
A. Tokenizer
Given the raw inputs from text, image, and video modali-

ties, modality-specific tokenizers are applied to generate the
input token sequences for the Transformer encoder. Here,
we use the BPE tokenizer [67] for text modality, the im-
age patch tokenizer [20] for image modality, and the tem-
poral frame patch tokenizer [7] for video modality. These
outputted tokens are attached with additional modality type
embeddings to identify which modality the raw input be-
longs to. The tokenizers are illustrated in Fig. 2.

Text Tokenizer. The BPE Tokenizer [67] is employed for
text modality. The text inputs are split into sub-words and
projected by a linear embedding layer. A learnable 1D posi-
tional embedding for text with a max length of 256 is added
to the word embeddings. To specify the input modality,
an additional trainable textual modality embedding <T> is
added to each token embedding. Note that all the text inputs
of our model share the same vocabulary.

Image Tokenizer. The image patch tokenizer [20] is uti-
lized as the image tokenizer. The input images are resized to
224×224, and flattened to a sequence of image patches with
shapes 16×16, which are further mapped by a linear projec-
tion. A sequence of learnable image positional embeddings
with a fixed length 14× 14 = 196, and an additional visual
modality embedding <V> are also added.

Video Tokenizer. The temporal frame patch tokenizer [7]
is used for video tokenization. Each frame of the input
video is flattened to image patches with shape 16×16. For
a video with N frames (N = 8 by default), the number
of tokens would be N × 14 × 14. The spatial positional
embeddings for images as well as a 1D temporal position
embedding with max length N = 8 are added to the video
embeddings. Besides, the additional visual modality em-
bedding <V> is added to each token embedding.

B. Implementation Details for Auto-regressive
Language Modeling

In the formulation of autoregressive tasks from previous
works, each input token attends to all previous tokens, in-
cluding itself, to predict the next word. Unlike previous
works, we use <SPE> to predict the current word. Fig. 4
shows how we achieve this. In the inference stage, <SPE>
is appended to the end of the predicted tokens as the in-
put. The corresponding output is used for prediction. In the
training stage, we append several <SPE> tokens after the
input sequence. Each <SPE> token is trained to predict a
word in the input sequence. The attention mask is designed
to make sure that the word tokens do not attend to <SPE>
tokens, and each <SPE> token only attends to itself and the
previous word tokens. In this way, the training stage and the
inference stage are aligned.

I

am

ok

SPE

I am ok SPE

Query

Key & Value

Attend

Do not 
attend

Training
Stage

SPE

SPE

SPE SPE

I

am

SPE

I am SPE

Query

Key & ValueInference
Stage

Predicts

ok

Figure 4. The attention mask of autoregressive language modeling.

C. Prompt Tuning

Four groups of parameters are learnable in prompt-
tuning. They are <SPE>, layer normalization parameters,
prompt tokens, and linear heads. This section introduces
the usage and the number of parameters of each parameter
group.

Details Similar to the pre-training stage, <SPE> token is
shared for both inputs and targets. Layer normalization
weights and biases in each Transformer layer and tokenizer
are tuned. Learnable prompts are added to each layer of
the Transformer encoder. Specifically, the input prompts
of each layer do not come from the output of the previ-
ous layer. They are random initialized learnable parame-
ters. For all prompt-tuning experiments, we use 10 learn-
able prompts for each layer on both inputs. The linear heads
only apply for classification tasks. It takes the feature that
is to be classified as input, and returns a classification logit.
The output probability is a linear combination of the proba-
bility from the similarity score and the linear head:

P (x, y) ∝ α exp
(
cos

(
f(x), f(y)

)
/τ

)
+w⊤f(x)+ b (4)



Number of Parameters

<SPE> 768
Layer Norm 41,472

Prompt 184,320
Linear head 768 * num classes

Table 9. The number of learnable parameters in the prompt-tuning
stage. Note that the linear head only applies for classification
tasks.

𝑓(𝑥)

<SPE>

Video
caption

𝑥!"

