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Abstract

In this document, we provide more details of network ar-
chitecture and parameter setting. Further investigation into
the selection of patch sizes for different mark-up annota-
tions are provided. Moreover, some qualitative results of
GlomFace predicting on extremely occluded faces are visu-
alized to prove structural reasoning of GlomFace.

1. Detailed Network Architecture
GlomFace is functionally divided into a part-whole hier-

archical module (PHM) and a whole-part hierarchical mod-
ule (WHM). The PHM is easy to understand and follow,
because it only involves part combining and non-local oper-
ation [7]. Therefore, in this section, we mainly show details
of WHM architecture. Figure 1 shows the detailed network
architecture of the proposed WHM. For the whole represen-
tation, we use a recurrent neural network (RNN, 1024-D) to
memorize historical information for imposing self-relation.
We formulate the recurrent neural network (RNN) for the
current iteration step as:

y = RNN(x⊕ y∗), (1)

where y, x and y∗ denote the current self-relation, the
whole representation and the previous self-relation, respec-
tively. The RNN is simple and sufficient for memorizing
short-term information (four iterations in our implementa-
tion). Therefore, in our implementation, replacing the RNN
with more complex operations such as LSTM or GRU does
not result in more performance gains.

2. Ablation study
Facial hierarchies. To further investigate the hyper-

parameters of the proposed GlomFace, we varied the num-
ber of facial levels and iteration steps to report the perfor-
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mance, respectively. All experiment results shown in Ta-
ble 1 are evaluated on the challenge set of 300W [5]. The
table shows that optimal performance is achieved when us-
ing five levels and four iterative steps. Two iteration steps
can achieve competitive performance when using five lev-
els. We further found that increasing the number of itera-
tions can decrease the average error but overfitting after four
iterations. These results demonstrate that GlomFace can
significantly benefit from facial hierarchies, and 4 iteration
steps are the best. Moreover, the other two investigations
are as follows: removing residual connections (3.13→3.16
NME), replacing the PHM with the feature extractor fro [6]
(3.13→3.38 NME).

Setting NMEocular

GlomFace (t = 4,i = 2) 6.39
GlomFace (t = 4,i = 3) 5.37
GlomFace (t = 4,i = 4) 5.01
GlomFace (t = 1,i = 5) 6.73
GlomFace (t = 2,i = 5) 5.13
GlomFace (t = 3,i = 5) 4.96
GlomFace (t = 4,i = 5) 4.87
GlomFace (t = 5,i = 5) 4.88
GlomFace (t = 6,i = 5) 5.31

Table 1. Ablation experiment: NME comparison on the challenge
set of 300W. Here,“t” and “i” denote the iteration step and the
number of facial part levels.

Faces under different levels of occlusion. COFW and
Masked 300W evaluated are two datasets with different lev-
els of occlusion (over 25% and 50%). Moreover, we used
five noise block sizes to randomly occlude the full set of
300W.

3. Patch Size.
Different annotation schemes of existing datasets have

a different number of landmarks, such as COFW68 [3] (68
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Figure 1. Detailed Architecture of whole-part hierarchical module (WHM). Where each 1-layer MLP (fully connected layer) with RELU
nonlinearity is followed by a batch-norm layer. “

⊙
” denotes concatenation operation. Each number refers to the output dimension of the

current MLP.

Occlusion size 20 × 20 40× 40 60× 60 80× 80 100× 100
MDM [6] 3.79 4.28 5.31 6.81 8.23
SAAT [9] 3.31 3.92 4.71 5.69 6.12

GlomFace (Ours) 3.15 3.67 4.08 4.57 5.38

landmarks), 300W [5] (68 landmarks), WFLW [8] (98 land-
marks) and COFW29 [1] (29 landmarks). For 68 and 98
landmarks, we set the patch size to 42 ∗ 42, and large patch
size leads to heavy overlap of face patches and information
redundancy. For sparse 29 landmarks, we set the size of
patches to 46∗46 and remove the neighborhood level due to
its sparse hierarchical information. Reducing patch size will
result in not cropping enough facial information. In Table 2,
we show the ablation experiments on patch size. The re-
sults show that when GlomFace predicts sparse landmarks,
the patch size should be increased accordingly. In addition,
increasing the size does not significantly increase the com-
putational effort due to the reduced number of patches.

4. Prediction under Extreme Occlusion

Additional qualitative results of the proposed GlomFace
on Masked 300W are illustrated in Figure 2. We can see
that the proposed GlomFace can efficiently reason facial
structure under extreme occlusion. The sixth column il-
lustrate that GlomFace achieves structural reasoning rather
than captures edge information. The last column shows the
failure examples. These samples undergo structural incon-

Patch size COFW68 COFW29
S=36 5.16 6.14
S=38 4.62 5.49
S=40 4.24 4.81
S=42 4.21 4.75
S=44 4.22 4.42
S=46 4.29 4.37
S=48 4.65 4.37

Table 2. Ablation experiment: NME comparison of different patch
sizes (NMEocular for COFW68 and NMEpupil for COFW29 ).

gruities under large poses. More results can be found by
running our evaluation code.

5. Discussion

The proposed GlomFace is a new network architecture
focusing on occlusion, which injects the power of structural
reasoning into the neural network by leveraging hierarchical
spatial dependencies and relations. It differs from any ex-
isting backbone network for face alignment tasks, its struc-
tural reasoning power comes from the architecture rather
than from additional prediction tasks (e.g. visibility esti-
mation and boundary estimation). We believe that Glom-



Face can serve as a strong baseline, existing incremental
works [2, 4, 9] can be integrated to further improve the per-
formance of the proposed method.
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Figure 2. Qualitative results on Masked-300W Dataset. The last column shows the failure examples.


