
Neural Rate Estimator and Unsupervised Learning for Efficient Distributed
Image Analytics in Split-DNN models

Nilesh Ahuja1, Parual Datta1, Bhavya Kanzariya1,2, V. Srinivasa Somayazulu1, Omesh Tickoo1

1 Intel Labs, 2 IIT Hyderabad
{nilesh.ahuja, parual.datta, bhavya.kanzariya, v.srinivasa.somayazulu, omesh.tickoo}@intel.com

Abstract

Thanks to advances in computer vision and AI, there
has been a large growth in the demand for cloud-based vi-
sual analytics in which images captured by a low-powered
edge device are transmitted to the cloud for analytics. Use
of conventional codecs (JPEG, MPEG, HEVC, etc.) for
compressing such data introduces artifacts that can seri-
ously degrade the performance of the downstream analytic
tasks. Split-DNN computing has emerged as a paradigm
to address such usages, in which a DNN is partitioned
into a client-side portion and a server side portion. Low-
complexity neural networks called ‘bottleneck units’ are in-
troduced at the split point to transform the intermediate
layer features into a lower-dimensional representation bet-
ter suited for compression and transmission. Optimizing
the pipeline for both compression and task-performance re-
quires high-quality estimates of the information-theoretic
rate of the intermediate features. Most works on compres-
sion for image analytics use heuristic approaches to esti-
mate the rate, leading to suboptimal performance. We pro-
pose a high-quality ‘neural rate-estimator’ to address this
gap. We interpret the lower-dimensional bottleneck out-
put as a latent representation of the intermediate feature
and cast the rate-distortion optimization problem as one
of training an equivalent variational auto-encoder with an
appropriate loss function. We show that this leads to im-
proved rate-distortion outcomes. We further show that re-
placing supervised loss terms (such as cross-entropy loss)
by distillation-based losses in a teacher-student framework
allows for unsupervised training of bottleneck units without
the need for explicit training labels. This makes our method
very attractive for real world deployments where access to
labeled training data is difficult or expensive. We demon-
strate that our method outperforms several state-of-the-art
methods by obtaining improved task accuracy at lower bi-
trates on image classification and semantic segmentation
tasks.

1. Introduction

Visual analytics powered by computer-vision and AI are
being ubiquitously deployed in various domains including
retail, industry 4.0, security, and smart-cities [16]. These
analytics are increasingly being powered by deep-neural
networks (DNN) that are often too complex to be imple-
mented on low-powered mobile or client devices. Instead,
visual data captured by a mobile device is transmitted over
the network to a server or the cloud. Data-compression
techniques are applied in order to keep the data-rate man-
ageable. Standard data compression techniques for images
and videos, such as JPEG, BPG, H.264, H.265, etc. are
known to be suboptimal for visual analytics since these
optimize rate-distortion performance for human perception
rather than for semantics-based analytics. Consequently,
task performance can degrade severely in the presence of
even relatively mild compression artifacts.

To address this, split DNN-computing (also called col-
laborative intelligence [8, 17]) has emerged as a recent
paradigm in which a DNN is partitioned into two: a front-
end comprising the input layer and a number of subsequent
layers deployed on the mobile or client side, and a back-
end comprising the remaining layers residing on the server
or cloud. Specially designed neural networks, called bottle-
neck layers [12,21,24] are introduced at the partition point.
These layers transform the high-dimensional intermediate
features at the split point into a lower-dimensional space,
enabling greater compression. This has important bene-
fits over the traditional approach. First, the model can be
trained to learn features that are jointly optimized both for
task performance and for compression, resulting in greater
compression efficiency; second, there is no need to recon-
struct the original signal resulting in greater computational
efficiency.