Video + Sentence with masked tokens

𝑥#" 𝑥!$ 𝑥%$

𝑓(𝑦)

<SPE> 𝑦!$

Vocabulary

<SPE>

<SPE>
VQA

𝑥!&

Image + Question with masked tokens

𝑥#& 𝑥!$ 𝑥#$

𝑓(𝑦)

<SPE> 𝑦!$ 𝑦#$ 𝑦%$ 𝑦'$ 𝑦($

Answer

𝑓(𝑥)

<SPE>

Video-Text 
Retrieval
(V → T)

Video

𝑓(𝑦)

<SPE> 𝑦!$ 𝑦#$ 𝑦%$ 𝑦'$ 𝑦($

Caption
𝑓(𝑥)

<SPE>

Video-Text 
Retrieval
(T → V) 𝑥!$

Caption

𝑥#$ 𝑥%$ 𝑥'$ 𝑥($

𝑓(𝑦)

<SPE>

Video

𝑥!" 𝑥#" 𝑥%" 𝑥'" 𝑥("

𝑥!" 𝑥#" 𝑥%" 𝑥'" 𝑥("

𝑓(𝑥)

<SPE>

𝑓(𝑥)

<SPE>

Natural 
Language 

Understanding 𝑥!$ 𝑥#$ 𝑥%$ 𝑥'$ 𝑥($

𝑓(𝑦)

<SPE> 𝑦!$ 𝑦#$ 𝑦%$ 𝑦'$ 𝑦($

Single sentence or sentence pair

Class label

Class label

Figure 5. Input and target formats of our novel tasks. For each
task, the left column represents the format of input sequence x,
and the right column represents the format of the target sequence
y. f(x) and f(y) are used to calculate the joint probability dis-
tribution. Here, we have omitted the tokenizer and encoder for
concision.

where w and b are the weights and bias of the linear, and α
is a learnable scalar. w and b are initialized with 0 and α is
initialized with 1.

Number of Parameters Tab. 9 shows the number of pa-
rameters of each learnable component in prompt-tuning.
For tasks other than classification, the number of parame-
ters is 227K in total. When the linear head is added, e.g., in
ImageNet-1k classification task, the number is 995K, which
is still less than 1% of all the parameters in the pre-training
stage.

D. Formulation of Novel Tasks
The generic perceptual modeling makes it easy to con-

vert existing tasks into the unified task formulation of our
Uni-Perceiver. Fig. 5 illustrates the input and the output
formulations of our novel tasks, which we will describe in
details.

Video Caption. Similar to image caption, video caption
is modeled as the autoregressive language modeling task
with video clues. In this task, the model predicts each word
based on the video and its previous words. The input set

X consists of the sequence concatenation of video and the
words that have been predicted, followed with a <SPE> to-
ken. The output features of the <SPE> token is used to
calculate the joint probability with each words in the the
vocabulary set Y . Then the word with the highest probabil-
ity is the predicted word at the current location. Addition-
ally, video caption follows the efficient implementation of
autoregressive training introduced in Sec. B.

Video-Text Retrieval. The Video-Text retrieval follows
the formulation of Image-Text retrieval task, except that the
image sequence is replaced by the video sequence. Specifi-
cally, the input sets X and Y are composed of video and text
sequences respectively. Each sequence in X and Y also has
a <SPE> token at the beginning. We use the output feature
at the <SPE> token as the final representation of the input
video or the text to calculate the joint probability distribu-
tion.

Visual Question Answering. We formulate the VQA task
as a special case of masked language modeling with image
clues. The input x ∈ X is the combination of image and
question sequences. It should be noted that each question
ends with a “?” mark and a <SPE> token is appended to the
end of the question sequence. The Y set consists of candi-
date answer sequences, in which each begins with a <SPE>
token too. The joint probability distribution between X and
Y can be calculated by using the output feature from <SPE>
tokens.

Natural Language Understanding. The formulation of
natural language understanding task is similar to that of
image classification task. X denotes the set of the in-
put single sentence or the sentence-pair, and Y is the set
contains the textual class label. For example, in SST-2
[71], x denotes the sentence sequence of movie review and
y ∈ Y = {great,terrible} is the sentiment label. In
MRPC [19], x instead is the sequence combination of sen-
tence pairs extracted from news, and y ∈ Y = {Yes,No}
is the label to indicate whether the sentence pair are seman-
tically equivalent. We also add <SPE> tokens at the begin-
ning of the sequences x and y, of which output features are
used to computed joint probability.

E. Extra pre-training details

Sampling Weight & Batch Size & Loss Tab. 10 lists the
batch size and sampling weight of each task and dataset in
the pre-training stage. We use cross-entropy loss for lan-
guage modeling tasks. The other tasks are trained with
cross-entropy loss with 0.1 label smoothing. The loss
weight of video classification is 0.05, which helps stabilize
training in our experiments. The other loss weights are 1.0
by default.

