′
L

[
sup
g∈G

[R̂L − R̂′
L]

]
≤EXL

EX′
L

[
sup
g∈G

∣∣Ex∈XL
[s]− Ex′∈X′

L
[s′]

∣∣]
=EXL

EX′
L

[
sup
g∈G

∣∣∣∣∣ 1

nL

nL∑
i=1

(si − s′i)

∣∣∣∣∣
]
,

(37)

where * is based on the inequality that Rsig
P ≤ EX′

L

[
R̂′

L

]
;

Then we introduce the Rademacher variables σ =

(σ1, . . . , σi, . . . , σnL
) into the supremum in Eq.(37):

EXL
EX′

L

[
sup
g∈G

∣∣∣∣∣ 1

nL

nL∑
i=1

(si − s′i)

∣∣∣∣∣
]

=EXL
EX′

L
Eσ

[
sup
g∈G

∣∣∣∣∣ 1

nL

nL∑
i=1

σi(si − s′i)

∣∣∣∣∣
]
. (38)

Assuming that ∀x ∈ X , for any f ∈ F , there exists another
f̃ ∈ F such that f̃(x) = −f(x), then the absolute symbol
in Eq.(38) could be eliminated. By this, we further have:

EXL
EX′

L
Eσ

[
sup
g∈G

1

nL

nL∑
i=1

σi(si − s′i)

]

≤2EXL
EX′

L
Eσ

[
sup
g∈G

1

nL

nL∑
i=1

σisi

]
= 2RnL

(G). (39)

According to Eq.(3.14) in [11], with probability at least 1−
δ/2:

RnL
(G) ≤ R̂XL

(G) +

√
ln 2/δ

2nL
. (40)

Therefore, EXL
[ϕ(XL)] can be bound by the empirical

Rademacher complexity with probability at least 1 − δ/2:

EXL
[ϕ(XL)] ≤ 2RnL

(G) ≤ 2R̂XL
(G) + 2

√
ln 2/δ

2nL
.

(41)

Combined with Eq.(36), Rsig
P can be bounded by the empir-

ical Rademacher complexity with probability at least 1− δ:

Rsig
P ≤ R̂L + 2RnL

(G) + 3

√
ln 2/δ

2nL
. (42)

Similarly, we have the bound for Rsig
U with probability at

least 1− δ:

Rsig
U ≤ R̂U + 2RnU

(G) + 3

√
ln 2/δ

2nU
. (43)

In conclusion, by gathering Eq.(32,42,43), we finally de-
duce the bound of R using R̂lab and Rademacher complex-
ity with probability at least 1− δ:

R ≤2R̂lab + 8πP R̂XL
(G) + 12πP

√
ln 4/δ

2nL

+ 4R̂XU
(G) + 6

√
ln 4/δ

2nU
. (44)
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A.5. Bounding with VC dimension

According to Talagrand’s contraction lemma (Lem.1),
since the sigmoid loss ζ is 1-Lipschitz,

R̂XL
(G) ≤ R̂XL

(F),

R̂XU
(G) ≤ R̂XU

(F).
(45)

By substituting R̂XL
(G) and R̂XU

(G) into Eq.(44), with
probability at least 1− δ, we have:

R ≤2R̂lab + 8πP R̂XL
(F) + 12πP

√
ln 4/δ

2nL

+ 4R̂XU
(F) + 6

√
ln 4/δ

2nU
. (46)

According to Lemma 13, 16, and 17 in [7], for a class of
b-uniformly bounded functions F and a universal constant
C, we have:

R̂XL
(F) ≤C

√
V
nL

, (47)

R̂XU
(F) ≤C

√
V
nU

, (48)

where V denotes the VC-dimension of F .
By incorporating Eq.(47,48) into Eq.(46), with probabil-

ity at least 1− δ, the following inequality holds:

R ≤2R̂lab + 8πP · C
√

V
nL

+ 12πP

√
ln 4/δ

2nL

+ 4C

√
V
nU

+ 6

√
ln 4/δ

2nU
. (49)

This completes the proof.

B. Description of Competitors
In this section, we descibe the 10 competitive PU algo-

rithms as follows:

• naive constructs the negative class with randomly sam-
pled unlabeled data. Some underlying positives are likely
to be included, thus resulting in training label noise.

• uPU [3] proposes a general unbiased risk estimator for
PU learning.

• nnPU [8] improves uPU by forcing the estimated risk of
negative class to be non-negative, increasing model ro-
bustness against overfitting.

• RP [12] treats labeled data as clean positives and unla-
beled data as noisy negatives. It ranks the training data
by confidence and selects the most confident samples as
positives or negatives. Then traditional supervised learn-
ing could work on the chosen data.

• PUSB [6] focuses on selection bias during the labeling
process. It aims to learn a score function that maintains
the order-preserving property and proposes a threshold
estimating algorithm for classification.

• PUbN [5] is a two-step approach that firstly estimates the
class posterior probability of x to partition the data into
confident positives, confident negatives, and samples un-
sure of their labels. It then minimizes a risk approximated
by the above three partitions.

• Self-PU [2] incorporates a self-paced training strategy,
self-calibration of a mentor-net-like manner, and self-
distillation with several teacher-student networks to exert
the learning capability of the deep model itself.

• aPU [4] deals with an arbitrary positive shift between
source and target distributions.

• VPU [1] designs an optimization objective without class
prior by introducing a variational principle.

• ImbPU [13] adapts the nnPU loss to enable learning from
imbalanced data. It is equivalent to oversampling the mi-
nority class for the balance of the data.

C. Sensitivity Analysis

We study the impact of misspecified class prior on our
model in Fig.(7). Dist-PU appears more stable than other
competitors, especially when the prior is underestimated.

Figure 7. Sensitivity to prior (CIFAR-10).

D. Stability Analysis

A model shows the ability to rectify the negative-
prediction preference if it tends to maintain a relatively
good Precision-Recall balance during the training since the
number of predicted positives will be around that of ground-
truth ones when the predicted prior is close to πP . Such a
trend can be captured exactly by our R̂lab in Fig.8. By con-
trast, other models are with increasing Prec and decreasing
Rec because their negative-prediction preference causes a
reduction in predicted positives. Besides, all metrics of our
R̂lab are more stable.
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Figure 8. Stability analysis on CIFAR-10.

E. Implementation Details of Fig.1.
The batch size is 256. We use Adam as the optimizer

with a cosine annealing scheduler, where the initial learning
rate is set as 5× 10−4; weight decay is set as 5× 10−3.

F. Comparison with uPU and nnPU
Our essential differences are two-fold: a) To adopt the

class prior as learning supervision, we need to reformulate
the 0-1 risk with L1 distances between E[ŷ] and E[y] over
XP and XN . In this way, alignments based on class pri-
ors are established, with E[ŷ] being the predicted prior and
E[y] being the ground-truth one. b) Without such a trans-
lation in a), uPU[3] and nnPU[8] lack an absolute function
on ExU

[ŷ]− πP , directly leading to the negative-prediction
preference. In contrast, our formulation pursues the label
distribution consistency on unlabeled data by |ExU

[ŷ]−πP |,
and thus rectifies the negative-prediction preference shown
in Fig.(8). These key points essentially set our method apart
from the other two.
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