Early approaches [5] to split-computing explored the
use of simple lossless and lossy compression techniques
to compress the intermediate features. While lossless
techniques resulted in only mild reduction in bandwidth,
naively quantizing the intermediate features during infer-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2022



ence to reduce bitrate leads to a drop in the task perfor-
mance. Inspired by the impressive results of ML-based
image compression approaches [2, 3, 26], subsequent ap-
proaches [7,23,25] include the quantization operation in the
end-to-end training of the model. These approaches yield
significantly better rate-distortion performance (task accu-
racy vs compression level) than that obtained by traditional
image compression methods such as JPEG and the more re-
cent HEIC.

These approaches suffer, however, from a couple of ma-
jor limitations in practical, real-world scenarios. First, the
parameters of the trained DNN model are valid only for
a particular split-point, and for a particular compression
level. Changing either the split point or the compression
level (as is needed for variable bit-rate communication) re-
quires, therefore, a complete retraining of the entire model.
Such multiple retrainings increase training complexity sig-
nificantly. Inference also becomes highly inefficient since
entire sets of DNN parameters (which can run into tens of
millions) have to be reloaded each time the compression
level needs to be changed. A second limitation is the need
for large volumes of labeled training data. Such data may
often not be available in real-world situations; and gathering
and annotating data might be expensive and impractical.

To address the first challenge, a recent approach [10]
outlined a systematic procedure to both design and train
the bottleneck layers introduced at various split points and
for various compression levels. Crucially, the parameters
of the original DNN were left untouched. However, the
method used a sub-optimal formulation to estimate the rate
of the transmitted data at the bottleneck; further, it did not
tackle the unsupervised scenario. Despite these simplifi-
cations, the method did achieve state-of-the-art results. To
handle unsupervised training, another method [20] explored
the use of distillation-based approaches. However, that too
involved training all or part of the network, in particular the
front-end of the network (also called its head). Hence, it
has the same limitations as other methods when deployed
in dynamic, variable-bit rate usages.

Contributions: We present in this work1, an approach to
split DNN computing for image analytics that addresses the
challenges outlined above. We make use of bottleneck lay-
ers and similar to [10], we train the weights of the bot-
tleneck layer only. We propose an improved modeling of
the rate-loss via a neural rate-estimator using methods of
variational inference and show that this results in large re-
ductions in bit-rate without sacrificing task accuracy. Fur-
ther, we present a distillation-based approach to enable un-
supervised training of the bottleneck layers. We observe
that while lack of a supervisory signal does result in a drop

1Code at https://github.com/intellabs/spic

Figure 1. Variational model [3]: x is a vector to be compressed;
y is its latent representation derived from an analysis network with
parameters ϕg . θg are the parameters of a synthesis network that
recovers x from y. z are hyper-latents introduced to capture de-
pendencies in y; ϕh and θh are the corresponding analysis and
synthesis networks relating y and z.

in the rate-distortion performance, our method still outper-
forms most other published methods that used supervised
training.

2. Background
In this section we present background on two topics cen-

tral to our approach: (i) connection between rate-distortion
optimization for compression and training an equivalent
VAE, and (ii) designing and training bottleneck layers for
variable-rate, split-DNN computing.

2.1. Variational Image Compression

Several works have explored the connection between the
rate-distortion objective of lossy compression and the loss
function of variational autoencoders (VAE) [2,3,22,28]. We
follow the expositions of [3,28] below. A convolutional en-
coder network ga(x;ϕg) transforms the image vector x into
a continuous latent representation y. This is then quantized
to a discrete variable ŷ which is then entropy-coded and
transmitted. The decoder recovers ŷ, and obtains a lossy
image reconstruction via a deconvolutional neural network
gs(ŷ; θg). θg and ϕg are the weights of the corresponding
DNNs.

To cast this formally as a VAE, the problem needs to be
relaxed because of the quantization involved which is a non-
differentiable operation. This can be achieved by either re-
placing quantization by additive noise [2], using a stochastic
form of binarization [26], or using a smooth approximation
of the gradient [25]. The relaxed optimization problem can
then be represented as a variational autoencoder: a proba-
bilistic generative model (“generating” a reconstructed im-
age from the latent representation) of the image combined

2023



(a) Training mode: Architecture of the hyperprior-network used at the output of the bottle-
neck module for estimation of the rate-loss term Lr

(b) Inference mode: Hyperprior network is
not used during inference, only bottleneck
module is present.

