Supplementary Material

In this supplementary material, we provide more technical
details and additional discussions that are excluded from the
manuscript due to space limit.
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A. Additional Information
A.1. Potential Societal Impact

L. Security.

Adversarial defenses alleviate the negative societal im-
pact of adversarial attacks, and hence have positive societal
impact.

A.2. Limitations of Our Method

I. Assumptions.

(1) Triplet Training Assumption.

Our method assumes sample triplets are used for training.
Our method may not be compatible to other non-triplet DML
loss functions. Adversarial training with other DML loss
functions is left for future study.

(2) Embedding Space Assumption.

We follow the common setups [6, | 0] on the embedding
space. Namely, (1) the embedding vectors are normalized
onto the real unit hypersphere; (2) the distance function
d(-,-) is Euclidean distance. Our formulations are devel-
oped upon the two assumptions. It is unknown whether our
method method will be effective when embedding vectors
are not normalized. And it is unknown whether our method
will be effective when d(-, ) is replaced as other distance
metrics, e.g., cosine distance.

(3) Optimizer Assumption.

Our method assumes PGD [2] is used for optimizing the
HM objective to create adversarial examples. The Eq. (4)-(5)
may not necessarily hold with other possible optimizers.

II. Performance-Sensitive Factors.

(1) Maximum number of PGD iterations 7.

Our method’s sensitivity to 7 has been demonstrated by
Tab. 3-6 and Fig. 6-8. A larger 7 indicates higher training
cost, and stronger adversarial examples are created for ad-
versarial training. As a result, a larger 7 leads to a higher ro-
bustness (ERS) and a lower R@1 performance. Our method
consistently achieves a higher ERS under different 7 settings
compared to previous methods, and hence are the most effi-
cient defense method. Experiments with 7 larger than 32 are
not necessary because ERS plateaus according to Fig. 6-8.

(2) Source hardness Hs and destination hardness Hp.

The Hg and Hp are the only two adjustable items in HM.

The source hardness Hs depends on triplet sampling strat-
egy. We conduct experiments with existing triplet sampling
strategies in order to focus on defense.

The choices for Hp are more flexible than those of Hs,
as discussed in Sec. 3.1. In the experiments, we study some
possible choices following the discussion and design LGA
based on the empirical observations.

(3) Parameters involved in g ga.

A constant u is used to normalize the loss value of the
previous training iteration #;_; into £;_; € [0, 1]. The con-
stant is empirically selected as v = v in our experiment.
According to our observation, the loss value will quickly
decrease below +y, and will remain in the [0,~] range for
the whole training process. If we set w to a larger constant
than ~, the normalized loss £, will be smaller, and results
in stronger adversarial examples through HM[S, g ga] and
harms the model performance on benign examples, as shown
in Tab. 7.

Another parameter in g ga is the triplet margin parameter
« in order to align to the hardness range of Semihard triplets,
i.e., —y < gLea < 0. We follow the common setup [6] for
this parameter.

(4) Constant parameter A for ICS loss term Ljcs.

The weight constant A is set as 0.5 by default, and 0.05
on the SOP dataset. As demonstrated in Tab. 5, there is a
trade-off between robustness and performance on benign
examples when tuning the A\ parameter.

Additional experiments with A = 0.5 on the SOP dataset
can be found in Tab. 8. Our method is sensitive to this pa-
rameter. An excessively large A on the SOP datasets leads
to worse performance on benign examples and worse robust-
ness.

(5) Backbone deep neural network.
We adopt ResNet-18 following the state-of-the-art de-




Dataset Defense , ‘ Benign Example White-Box Attacks for Robustness Evaluation ‘ ERST
J ‘ R@1T R@21 mAPt NMIt ‘ CA+t CA-] QA+T QA-|] TMA| ‘ ES:D| ES:Rt LTMt GTM?T GTTt ‘
CUB ‘ HMIS, gical 8| 380 483 21.8 493 127 464 11.6 399 0567 | 0.783 16.8 11.9 279 1.4 324

HM(S, gieal (u=2.2) 8| 348 455 152 471 | 134

36.0 172 261 0934 | 0244  20.1 15.9 27.3 3.8 36.1

Table 7. The efficacy of parameter w for clipping loss value ¢;_1. Stronger adversarial examples will be created for training if the loss value
is not clipped (equivalent to setting w to the theoretical upper bound of loss, i.e., 2.2).