For retrieval tasks like image-text retrieval, we use train-



Task Dataset Batch Size Sampling Weight

Image Classification ImageNet-21k [17] 64 0.333

Video Classification
Kinetics-700 [32] 4 0.0925

Moments in Time [57] 24 0.0185

Auto-encoding LM

Books&Wiki [93] 64 0.07775
YFCC [31] 64 0.02778
CC12M [9] 64 0.02778
CC3M [68] 64 0.01389

Visual Genome [36] 64 0.01389
COCO Caption [12] 64 0.01389

SBU [58] 64 0.01389
PAQ [41] 512 0.0222

Auto-regressive LM

Books&Wiki [93] 64 0.07775
YFCC [31] 56 0.02778
CC12M [9] 56 0.02778
CC3M [68] 56 0.01389

Visual Genome [36] 56 0.01389
COCO Caption [12] 56 0.01389

SBU [58] 56 0.01389
PAQ [41] 400 0.0222

Retrieval

YFCC [31] 128 0.02778
CC12M [9] 128 0.02778
CC3M [68] 128 0.01389

Visual Genome [36] 128 0.01389
COCO Caption [12] 128 0.01389

SBU [58] 128 0.01389
PAQ [41] 512 0.0222

Table 10. Ingredients and hyper-parameters for our pre-training.

ing samples in the same batch as negative samples, whose
typical size is 127 except the PAQ dataset. Note that we
do not use memory bank and do not gather feature across
GPU devices to provide more negative samples, which may
further promote the performance of retrieval tasks.

Data Augmentation We apply augmentation techniques to
image and video modalities to avoid overfitting. For images
in ImageNet-21k dataset, we apply augmentation same as
[77]. Rand-Aug[16], random erasing [89], mixup [86] and
cutmix [85] are used simultaneously. For images in other
datasets, we resize the images to the short edge size of 256,
and then a 224 × 224 region is cropped randomly from the
resized images during training. During inference, the ran-
dom crop is replaced with center crop operation. For all
Video inputs, we apply the same augmentations used in [7].
We use clips of size 8 × 224 × 224 for Kinetics-700 and
Kinetics-400, and 3 × 224 × 224 for Moments in Time.
The temporal sample rate is 32. We use a single temporal
clip. During training, the start frame is randomly picked if
the video is longer than the clip. In the training stage, we
first resize the shorter side of the video to a random value
in [256, 320], then we randomly sample a 224 × 224 crop.
In the test stage, the short side of the video is resized to
224. For classification tasks, We use 3 spatial crops with
size 224 × 224 to cover a larger range of content and av-
erage their logits for evaluation. For video captioning task,
we use center crop after resizing.

Data Parallel for Vocabulary and Class Labels Naive
implementation of language modeling and ImageNet-21k

classification is impractical due to memory limitation. In
language modeling, we need to compare the feature of a
<SPE> token in a sequence to the feature of each token in
our tokenizer. Since the vocabulary size is large, we apply
data parallel for the vocabulary set. A similar method is
used for class labels of ImageNet-21k.

Removing Overlap For the training set of K700 partici-
pating in pre-training, we remove those videos overlapping
with validation set of K400.

F. Licences of Datasets

ImageNet-21K [17] is subject to the ImageNet terms of use
[79].

Kinetics-700 [70] & Kinetics-400 [32] The kinetics dataset
is licensed by Google Inc. under a Creative Commons At-
tribution 4.0 International License.

BooksCorpus [93] Replicate Toronto BookCorpus is open-
source and licensed under GNU GPL, Version 3.

Wikipedia Most of Wikipedia’s text is co-licensed un-
der the Creative Commons Attribution-ShareAlike 3.0 Un-
ported License (CC BY-SA) and the GNU Free Documen-
tation License (GFDL) (unversioned, with no invariant sec-
tions, front-cover texts, or back-cover texts). Some text
has been imported only under CC BY-SA and CC BY-SA-
compatible license and cannot be reused under GFDL.

YFCC [31] All the photos and videos provided in YFCC
dataset are licensed under one of the Creative Commons
copyright licenses.

CC12M [9] is licensed under the Terms of Use of Concep-
tual 12M [52].

CC3M [68] is licensed under the Conceptual Captions
Terms of Use [53].

Visual Genome [36] is licensed under a Creative Commons
Attribution 4.0 International License [35].

COCO Caption [12] The images are subject to the Flickr
terms of use [22].

SBU Caption [58] The images are subject to the Flickr
terms of use [22].

PAQ [41] is licensed under the Attribution-NonCommercial
4.0 International License.