Figure 2. Pipeline in training and in inference mode. Note that the hyperprior network is present only during training.

with an approximate inference model (“inferring” the latent
representation from the source image) as shown in Fig. 1

In order to capture the dependencies that were observed
to exist between elements of ŷ, an additional set of random
variables, z, called ‘hyperlatents’ were introduced [3]. The
hyperprior p(y|z) was modeled as Gaussian and the scale
of this (σ) was the output of a second DNN hs with weights
θh. The inference model was accordingly extended through
a DNN ha with weights ϕh such that z = ha(y;ϕh).

The relaxed rate-distortion objective is then given by:

L = E
[
− log2 p(z)− log2 p(y|z) + λ ∥x− gs(y)∥2

]
= R+ λD

(1)

where the rate, R, is the sum first two terms which are the
rates of the hyper-latents and latents respectively, and the
final term is the distortion, D.

In section 3.1, we will apply these principles to the inter-
mediate feature at the split point in order to obtain a neural
rate-estimator for the output of the bottleneck encoder.

2.2. Design and Training of Bottleneck Units

We follow the approach of Datta et al. [10] for the de-
sign and training of bottleneck units. The procedure is
briefly outlined next. Inspired by methods in neural ar-
chitecture search (NAS), the procedure involves exploring
a joint space of architectural hyper-parameters and train-
ing hyper-parameters. The architectural space comprises
parameters related to the design or topology of the bottle-
neck encoder. In [10], this space comprised two hyper-
parameters: the number of channels at the output of the bot-
tleneck encoder and the stride of the convolutional kernels

used therein. More broadly, though, this could encompass
various other architectural parameters of interest such as
number of layers in the bottleneck encoder, topology of the
layers (convolutional, linear, residual, etc.), etc. The train-
ing hyper-parameter space comprises variables such as the
weight (Lagrange multipliers) λ in the training loss func-
tion (see Eq. (2)), and the quantization step size, Q, used
to discretize the latent space. A sample is generated from
this joint space which fixes the topology of the bottleneck
unit and the hyper-parameters to be used for its training.
A training run is then performed to train the weights of this
bottleneck unit (importantly, without modifying the weights
of the original network). The accuracy of the pipeline with
the trained bottleneck is measured on the task of interest
along with the average bit-rate required to transmit the com-
pressed features. This results in a candidate bottleneck layer
that yields a certain accuracy and bit-rate. This process is
then repeated multiple times – each time with a different
sample from the joint hyper-parameter space – to generate
sufficient number of such candidates. From this set, Pareto
optimal set of points are determined. The points lying on
the Pareto frontier correspond to the set of trained bottle-
neck layers that yield the optimal accuracy vs compression
performance.

3. Approach

We consider a split DNN architecture, where the inter-
mediate features from the final layer at the front-end are
compressed and transmitted to the back-end. A specially
designed bottleneck unit is introduced at the split point.
The bottleneck encoder, which resides at the client, trans-
forms the output of the front-end into a lower-dimensional

2024



Figure 3. Unsupervised training of bottlenecks using a teacher-
student model.

space more suited for compression. The outputs of this en-
coder are discretized (quantized) by a uniform quantizer of
step-size Q, entropy-coded, and transmitted to the server or
cloud where the back-end resides. Here, following entropy
decoding and inverse quantization, the bottleneck decoder
– which is a mirror of the bottleneck encoder – restores
the lower-dimensional features into the original higher di-
mensional space and the rest of the inference is completed.
Our objective is to design and train the bottleneck layers
to jointly optimize for task-performance and compression.
For this we follow the procedure outlined in section 2.2. We
first define a joint space of architectural and training hyper-
parameters, and an appropriate training loss function. These
are described next.