Dataset Defense Benign Example White-Box Attacks for Robustness Evaluation ERS?
K R@11 R@21 mAPft NMIT | CA+T CA-] QA+T QA-| TMA| ‘ ES:D| ES:Rt LTM{T GTMt GTT?T
SOP HMIS, gLgal&ICS (A =0.5) 8 | 424  47.1 102 842 | 349 38 367 23 0.879 | 0093 353 365 352 49.1 | 60.1
HMIS, gLcal&ICS (A =0.5) 32| 41.5 46.1 9.9 84.1 | 36.1 3.1 376 21 0873 | 0.086 357 368 347 502 | 60.8

Table 8. An excessively large A may lead to worse performance and robustness.

fense [10] for fair comparison. Since our proposed method
is independent to the backbone choice, and hence is expected
to be effective with different backbone models.

A.3. Use of Existing Assets

(1) Datasets.

All the datasets used in our paper are public datasets, and
their corresponding papers are cited. The CUB [&] dataset
includes images of birds. The CARS [1] dataset includes
images of cars. The SOP [3] dataset includes images of
online products.

(2) Code and Implementation.

Our implementation is built upon PyTorch and the pub-
lic code of the state-of-the-art defense method ACT [10]
(License: Apache-2.0).

B. Technical Details & Minor Discussions
B.1. Difference between Existing Defenses & HM

I. Embedding-Shifted Triplet (EST). [9]

Embedding-Shifted Triplet (EST) [9] adopts adversarial
counterparts of a,p,n with maximum embedding move
distance off their original locations, i.e.,

Lgst = Lr(a, p,n; ) (D

where a@ = ¢(A + r*), and r* = argmax, dy(A + r, A).
The p and n are obtained similarly.

(1) Relationship with HM:

Since EST only aims to maximize the embedding move
distance off its original location without specifying any di-
rection, it leads to a random hardness value. The expectation
E[H(-)] of its resulting adversarial triplet is expected to be
close to E[Hs]. Because the perturbed triplet can be either
harder or easier than the benign triplet. Namely, EST merely
indirectly increase the hardness of the training triplet, and
may even decrease its hardness. Thus, EST suffers from
inefficiency in adversarial training compared to HM.

I1. Anti-Collapse Triplet (ACT). [10]

Anti-Collapse Triplet (ACT) [10] “collapses” the embed-
ding vectors of positive and negative sample, and enforces
the model to separate them apart, i.e.,

Lacr = Lt(a, B, 70;7), @)
[P, ] = [6(P +7;), 6(N + ;)] (3)
[rp,Tn] = argmindy (P + 1, N +15,). 4)

(1) Relationship with HM:

When ACT successively “collapses” the positive and neg-
ative embedding vectors together, the hardness will be zero,
i.e., E[H(-)] = 0. But ACT is not equivalent to HM|-, 0]
because the two methods have different objectives and use
different gradients. Besides, in order to avoid the “mislead-
ing gradients” [10], ACT fixes the anchor and only perturb
the positive and negative samples, which makes the objective
for creating adversarial examples more difficult to optimize
in practice. In brief, ACT is also indirectly increasing the
loss value, suffering from inefficient adversarial learning.

III. Min-max Adversarial Training with Triplet Loss.
The direct formulation of min-max adversarial train-
ing [2] for triplet loss-based DML is:
0" = argminfargmax Lt(A+7q, P+7,, N+1,)] (5)
0 Ta,Tp,Tn
Previous works [9, 10] point out this method will easily lead
to model collapse. Our observation suggests the same.
(1) Relationship with HM:
Maximizing Lt is equivalent to maximizing Hs. This
can be expressed as HM[ Hs, 2] as discussed in Sec. 3.1.

B.2. Hardness Manipulation (HM)

I. Adjustable Items

The only two adjustable items in HM are Hs and Hp.
They are discussed in the “Performance-Sensitive Factors”
part of the previous section.




