The Supplementary of ‘“Training-free Transformer Architecture Search”

In the supplementary, we provide additional detailed in-
formation for the readers to better understand the proposed
DSS-indicator and its working mechanism. The content of
this supplementary is listed as follows:

* In Sec. A, we list the performance of searched optimal
ViT networks via different zero-cost proxies to better
demonstrate the superiority of our DSS-indicator.

e In Sec. B, we provide the pseudo-code of the DSS-
indicator to present the implementation details and en-
courage further investigation.

e In Sec. C, we provide further specific information
about the PiT search space.

e In Sec. D, we show some optimal ViT architectures
searched on AutoFormer search space and PiT search
space with the help of the proposed DSS-indicator.

A. Additional Comparison of Zero-Cost Proxy.

In Tab. A, we list the classification performance of the
searched optimal networks with the help of different zero-
cost proxy methods. As it is indicated in Table.5 in the
manuscript, the ViT architecture searched by our DSS-
indicator is better than that of the cutting-edge counter-
parts [3—5], which have achieved competitive performance
in popular CNN search spaces. The results also verify the
necessity to design a ViT-oriented performance indicator.

Table A. The classification accuracies on ImageNet of the searched
optimal ViT architectures via different zero-cost proxies from the
AutoFormer search space.

implementation details of DSS-indicator in Algorithm 1.
It should be noted that: in the step to construct the
input, we prepare one tensor, whose values are all 1 (as
we mentioned in lines 486 — 488 in the main text). Besides,
we don’t measure the influence from convolution module
directly, because we mainly focus on zero-cost performance
estimation for vision transformer architectures.

Algorithm 1 DSS-indicator (PyTorch-like)

# net: a ViT, input_dim: input dimension
#H###F#### definition of DSS—-indicator ##########
def DSS_indicator (layer):
if isinstance(layer, MSA):
if layer.weight.grad is not None:
return torch.abs (torch.norm(layer.
weight.grad, "nuc’) * torch.
norm(layer.weight,'nuc’))
else:
return torch.zeros_like (layer.weight)

else if isinstance(layer, MLP):
if layer.weight.grad is not None:
return torch.abs (layer.weight.grad
+ layer.weight)
else:
return torch.zeros_like (layer.weight)

t###########H# construct the input #############

inputs torch.ones ([1] + input_dim)

FHEAFFA##### Fforward and backward #####FFFFHFH
net.train ()

output = net.forward(inputs)

torch.sum(output) .backward ()

########## measure the DSS—indicator ###########

proxy_array = []

for layer in net.modules() :
proxy_array.append(DSS_indicator (layer))

S_DSS = torch.sum(proxy_array)

Prox #Param FLOPs Top-1 Top-5

Y ™M B % (%)
SNIP [3] 5.8 14 748 927
GraSP [5] 55 1.3 743 922
TE-score [ 1] 5.6 1.3 74.6 92.6
NASWOT [4] 5.9 1.5 748 928
DSS-indicator (ours) | 5.9 1.4 753 928

B. The Pseudo-code of DSS-indicator.

To make it easier to understand and reproduce the pro-
posed ViT-oriented performance indicator, we present the

C. The detail of the PiT search space.

To verify the generalization of TF-TAS, we construct
a PiT search space based on PiT [2], which adopts some
depth-wise convolution operations as pooling to obtain
deep-narrow ViT networks. The detailed configurations of
the PiT search space are listed in Tab. C. We set three levels
(i.e., tiny, extra small, and small) in the PiT search space.
The patch size and stride of these levels are set to 16 and



Table B. The details of the searched architectures on AutoFormer search space via the proposed DSS-indicator.

Embed MLP Head Depth
Dim Ratio Num Num
Tiny: TE-TAS-Ti in Table.1
192 ‘ 3.5,4.0,3.5,3.5,4.0,3.5,3.5,3.5,4.0,4.0,4.0,4.0,3.5 ‘ 4,3,3,3,3,4,4,3,3,3,4,3,3 ‘ 13
Small: TF-TAS-S in Table.1
384 ‘ 4.0,4.0,4.0,3.0,4.0,3.0,3.0,3.5,4.0,3.5,3.5,4.0,3.0, 3.5 ‘ 6,6,6,6,7,6,5,7,5,5,5,7,6,7 ‘ 14

Base: TF-TAS-B in Table.1

576 ‘ 4.0,4.0,4.0,3.5,3.0,3.0,3.0,4.0, 3.0, 3.0, 3.5, 4.0, 3.5, 4.0, 3.0 \ 9, 10, 10, 10, 10, 9, 10, 9, 9, 10,9, 9, 9, 10,9 \ 15

Table C. The details of the PiT search space. The patch_size and
stride are follow the settings in PiT [2]. The depth includes 3 parts,
which are correspond to 3 stages.

Patch Stride Base Depth Head MLP
size Dim Num Num Ratio

Tiny

{(1,2,3),

16 8 {16,24,32,40} (4,6,8),
(2,4,6)}

{2,4,8} {2.4,6,8}

Extra Small
{(17273)7
{40,48,56,64} (4,6,8), {248} {2,468}
(2,4,6)}

Small

{(1,2,3),
{36.48.60,72} (4,6,8), {3.6.12} {2.4.6,8}

(2,4,6)}
# (Possible Architectures) = 3.4 x 10°

16 8

16 8

8, respectively. The important dimensions we are going to
search include base dimension, depth number, the number
of heads, and MLP ratio. In total, there are about 3.4 x 106
architectures in the PiT search space.

D. The searched optimal ViT Architectures

We provide samples of architectures searched on Auto-
Former search space and PiT search spaces. The optimal
networks are shown in Tab. B and Tab. D. The architectures
in AutoFormer search space are layer-based, of which the
MLP ratio and head number in Tab. B have the value of the
number of depth number and other searched dimensions are
consistent for each layer. Different from AutoFormer search
space, the architectures in PiT search space are stage-based,
of which the depth number and head number in Tab. D have
3 values representing the searched results in the three stages.
In addition, the patch size, stride, base dimension, and MLP
ratio are consistent for each stage.

Table D. The optimal architectures searched by our DSS-indicator
on PiT search space.

Patch Stride Base Depth Head MLP
size Dim Num Num Ratio
Tiny: TF-TAS-Ti in Table.2

2, 2,

16 8 40 4, 4, 2
4 8

Extra Small: TF-TAS-XS in Table.2

1, 2,

16 8 56 4, 8, 2
2 8

Small: TF-TAS-S in Table.2

L, 3,

16 8 36 4, 12, 4
2 12
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