Architectural hyper-parameters: The bottleneck en-
coder transforms the front-end output from an H ×W ×C
dimensional latent space (height × width × channels) into
Hr × Wr × Cr dimensional space. The output height and
width can be related to the input by a single scale factor of
S, i.e. Hr = H/S, Wr = W/S. Choosing S > 1 and
Cr < C leads to a lower-dimensional output. We model
the bottleneck encoder as a single neural network layer to
keep its computational complexity low (since the decoder
is a mirror image of the encoder, the decoder is also sin-
gle layer). We experimented with various topologies for
the bottleneck layers and eventually selected a depthwise-
separable topology as this has the fewest parameters and
the lowest computational complexity [15]. Details are pre-
sented in Section 5.3.

Training loss and training hyper-parameters: The
model is trained with a loss function of the form:

L = Lr + λLt, (2)

where, Lt is a task-loss to maximize task performance, Lr

is a rate-loss term to minimize bit-rate of the encoded data,
and λ is a term that controls the relative weighting of the
two terms. We note the similarity between equations (1)
and (2) and observe that Eq. (2) also represents a form of
rate-distortion objective with the distortion-term D being
replaced by an equivalent task-loss, Lt.

Figure 4. Unsupervised classification curves for different distilla-
tion layers

For Lt, the usual loss functions such as cross-entropy
loss for classification, and sum of per-pixel cross-entropy
losses for segmentation are used. Various approaches
have been explored in literature to choose an appro-
priate Lr. Since, after quantization, the feature values
are discrete-valued, the rate is the expected code length
which is lower-bounded by the entropy of the probability
distribution of the quantized alphabet [9]. Estimation
of this quantity is challenging; hence, several published
works adopt indirect approaches. These include using the
ℓ2-norm or ℓ1-norm of the compressed feature [6]; or the
ℓ1-norm of the DCT coefficients of the original image,
either directly [19], or along with spatial prediction [1].
However, these are proxies for the true rate and hence
suboptimal. Instead, we will present next an approach
based on variational inference to train the bottleneck
and learn a neural rate-estimator from the training data.
Together, λ and Q form the training hyper-parameter space.

The search procedure from section 2.2 is performed over
the 4-dimensional space of (S,Cr, λ,Q).

3.1. Variational formulation of Lr

As described earlier in section 2.1, use of variational
methods to learn an entropy model from data have primarily
been explored in the context of image compression for re-
construction. In this section, we present an approach based
on those principles to perform compression of latent repre-
sentations for image analytics instead. Consider the varia-
tional model shown in Fig. 1 where x is not the input image,
but instead the tensor output of the intermediate layer just
before the split point, and y is the latent representation at
the output of the bottleneck encoder. Hence, the transform
ga(x) in this case is simply the bottleneck encoder. y is then
quantized to ŷ which is then entropy-coded and transmitted.
The decoder recovers ŷ, and obtains a lossy reconstruction

2025



Table 1. Parameters and their ranges for search space exploration.
Here ‘S’ indicates supervised, and ‘US’ indicates unsupervised

Parameter
Range

Classification
(Resnet50)

Segmentation
(DeepLab v3)

No. of Channels Cr {32, 64, 96, 128} {2, 4, 8, 16,
32, 48, 64}

Stride S {2, 4, 6}

Quant. parameter Q [0.5, 10.0] [0.5,6.0]

L, where λ = 10L
[-9,-6] (S)

[-11, -7] (US)
[-4,-1] (S)

[-16,-6] (US)

of the original tensor x via the bottleneck decoder gs(ŷ).
Similar to [3], we extend this model by adding hyperlatent,
z, with a corresponding hyperprior encoder (inference) and
hyperprior decoder (generative). From Eq. 1 the rate is
measured by

R = E [− log2 p(z)− log2 p(y|z)] (3)

We use the above estimate of rate as the rate-loss term in Eq.
(2). The architecture of the hyperprior encoder, as shown in
Fig. 2, comprises two convolutional layers with ReLu acti-
vations (details in supplementary material). The hyperprior
decoder is the mirror of the encoder using transpose convo-
lutions.

