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Section A presents more detailed descriptions of the in-

ference procedure; Section B provides implementation de-

tails of the VRDFormer; Section C presents additional ab-

lation experiments on the large-scaled VidOR dataset. Fi-

nally, Section D shows more qualitative examples.

A. Inference Details

Given a tracklet pair in the memory, we create an in-

teractiveness curve for each relation class (as illustrated in

Figure 3(a)), which reflects the probability of a certain rela-

tion class in the tracklet pair over time. Therefore, we cre-

ate a total of Nrel such curves given a tracklet pair, where

Nrel denotes the number of relation classes in the dataset.

We then generate relation instances according to these Nrel

curves for each tracklet pair similar to [3]. To be specific,

we slice the interactiveness curve into different temporal re-

gions based on a threshold β (as illustracted in Figure 3(b)),

and β is uniformly sampled from (0.3, 0.7) with a step of

0.05. In this way, we obtain the valid relation temporal

regions in each threshold interval (the blue shaded area).

Next, we merge the valid temporal regions in each thresh-

old interval to generate relation instances. Assuming the

sequence of valid temporal regions in a specific threshold

interval is {l1, l2, ...li, ...}. We keep merging two adjacent

temporal regions li and li+1 until the ratio of the total valid

duration to the total merged duration is below a certain

threshold η. Each merged temporal region (green box as

illustrated in Figure 3(c)) represents a relation instance pro-

posal. We then use Non-Maximum Suppression (NMS) to

filter out highly overlapped proposals (as illustrated in Fig-

ure 3(d)). Finally, we generate relation instances from each

interactiveness curve for each tracklet pair in the video, and

select top K instances according to the product of subject,

relation and object probability, P = P s ∗ P r ∗ P o.

B. Implementation Details

We augment the video frames by random cropping, ran-

dom horizontal-flip and random resizing, where the maxi-

*Qin Jin is the corresponding author.
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Figure 1. Illustration of our inference procedure: (a) Given a track-

let pair, a unique interactiveness curve for each relation class is

created. (b) We use different threshold β to slice the interactive-

ness curve in order to generate potential valid temporal regions.

(c) Our model merges adjacent valid temporal regions into rela-

tion instance proposal. (d) We use Non-Maximum Suppression

(NMS) to filter out highly overlapped relation instance proposals.

Relation instances marked by “×” are filtered out.
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Table 1. Ablations of recurrent queries and re-activate strategy on

VidOR (Q1).

Re-

Activate

Recurrent

Query

Relation Detection Tracklet Pair Detection

mAP R@50 R@50 R@100

1 × × 9.21 9.08 17.86 20.38

2 × ✓ 10.46 10.25 19.12 21.94

3 ✓ ✓ 11.19 11.05 19.73 23.58

Table 2. Ablations of joint training of object detection and relation

classification on VidOR (Q2).

joint train
Relation Detection Tracklet Pair Detection

mAP R@50 R@50 R@100

1 × 10.38 10.21 18.32 21.95

2 ✓ 11.19 11.05 19.73 23.58

mum size of each frame does not exceed 1280 pixels. We

also augment the data by randomly sampling negative track-

let pairs related to “no-interaction” during training. The ra-

tio between positive and negative samples are set as 1: 1.5.

In addition, each self-attention layer [2] in the transformer

contains 8 attention heads. We apply the deformable atten-

tion layer [4] for cross attention and set the total sampled

key point number as 4. The subject and object bounding

box MLP heads have 3 linear layers with ReLU activation,

while the subject class, object class, interactiveness and re-

lation heads only have 1 linear layer. The scaling factors of

µbox, µcls and µintr are set as 3.5, 1, 1. Our method uses an

interactive threshold θintr to filter out negative tracklet pair

proposals. To avoid the undesirable bias that one score of

the subject, relation or object is significantly smaller than

the other two, a tracklet pair proposal is considered as posi-

tive only when all of them are larger than 0.3. During train-

ing, we jointly train the model with Task I and Task II. In

implementation, we use one mini-batch to train Task I and

then another mini-batch to train Task II, which is the so-

called ’alternately training’ in the main paper. For the tag-

ging task, as the groundtruth tracklets are provided, we use

the groundtruth in training instead of predictions in Task I.

C. Additional Ablation Study on VidOR

In addition to the ablation experiments on the ImageNet-

VidVRD dataset presented in the main paper, we carry out

additional ablation study on the large-scaled VidOR dataset

as well, which contains more dynamic and complex scenes

of relation instances compared to ImageNet-VidVRD. Ex-

periments from Table 1 to Table 5 corresponds to the same

questions Q1 to Q6 in the main paper. We reach similar

conclusions on VidOR.

Table 3. Ablations of different number of queries, where Nq de-

notes the number of static queries on VidOR (Q3).

Nq

Relation Detection Tracklet Pair Detection

mAP R@50 R@50 R@100

1 20 7.24 8.60 14.95 16.42

2 50 9.63 9.28 16.58 18.72

3 100 11.19 11.05 19.73 23.58

4 200 10.71 10.56 19.28 22.94

5 300 10.45 10.27 18.45 21.82

Table 4. Ablations of different strategies to aggregate temporal

contexts for relation tracklets on VidOR (Q4).

Aggregation
Relation Detection Relation Tagging

mAP R@50 P@1 P@5

1 Mean 10.68 10.56 59.92 46.68

2 LSTM 10.82 10.72 60.69 47.42

3 Self Att 11.19 11.05 63.71 51.07

Table 5. Ablations of transformer components on VidOR, where

“Cross” and “Self” denote cross- and self-attention in transformer

decoder (Q6).

Dec Relation Detection Relation Tagging

Cross Self mAP R@50 P@1 P@5

1 × ✓ 8.57 8.75 54.08 42.85

2 ✓ × 7.85 8.22 52.32 41.37

3 ✓ ✓ 11.19 11.05 63.71 51.07

Table 6. Ablations of different length for temporal aggregation on

VidOR (Q5).

T length
Relation Detection Relation Tagging

mAP R@50 P@1 P@5

1 1 10.26 10.21 58.12 44 85

2 4 10.42 10.37 58.85 45.36

3 8 10.61 10.51 59.48 45.96

4 32 11.19 11.05 63.71 51.07

D. Additional Qualitative Examples

In Figure 2, we illustrate the impact of spatio-temporal

contexts for object localization. It shows that the object lo-

calization can be improved by using spatio-temporal con-

textualized information. For example, our model success-

fully detects the occluded bicycles (Figure 2(a)) according

to their locations in previous frames. Meanwhile, our model

is able to localize some challenging objects such as skate-

board (Figure 2(b)) through spatial contexts, such as the

adult on it. However, the VidVRD baseline [1] which relies

on isolated object detection fails to detect relations such as

child-ride-bicycle (Figure 2(a)) or adult-above-skateboard

(Figure 2(b)).
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Figure 2. Visualization of the spatio-temporal contexts for object localization: (a) temporal contexts help to localize the bicycles in the last

frame; (b) spatial contexts enable our model to detect the bounding box of skateboard given the adult on it.

Figure 3. Visualization of our query-based relation instance generation, where red and green denote the subject and object respectively.

Our model captures semantically meaningful relation instances denoted by yellow lines and filters out negative proposals denoted by blue

lines in complex scenes at the same time.

Figure 3 visualizes the effects of our query-based rela-

tion instance generation. Our model is capable of captur-

ing positive relation instances from noisy negative propos-

als even in complex scenes, such as the multi-person scenes.
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