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A. Implementation Details

Since SaFT is a general fusion neck, it may employ any
detector-specific loss. For the FCOS-based detector as in
our main paper, we simply combine losses of FCOS [6] and
DETR [!]. Further implementations on two-stage detec-
tors can try correspondingly related losses as well as metric-
learning ones.

Given network predictions for classification c, regression
r, center-ness ¢ as defined in [6] and their corresponding
targets c*, r*, t* respectively, we present our loss function
as follows
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where L is focal loss [3], L, is a joint of L1 loss and
GIoU loss [5] as in [1], and L., is binary cross entropy
(BCE) loss for center-ness as in [6]. Acs, Aree and Ay, are
balance weights, being 20, 2 and 0.5 so as to keep three
terms in the same scale. IV and N, denote the number of
all locations and that of positive samples.

B. Ablation Study

For further insights into SaFT, we use the same setup as
in our main paper to perform more ablation studies. Ex-
periments are carried out on VOC with a mini-batch size of
4. Tab. 1 adopts N = 4 HA blocks by default, and Tab. 3
discusses the effect of HA block numbers.

B.1. Feature Levels Used in Fusion

In Tab. 1, we explore the effect of feature fusion with
different query-support feature levels. For corresponding-
scale fusion in rows 1-3, we can see that more levels of fea-
tures utilized do not necessarily mean better performances.

Query Support
Cross-sample 45 6la 5 6 Base Novel
4 v 75.8 614
Corresponding-scale | v/ v/ v /7 79.2  70.0
vV /Y /TS 699
4 4 76.0 625
v v 76.3  60.7
One-to-all-scale v v 74.1 577
7/ v 795 679
v 7/ 4 794 658
v /Y 78.7 68.1
One-to-all-scale v 7/ 4 79.5 T1.7
aas v | 782 69.7

Table 1. Ablation study for feature levels used in fusion on VOC.
One-to-all-scale means associating a single level of support fea-
tures with all available query features, whereas corresponding-
scale is limited to corresponding levels. All experiments use VFM
for cross-scale fusion and HFM for cross-sample fusion.

Concretely, adding level 5 to feature fusion provides a huge
improvement (8.6%), while further adding level 6 leads to
a slight drop (0.1%). This is probably because the seman-
tic misalignment in feature fusion at level 6 distracts the
detector. Next, rows 4-8 show results of fusion with dif-
ferent levels of query features. From these, we observe a
coarser query feature generally benefits the performance,
with the one-to-all-scale corresponding strategy. This result
is intuitive since coarser feature maps provide stronger po-
sitioning priors. In addition, more levels of query features
also help, which is different from the corresponding-scale
scheme. Then we include all three levels of query features
and investigate how support features make a difference. Re-
sults in the last three lines show that the level 5 support fea-
ture obtains the best performance. We consider this in two
folds. On one hand, it is likely due to a preference for this
data distribution. On the other hand, as the intermediate one
among 4, 5, and 6, this level is relatively more comparable
with the whole feature pyramid.

CVPR
#2246

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107



CVPR
#2246

108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

CVPR 2022 Submission #2246. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Success

Failure

Figure 1. Success and failure cases of SaFT on COCO novel classes. We visualize bounding boxes with scores over 0.2.

Base / Set VOC Base VOC Novel

Plant Sofa TV Car Bottle Boat Chair Person Bus Train Horse Bike Dog Bird Mbike Table Avg.|Cow Sheep Cat Aero Avg.
voC 59.7 813 824 869 730 720 623 837 859 881 867 877 877 835 86.1 751 80.1|881 77.0 843 485 745
CcoCco 11.1 46.1 53.6 672 168 240 229 69 450 451 502 100 467 423 89 233 325|868 764 405 347 59.6

Table 2. Cross-domain comparison results on the VOC 2007 test set in terms of AP50 (%). The first column indicates the base training set,
where VOC is trained on 16 VOC base classes and COCO on 60 COCO base classes non-overlapping with all VOC categories. Note that
the first 16 categories (columns 2-17) are base classes for the VOC base training set while novel classes for COCO.

Cross-sample | # HA Blocks | # Parameters | Base Novel

Reweighting 0 55.1M 72.8 64.2
Correlation 0 55.1M 777 643
HFM 2 61.6M 785 69.5
HFM 4 67.9M 795 71.7
HFM 6 74.2M 79.8 1728

Table 3. Ablation study for the number of iterative HA blocks on
VOC. All experiments employ VFM for cross-scale fusion and the
one-to-all-scale scheme for cross-sample fusion.

B.2. Number of Iterative Fusion Blocks

From the perspective of performance and complexity, we
compare our SaFT with different numbers of HA blocks in
Tab. 3. Reweighting and correlation are presented in the
first two rows as baselines with the same number of param-
eters, since their only difference is non-parameter pooling.
Out of their 55.1M parameters, 53.5M are in the backbone,
with the same below. We notice that while correlation beats
reweighting on base classes by a large margin, their results
on novel classes are very close. This indicates an over-
fitting tendency for convolution-based methods with large
kernels. Comparing these baselines with no HA blocks to
HFM with 2 HA blocks, base and novel AP50 improve
by 0.8% ~ 5.7% and 5.2% ~ 5.3% respectively. These
improvements demonstrate the effectiveness of attention-
based HFM, with 6.5M more parameters. Also, from rows
3-5, performances on base classes grow by 1.3% and that

on novel classes by 3.3%. This suggests more HA blocks
provide more sufficient fusion, which leads to better re-
sults. But as the complexity increases linearly, performance
growth gradually slows down.

C. Comparison Results

We evaluate cross-domain OSD performances follow-
ing [2,4, 7], which selects 60 categories in COCO14 non-
overlapping with VOC as base classes and all 20 categories
in VOC as novel classes. Other experimental settings are
the same as in our main experiments. In the bottom line
of Tab. 2, performances on different categories vary greatly.
For instance, the model produces extremely low results for
people and motorbikes. We attribute this to the feature ex-
tractor, lack of ability to highlight never-before-seen fore-
grounds. Although most classes experience a downswing
compared with same-domain results, we notice that perfor-
mances on cows and sheep are basically unchanged. Con-
sidering there are several base categories of animals, this
suggests our offline SaFT is easier to adapt to a novel data
distribution similar to base classes.

D. Qualitative Analysis

We provide extra qualitative visualizations of detected
novel objects on COCO in Fig. 1. Success cases are pre-
sented in the upper row and failure ones in the lower row.
The latter include false positives, e.g., the toilet, missing
cases, e.g., the boat, and repeat detections, e.g., the airplane.
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