These hyperprior models help improve the rate estima-
tion as will be evident from results later. However, a sepa-
rate set of hyperprior encoder and decoder has to be trained
for each separate compression level. Including them in the
overall pipeline would lead to the same limitations of other
methods that were outlined in Section 1, viz. having to
reload a large set of network weights everytime the bit-rate
is to be changed. To circumvent this, we include the hy-
perprior models only to provide an estimate for the rate-
loss term during training; during inference, only the bottle-
neck layers are included, not the hyperprior models. This
increases training complexity somewhat compared to train-
ing only the bottleneck layers (as was done in [10]), but no
overhead is introduced during inference. Thus, we retain
the benefits of being able to efficiently support variable bit-
rate operation and adaptive splitting.

4. Unsupervised Training of Bottleneck Units
Access to labeled training data is often challenging in

real-world situations. We present, therefore, a method to
train the bottleneck units in an unsupervised manner when
we have access to only unlabeled training data. We adopt
the student-teacher paradigm from literature on knowledge-
distillation (KD) [27]. In the KD framework, knowledge-

Table 2. Split points within the models.

Resnet50 DeepLab v3

Split 1 layer4[2] Classifier[0].conv[1]
Split 2 layer4[0] Resnet50.layer4[1]
Split 3 layer3[4] Resnet50.layer3[5]

transfer from the teacher to student can be achieved by us-
ing either the logits or feature information from the teacher.
In our scenario, the teacher network is simply the original
task network without any split points or bottleneck units.
Instead of using a supervisory task-loss, Lt, we instead use
a distillation-loss , Ld, obtained by matching features from
the same layer in both teacher and student networks that is
downstream from the split point, as shown in Fig. 3. Ld is
simply the mean-absolute error (MAE) or mean-square er-
ror (MSE) between such features. There remains the ques-
tion of which downstream layer to choose for such feature
matching. Recent work [13] explores the effects of such
layer choice and has proved, by means of the data process-
ing inequality, that matching features from deeper layers is
preferable in the sense of rate-distortion. We verify this re-
sult empirically while training bottleneck units for a classi-
fication task. Fig. 4 shows plots of accuracy vs compres-
sion level (measured in bits-per-pixel or BPP) obtained by
matching features from different layers. In the figure, the
fully-connected layer is the final layer, preceded by the avg-
pool layer, preceded respectively by layer 4.2, layer 4.1, and
layer 4.0. We see a clear trend of the curves improving as
downstream layers are selected. For our experiments, there-
fore, we choose the final layer of the network for feature
matching.

5. Experiments and Results
We have tested our approach on two analytic tasks: im-

age classification and semantic segmentation2. For the clas-
sification task, we test on the ImageNet dataset [11] using
a Resnet50 [14] model. For segmentation, we test on the
the MS-COCO 2017 dataset [18], and use a DeepLab v3
model [4]. For both tasks, we tested our approach at three
different split points listed in Table 2 along their respective
DNN models. The images are scaled to 224×224 resolution
for the classification task, and 513× 513 for the segmenta-
tion. Details about the training parameters (learning rates,
schedulers, etc.) are provided in the supplementary mate-
rial for the interested reader. For a given split point, we fol-
low the hyper-parameter search-space procedure outlined in
section 2.2 to train the bottleneck units for various compres-
sion levels and derive the Pareto optimal curve of the task-
accuracy metric against the compression level. The hyper-

2Code to reproduce our results in https://github.com/
intellabs/spic

2026



Figure 5. Accuracy vs BPP on Imagenet classification using
Resnet50. Our method achieves significantly lower bit-rates com-
pared to other methods at similar accuracy levels for all splits.