Dataset Defense ‘ Benign Example ‘ White-Box Attacks for Robustness Evaluation ‘ ERS}
g [R@1T R@2T mAPT NMIT | CA+T CA-| QA+l QA-l TMA||ES:D| ES:Rf LIMf GIM] GTIT |

HM[S,g1.] 8| 387 485 220 492 | 126 486 123 413 0562 | 0825 135 129 269 1.8 31.7

CUB | HM[S,gica] 8| 380 483 218 493 | 127 464 116 399 0567 | 0.783 168 119 279 1.4 324

HM[S,¢9.] 8| 374 482 171 492 | 129 451 132 391 0599 | 0.738 17.7 128 275 1.9 33.1

Table 9. Non-linear Gradual Adversary Examples.

II. Extreme Values of Hardness.

As reflected in Sec. 3.1 and Fig. 2, the range of H () is
[—2,2]. The embedding vectors have been normalized to
the real unit hypersphere as pointed out in the manuscript.
And the range of distance between any two points on the
hypersphere is [0, 2]. Hence the extreme values are:

max H(A, P,N) (6)
=max[dy(A, P) — dy(A, N)| (7N
=max[dy(A, P)] — min[d,(A, N)] (3)
=2-0, 9

min H(A, P,N) (10)
=min[dg(A, P) — dy(A, N)] (11)
=min[d,(A, P)] — max[d,(A, N)] (12)
=0—2. (13)

Namely H(-) € [—2,2]. Meanwhile, since

Lr(A,P,N;vy) =max(0, H(A,P,N) +7), (14)
we have Lt € [0,2 + 7).
B.3. Gradual Adversary

I. Parameters

The parameters, namely u and ~ are discussed in
the previous section of this supplementary material, see
“Performance-Sensitive Factors”.

The parameter £ in gg is set as 0.1, but it is not an im-
portant parameter. The function gg is only used for demon-
strating that “slightly boosting the destination hardness can
further increase ERS” as discussed in Sec. 3.1.

I1. Non-linear Gradual Adversary

In Sec. 3.2, more complicated designs are left for future
work. We provide two Non-linear Gradual Adversary exam-
ples, namely g, and g; /2, @S follows:

€ [_’Ya O] (15)

by—1)"/? € [~7,0] (16)

9172(:) = =7 (be—1)

Compared to LGA, g, is more “eager” to result in strong
adversarial examples in the early phase of training, while

g1/2 is more “conservative” in creating strong adversarial
examples in the early phase of training (adversarial examples
from HM are stronger if the function value is closer to 0).
The corresponding experiments can be found in Tab. 9.

B.4. Intra-Class Structure (ICS)

I. Parameters
The ICS loss term can be appended to the loss for ad-
versarial training. The only parameter for ICS loss term
is the weight constant A\, and has been discussed in the
“Performance-Sensitive Factors” part of the previous section.
The margin parameter is set to 0 in order to avoid negative
effect in Lics, as shown in Tab. 10.

II. Gradients in Fig. 5 (a) in Manuscript

According to [10], when the embedding vectors are nor-
malized onto the real unit hypersphere and Euclidean dis-
tance is used, the gradients of the triplet loss with respect
to the anchor, positive, and negative embedding vectors are
respectively:

0Lt a—p a—n

=T = - (17)
da  |la—p| |la—n|

OLr p—a

= (18)
op  la—p|

OLt a—n

T 2 19
on la —n|’ (19

when Lt > 0. And the above equations have been reflected
in Fig. 5 (a) in terms of vector direction.

II1. Alternative Design for Exploiting Sextuplet

Let a, p, and 12 be p(A+7,), p(P+7,) and (N +7,,)
respectively. In our proposed ICS loss term, only (a, a, p)
are involved. Other alternative selections of triplets from the
sextuplet are possible, but are not as effective as Lycg for
improving adversarial robustness.

(1) LT(aa 6'7 f))

As shown in Fig. 5 (c) in the manuscript, the position of
p is always further away from both a and a than p due to
the gradient direction. Thus, the loss value of Lt(a, a,p)
will always be smaller than Lics, and hence is less effective
than Lics.

(2) Lt(a, p,n): Mixing regular training and adversarial
training.




