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In this document, we provide additional contents in-
cluding pseudo codes of essential modules (§S1), per-class
quantitative segmentation results on VOC 2012 val and
test (§S2), more visualization results on VOC 2012 [5]
and COCO 2014 [11] (§S3), as well as limitation (§S4) and
societal impact analysis (§S5).

S1. Pseudo Code

Algorithms 1 and 2 provide the pseudo-codes of regional
semantic contrast and regional semantic aggregation, re-
spectively. In addition, we give a pseudo-code of the model
inference procedure in Algorithm 3.

S2. Per-Class Result on VOC 2012

Table S1 and Table S2 list per-class segmentation scores
on VOC 2012 val and test, respectively. We observe that
RCA obtains the best performance on most of the categories
(e.g., aeroplane, car, motorcycle). These detailed
results further confirm the effectiveness of our approach.

S3. Additional Visualization Result
S3.1. Object Localization Result

Fig. S1 depicts more object localization results on VOC
2012 train. We observe that RCA yields a clearly per-
ceivable improvement over the OAA™™ baseline. In partic-
ular, RCA is able to reveal the full extents of objects, even
for too small or too large ones. In multi-object scenarios,
it can accurately identify all objects, while OAATT only
provides sparse responses for some of them.

S3.2. Semantic Segmentation Result

In Fig. S2 and Fig. S3, we show extra segmentation re-
sults of RCA on VOC 2012 val and COCO 2014 val, re-
spectively. Consistent with our analysis in the main paper,
we observe that RCA is able to produce accurate segmenta-
tion results with crisp boundaries in diverse scenarios.

* Equal contributions; T Corresponding author: Jianwu Li.

S1

Algorithm 1 PyTorch-style pseudocode of regional seman-
tic contrast (RSC).

H e

def RSC(F, y):
losses = []
for 1 in range(l, L):
if y_ 1 ==
continue

region feature:

# D-dimensional,
f 1 = MAP(F, P_1)

Eqn. (2)

loss = loss_rm_nce(f_1,
losses.append(loss)
return losses.mean ()

y_1)

# Region Mixup InfoNCE loss

def loss_rm_nce(f_1, y_1)
# sa another region f_1_neg such that

=y 1

mixup_sampling ()

in Egn. (6)

# beta sampling
omega = Beta (beta, beta)

# region mixup

f 1 hat = omega * f_1 + (1 - omega)
f_1 hat = 12_norm(f_1_hat)

« f_1_neg

# region mixup InfoNCE
loss = omega » loss_nce(f_1_hat, y_1) +
) * loss_nce(f_1_hat, y_1l_neq)

(1 - omega

return loss

# InfoNCE loss in Eqgn. (4)
def loss_nce(f_1, y_1):

# om_1_] : posti atures from M_1

# m_1_ negatix features from M\M_1

logits_neg = torch.einsum(’d,nd->n’, [f_1, m_l_neg
1)/t

logits_pos = torch.einsum(’d,nd->n’, [f_1, m_1_pos
1)/t

loss = (torch.log(logits_neg + torch.exp (
logits_pos)) - logits_pos) .mean()

return loss

mm: matrix multiplication; cat: concatenation; 12_norm: fs normalization;
mixup-sampler: a random sampler to find another region for region mixup;
Beta: Beta distribution; MAP: masked average pooling.


https://github.com/maeve07/RCA.git

Algorithm 2 PyTorch-style pseudocode of regional seman-
tic aggregation (RSA).

# F: image feature (W x H x D, Eqgn. (1))
# Q: prototypical representation (LK x D)
def RSA(F, Q):
# affinity: WH x LK, Egn.(7)
S = softmax (mm(F, Q.transpose()))
# context summary: WH x D, Eqgn. (8)
F_prime = mm(S, Q)
eature concatenation: W x H x 2D, Egn. (9)

] =
D' h

at = cat ([F, F_prime], dim=-1)

return F_hat

mm: matrix multiplication; cat: concatenation.

Algorithm 3 PyTorch-style pseudocode of model inference.

ical representation (LK x D)
rk
onvolutional layer
H x D, Egn. (1)
F_hat = RSA(F, Q)
# CAM prediction: W x H x L, Egn. (10)
O = CAM(F_hat)

S4. Limitation

One downside of RCA is that it needs to maintain an
external memory bank during training, thereby increasing
the memory complexity. However, we show in the main
paper that RCA is not sensitive with the memory size, and
we can use a small size (e.g., 500) to achieve comparable
performance.

S5. Potential Societal Impact

RCA shows high potential impact for many practical ap-
plications, e.g., autonomous driving, medical imaging, and
transportation, where expert annotation is expensive. How-
ever, the model can be deployed in human monitoring and
surveillance as well which raise ethical and privacy issues.
It can be avoided by enforcing a strict and secure data pri-
vacy regulation to regulate the technology.
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method‘bkg aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv ‘mloU (%)‘

SEC [9]/82.4 62.926.4 61.6 27.6 38.1 66.662.775.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1454453| 50.7
MCOF [12]|87.0 78.4 29.4 68.0 44.0 67.3 80.3 74.1 82.2 21.1 70.7 28.2 73.2 71.5 67.2 53.0 47.7 74.5 32.471.045.8| 60.3
AffinityNet [1]]88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6| 61.7
SeeNet [7]| - - - - - - - - - - - - - - - - - - - - - 63.1
FickleNet [10]|89.5 76.6 32.6 74.6 51.5 71.1 83.474.483.6 24.1 73.4 47.4 78.2 740 68.8 73.2 47.8 79.9 37.057.3 64.6| 64.9
SSNet [15]190.0 77.4 37.580.7 61.6 67.9 81.869.083.7 13.6 79.4 23.3 78.0 75.3 71.4 68.1 352 782 32.575.548.0] 633
CIAN [6](88.279.5 32.6 75.7 56.8 72.1 85.372.9 81.7 27.6 73.3 39.8 76.4 77.0 749 66.8 46.6 81.0 29.1 60.4 53.3| 64.3