Figure 6. Improvement on ImageNet classification by using neural
compression for three different split point. S indicates result with
neural compression and S’ are the results without.

parameters involved in our search are (S,Cr, λ,Q) as de-
scribed in Section 3. The ranges of values used for these are
described in Table 1. In the table, ‘S’ indicates ranges used
for supervised training, and ‘US’ indicates ranges for un-
supervised training. For classification, the metric is simply
the classification accuracy; for segmentation, it is the Jac-
card index as measured by the mean intersection-over-union
(mIOU). The compression level is represented by bits-per-
pixel (bpp), which, as the name indicates is the number of
bits of information that needs to be transmitted divided by
the number of pixels in the input image.

We first report results with neural compression when the
bottleneck layers are trained with a supervised task-loss
term, and next report results when an unsupervised distil-
lation loss is used.

5.1. Supervised Neural Compression

We benchmark our method against standard image com-
pression algorithms - JPEG and HEIC (high-efficiency im-
age compression) - and also against some of the recent ML-

Figure 7. mIOU vs BPP on COCO2017 segmentation using
Deeplab v3. Our method achieves significantly lower bit-rates
compared to other methods at similar mIOU levels for all splits
(S1 to S3), and also slightly higher peak mIOU (∼ 1% higher).

Figure 8. Improvement on COCO2017 segmentation by using
neural compression for three different split point. S indicates re-
sult with neural compression and S’ are the results without.

based image compression methods which include the En-
tropic Student [21], variational image compression [3], and
the variable bit-rate split-DNN method from [10]. For both
tasks, we test our approach at three different split points
within their respective models, details of which are included
in the supplementary material. First, we show the bene-
fit of using a neural rate-estimator (our approach) as op-
posed to the ℓ1-norm of the latent representations (as was
done in [10]). The results are shown in Figs. 6 and 8 for
both classification and segmentation tasks. The neural rate-
estimator outperforms the ℓ1-norm rate estimator across the
entire curve for all split points. Importantly, it also achieves
higher peak accuracy in the classification task. In the seg-
mentation task, not only does it achieve higher peak mIOU
than [10], but surprisingly, it also outperforms the the orig-
inal pretrained Deeplab-v3 model that does not have split
points or any compression.

We also compare results against the other four baselines

2027



Figure 9. Accuracy-BPP curve using supervised (S) loss and un-
supervised (US) loss.

Figure 10. Accuracy-BPP curves similar to Fig. 5, but using un-
superivsed (US) training for our method.

mentioned earlier. The results are shown in Figs. 5 and 7.
Here, we see that our method outperforms these baselines
by large margins at all split points. For a given task accuracy
level, the bit-rate of our method is often orders of magnitude
lower.

5.2. Unsupervised Neural Compression

Next, we present results when the bottleneck layers are
trained in an unsupervised manner by distillation techniques
as described in Section 4. As explained, we use the the most
downstream layer, i.e. the last layer in the model for per-
forming feature matching. We tested both MAE and MSE
to perform feature matching between the teacher and stu-
dent network and found no difference in performance. The
following results were generated using MAE loss for distil-
lation. We test our approach at two different split points, de-
tails of which are again included in the supplementary ma-
terial. We first observe the impact of using an unsupervised
loss. The results, as shown in Figures 9 and 11, show a drop
in performance relative to the supervised method. Clearly,
the lack of a supervisory signal appears to have an adverse
impact on the outcome. Despite this, our method with unsu-

Figure 11. mIOU-BPP curve using supervised (S) loss and unsu-
pervised (US) loss.

Figure 12. mIOU-BPP curves similar to Fig. 7, but using unsu-
perivsed (US) training for our method.

Table 3. Complexity and task-performance of various bottleneck
topologies.