Dataset Defense , Benign Example ‘White-Box Attacks for Robustness Evaluation ERSt
! R@1T R@21t mAPt NMIT | CA+t CA-l QA+t QA-| TMA] \ ES:D] ES:Rt LTMt GTMt GTT?t

CUB HM[S, gLeal&ICS 8| 372 478 214 484 | 129 409 147 337 0.806 | 0487 17.1 132 263 2.3 335

HMIS, gieal&Lics (- ;7 =0.2) 8| 358  46.6 164 483 | 132 399 127 333 0.775 | 0507 159 149 272 2.7 33.6

Table 10. The margin parameter is set to 0 in order to avoid negative effect. R@1 performance drops with marginal robustness gain.

According to our observation, mixing regular training
and adversarial training leads to better R@1 with drastic
robustness degradation for both ACT and our defense.

(3) L1(p, p, a): Symmetric counterpart of Lics.

Every sample in the training dataset will be used as anchor
for once per epoch. Such symmetric loss term is duplicated
to Lics and is not necessary. Experimental results suggest
negligible difference compared to Lycs.

(4) Lt(a, a,n): i is very close to a in Fig. 5.

It enforces inter-class structure instead of intra-class struc-
ture. Besides, experimental results suggest negligible dif-
ference. We speculate this loss term is duplicated to the
adversarial training loss term, i.e., Lt(a, p, nn), which en-
forces inter-class structure as well in a stronger manner.

(5) LT(aa b, ’FL)

According to our observation, it leads to better R@1
performance on benign examples, but drastically reduce the
robustness.

B.5. Experiments and Evaluation

I Hardware and Software Configuration

We conduct the experiments with two Nvidia Titan Xp
GPUs (12GB of memory each) under the Ubuntu 16.04 oper-
ating system with PyTorch 1.8.2 in distributed data parallel.

I1. Training Cost

In the manuscript, the training cost of adversarial training
is caluclated as  + 1, which is the number of forward-
backward propagation involved in each iteration of the train-
ing process, in order to reflect the training efficiency (gain as
high robustness as possible given a fixed number of forward-
backward calculation for adversarial training) of different
defense methods. Specifically, PGD creates adversarial ex-
amples from the 7 times of forward-backward computation.
With the resulting adversarial examples, the network requires
once more forward-backward computation to update the
model parameters.

ITI. Complete Results for Tab. 2 in Manuscript

Complete experimental results for “Tab. 2: Combinations
of Source & Destination Hardness. ...” can be found in
Tab. 11 of this supplementary material.

IV. Additional Notes on the Experimental Results
(1) Slight ERS decrease with a larger n

In some cases, e.g., HM[S, g gal&ICS on the CARS
dataset reaches a slightly lower ERS with n = 32 compared
to that with n = 8. We speculate this is because adver-
sarial training suffers from overfitting [4, 5] on adversarial
examples, as mentioned in Sec. 2.

B.6. Potential Future Work

I. Faster Adversarial Training with HM

As discussed in Sec. 3.1, one potential adversarial train-
ing acceleration method is to incorporate Free Adversarial
Training (FAT) [7] (originally for classification) into our
DML adversarial training with HM. Besides, directly incor-
porating FAT into the min-max adversarial training of DML
will easily result in model collapse as well, because the FAT
algorithm can be interpreted as to maintain a universal (ag-
nostic to sample) perturbation that can maximize the loss.
Thus, non-trivial modifications are still required to incorpo-
rate FAT FAT into adversarial training with HM. This is left
for future work.

II. Better Choice for Destination Hardness

The proposed LGA function incorporates our empirical
observation that “adversarial triplets should remain Semi-
hard” based on the results in Tab. 2. However, a better
choice for Hp may exist between “Semihard” and “Soft-
hard” that can achieve better overall performance. In the
manuscript, we only use the existing sampling methods and
simple pseudo-hardness functions in order to avoid distrac-
tion from our focus.

II1. Other Loss Functions

Adversarial trainig with DML loss functions other than
triplet loss is insufficiently explored. New metric learning
loss functions oriented for adversarial training are also left
for future study. Besides, model collapse is an inevitable
problem for adversarial training with triplet loss, and it is
unknown whether other loss functions could mitigate this
issue.

IV. DML & Classification
It is unknown whether DML defenses will improve the
robustness in the classification task.
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