RRM [16](87.9 75.9 31.7 78.3 54.6 62.2 80.573.771.2 30.5 67.4 40.9 71.8 66.2 70.3 72.6 49.0 70.7 38.4 62.7 58.4| 62.6
SubCat [3](88.8 51.6 30.3 82.9 53.0 75.8 88.6 74.8 86.6 32.4 79.9 53.8 82.3 78.5 70.4 71.2 40.2 78.3 42.9 66.8 58.8| 66.1
SS-WSSS [2]|88.7 70.4 35.1 75.7 51.9 65.8 71.9 64.2 81.1 30.8 73.3 28.1 81.6 69.1 62.6 74.8 48.6 71.0 40.1 68.564.3| 62.7
SEAM [13]/88.8 68.5 33.3 85.7 40.4 67.3 78.976.381.9 29.1 75.5 48.1 79.9 73.8 71.4 752 48.9 79.8 40.9 58.253.0| 64.5
Zhang et al [17]190.4 85.6 38.9 78.9 62.0 73.4 83.774.382.9 25.8 77.8 30.1 81.1 79.3 76.1 73.9 38.6 85.0 32.772.855.7| 66.6
BES [4]/88.9 74.1 29.8 81.3 53.3 69.9 89.4 79.8 84.2 27.9 76.9 46.6 78.8 75.9 722 70.4 50.8 79.4 39.9 65.344.8| 65.7
GroupWSSS [18]]| - - - - - - - - - - - - - - - - - - - - - 68.7
AuxSegNet [14](91.7 82.5 38.2 84.3 67.4 76.7 85.079.8 90.7 24.5 81.2 22.7 86.7 78.7 76.0 82.2 37.9 86.4 39.375.6 61.0, 69.0
RCA|91.8 88.4 39.1 85.1 69.0 75.7 86.6 82.389.1 28.1 81.9 37.9 859 79.4 82.1 78.6 47.7 84.4 34975458.6| 70.6

Table S1. Per-class segmentation results on VOC 2012 [5] val. See §S2 for details.

method|bkg aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv ‘mIoU (%)‘

DSRG[8]} - - - - - - - - - - - - - - - - - - - - - 63.2
MCOF [12](88.2 80.8 31.4 70.9 34.9 65.7 83.575.179.0 22.0 70.3 31.7 77.7 72.9 77.1 569 41.8 749 36.671.242.6] 61.2
AffinityNet [1](89.1 70.6 31.6 77.242.2 68.9 79.1 66.5 74.9 29.6 68.7 56.1 82.1 64.8 78.6 73.5 50.8 70.7 47.7 639 51.1] 63.7
FickleNet [10]|89.8 78.334.1 73.441.2 67.2 81.077.381.2 29.1 72.4 47.2 76.8 76.5 76.1 72.9 56.5 82.9 43.6 48.7 64.7| 65.3
SSNet [15]]90.4 85.437.9 77.248.2 64.5 83.9 74.8 83.4 159 72.4 34.3 80.0 77.3 78.5 69.0 419 76.3 38.372.348.2| 64.3
RRM [16]|87.8 77.530.8 71.7 36.0 64.2 75.370.4 81.7 29.3 70.4 52.0 78.6 73.8 744 72.1 542 752 50.6 42.0 52.5| 62.9
SS-WSSS [2](89.2 73.4 37.3 68.345.8 68.0 72.7 64.1 74.1 32.9 74.9 39.2 81.3 74.6 72.6 754 58.1 71.0 48.7 67.760.1| 64.3
SEAM [13]} - - - - - - - - - - - - - - - - - - - - - 65.7
BES [4]/89.0 72.7 30.4 84.6 47.5 63.0 86.8 80.7 85.2 30.1 76.5 56.4 81.8 79.9 77.0 67.8 48.6 82.3 57.254.046.7| 66.6
AuxSegNet [14]{91.6 85.1 39.4 80.0 51.4 69.9 81.479.9 86.5 26.6 75.3 29.7 81.7 83.6 78.0 83.1 56.1 84.5 39.877.260.9| 68.6
GroupWSSS [18]]| - - - - - - - - - - - - - - - - - - - - - 69.0
RCA|92.1 86.6 40.0 90.1 60.4 68.2 89.8 82.3 87.0 27.2 86.4 32.0 85.3 88.1 83.2 78.0 59.2 86.7 45.071.3 52.5| 71.0

Table S2. Per-class segmentation results on VOC 2012 [5] test. See §S2 for details.




Figure S1. Visualization of class activation maps on VOC 2012 [5] train. From top to bottom: input images, results of OAA™T,
results of RCA. See §S3 for details.



Figure S2. Qualitative segmentation results on VOC 2012 [5] val. From top to bottom: input images, ground-truths, our results. See
§S3 for details.



Figure S3. Qualitative segmentation results on COCO 2014 [11] val. From top to bottom: input images, ground-truths, our results. See
§S3 for details.