Bottleneck Topology Classification

Accuracy BPP # Params

One conv layer 73.37 0.068 4.72M
Two conv layers 72.79 0.069 5.58M

One depthwise sep conv layer 74.91 0.069 0.57M
Two depthwise sep conv layer 74.58 0.068 0.58M

pervised training still outperforms the other state-of-the-art
methods, as is evident from Figs. 10 and 12. The bit-rates
achieved are significantly lower than those of other methods
for the same task-performance (accuracy or mIOU). There
is, however, a drop in the peak accuracy

5.3. Complexity

Introduction of the bottleneck unit into the split-DNN
pipeline increases the total compute involved. We wish to
keep the overhead incurred by the bottleneck units low com-
pared to the overall compute. Hence, we considered several

2028



Table 4. Computational overhead of bottleneck layers.

Network
params

Bottleneck
params

Overhead

Resnet50 (cls) 25.55M 0.57M 0.02%
Deeplab-v3 (seg) 42.01M 0.34M 0.008 %

different topologies of varying computational complexities
for the bottleneck encoder (recall that the bottleneck de-
coder is a mirror image of the encoder). These included:
(a) a single convolutional layer (b) A single depthwise-
separable convolutional layer (c) A two-layer network com-
prising two convolutional layers, and (d) A two-layer net-
work comprising two depthwise-separable convolutional
layers. Table 3 shows the best accuracy attained by different
bottleneck encoder topologies (all reducing the tensor at the
split point to the same-shaped reduced-dimension tensor)
along with the corresponding bitrates. The results presented
here are for Split 1 of the classification model; additional
results for segmentation along with details about topologies
chosen are included in the supplementary material. We ob-
serve that the task performance does not vary significantly
between various bottleneck topologies despite significant
differences in their computational capabilities. Somewhat
surprisingly, though, the best performance was obtained by
a single depthwise-separable convolutional layer, which has
by far the lowest computational complexity among the var-
ious options considered. Hence, we opted for that topology
as it simultaneously provided both the lowest complexity
and the best performance. Table 4 shows the complexity
of the bottleneck unit introduced relative to the complexity
of the original DNN. We see that the overhead is virtually
negligible attesting to the efficiency of our approach.

6. Conclusions and Future Work

We presented in this work an approach to enhance the
performance of split-computing models for image analytics.
We showed how improved modeling of the rate-function via
a neural rate-estimator improves the rate-distortion perfor-
mance. We further showed our framework can easily be
extended for unsupervised training of the bottleneck lay-
ers by replacing a supervisory loss by a distillation-based
loss. This capability can potentially be particularly use-
ful in scenarios where models pretrained on standard image
datasets are to be deployed in scenarios involving different
application-specific custom data. Hence, training of bottle-
necks inserted in pretrained models with different unlabeled
datasets is something we will be exploring as future work.

References
[1] Saeed Ranjbar Alvar and Ivan V Bajić. Multi-task learning

with compressible features for collaborative intelligence. In
2019 IEEE International Conference on Image Processing
(ICIP), pages 1705–1709. IEEE, 2019. 4

[2] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-
to-end optimized image compression. In International Con-
ference on Learning Representations (ICLR), 2017. 2

[3] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compres-
sion with a scale hyperprior. In International Conference
on Learning Representations, 2018. 2, 3, 5, 6

[4] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 5

[5] Zhuo Chen, Kui Fan, Shiqi Wang, Lingyu Duan, Weisi Lin,
and Alex Chichung Kot. Toward intelligent sensing: Inter-
mediate deep feature compression. IEEE Transactions on
Image Processing, 29:2230–2243, 2019. 1

[6] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro
Katto. Deep convolutional autoencoder-based lossy image
compression. In 2018 Picture Coding Symposium (PCS),
pages 253–257. IEEE, 2018. 4

[7] Hyomin Choi and Ivan V Bajić. Deep feature compression
for collaborative object detection. In 2018 25th IEEE In-
ternational Conference on Image Processing (ICIP), pages
3743–3747. IEEE, 2018. 2

[8] Robert A Cohen, Hyomin Choi, and Ivan V Bajić.
Lightweight compression of neural network feature tensors
for collaborative intelligence. In 2020 IEEE International
Conference on Multimedia and Expo (ICME), pages 1–6.
IEEE, 2020. 1

[9] Thomas M Cover. Elements of information theory. John
Wiley & Sons, 1999. 4

[10] Parual Datta, Nilesh Ahuja, V Srinivasa Somayazulu, and
Omesh Tickoo. A low-complexity approach to rate-
distortion optimized variable bit-rate compression for split
dnn computing. In 2022 International Conference on Pat-
tern Recognition (ICPR), 2022. 2, 3, 5, 6

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009. 5

[12] Amir Erfan Eshratifar, Amirhossein Esmaili, and Massoud
Pedram. Bottlenet: A deep learning architecture for intelli-
gent mobile cloud computing services. In 2019 IEEE/ACM
International Symposium on Low Power Electronics and De-
sign (ISLPED), pages 1–6. IEEE, 2019. 1

[13] Alon Harell, Anderson De Andrade, and Ivan V Bajic. Rate-
distortion in image coding for machines. In 2022 Picture
Coding Symposium (PCS). IEEE, 2022. 5

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

2029



dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 4

[16] Ravi Iyer and Emre Ozer. Visual iot: Architectural chal-
lenges and opportunities; toward a self-learning and energy-
neutral iot. IEEE Micro, 36(6):45–49, 2016. 1

[17] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovin-
ski, Trevor Mudge, Jason Mars, and Lingjia Tang. Neuro-
surgeon: Collaborative intelligence between the cloud and
mobile edge. ACM SIGARCH Computer Architecture News,
45(1):615–629, 2017. 1

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 5

[19] Dong Liu, Haichuan Ma, Zhiwei Xiong, and Feng Wu. Cnn-
based dct-like transform for image compression. In Inter-
national Conference on Multimedia Modeling, pages 61–72.
Springer, 2018. 4

[20] Yoshitomo Matsubara, Davide Callegaro, Sabur Baidya,
Marco Levorato, and Sameer Singh. Head network
distillation: Splitting distilled deep neural networks for
resource-constrained edge computing systems. IEEE Access,
8:212177–212193, 2020. 2

[21] Yoshitomo Matsubara and Marco Levorato. Neural compres-
sion and filtering for edge-assisted real-time object detection
in challenged networks. In 2020 25th International Con-
ference on Pattern Recognition (ICPR), pages 2272–2279.
IEEE, 2021. 1, 6

[22] David Minnen, Johannes Ballé, and George D Toderici.
Joint autoregressive and hierarchical priors for learned im-
age compression. Advances in neural information processing
systems, 31, 2018. 2

[23] Neel Patwa, Nilesh Ahuja, Srinivasa Somayazulu, Omesh
Tickoo, Srenivas Varadarajan, and Shashidhar Koolagudi.
Semantic-preserving image compression. In 2020 IEEE In-
ternational Conference on Image Processing (ICIP), pages
1281–1285. IEEE, 2020. 2

[24] Jiawei Shao and Jun Zhang. Bottlenet++: An end-to-end ap-
proach for feature compression in device-edge co-inference
systems. In 2020 IEEE International Conference on Com-
munications Workshops (ICC Workshops), pages 1–6. IEEE,
2020. 1

[25] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc
Huszár. Lossy image compression with compressive autoen-
coders. In International Conference on Learning Represen-
tations (ICLR), 2017. 2

[26] George Toderici, Sean M O’Malley, Sung Jin Hwang,
Damien Vincent, David Minnen, Shumeet Baluja, Michele
Covell, and Rahul Sukthankar. Variable rate image compres-
sion with recurrent neural networks. In International Con-
ference on Learning Representations (ICLR), 2016. 2

[27] Lin Wang and Kuk-Jin Yoon. Knowledge distillation and
student-teacher learning for visual intelligence: A review
and new outlooks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021. 5

[28] Yibo Yang, Robert Bamler, and Stephan Mandt. Improving
inference for neural image compression. Advances in Neural
Information Processing Systems, 33:573–584, 2020. 2

2030


