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Abstract

Human-centric visual tasks have attracted increasing
research attention due to their widespread applications. In
this paper, we aim to learn a general human representation
from massive unlabeled human images which can benefit
downstream human-centric tasks to the maximum extent.
We call this method SOLIDER, a Semantic cOntrollable
seLf-supervIseD lEaRning framework. Unlike the existing
self-supervised learning methods, prior knowledge from
human images is utilized in SOLIDER to build pseudo
semantic labels and import more semantic information
into the learned representation. Meanwhile, we note that
different downstream tasks always require different ratios
of semantic information and appearance information. For
example, human parsing requires more semantic informa-
tion, while person re-identification needs more appearance
information for identification purpose. So a single learned
representation cannot fit for all requirements. To solve
this problem, SOLIDER introduces a conditional network
with a semantic controller. After the model is trained,
users can send values to the controller to produce rep-
resentations with different ratios of semantic information,
which can fit different needs of downstream tasks. Finally,
SOLIDER is verified on six downstream human-centric
visual tasks. It outperforms state of the arts and builds
new baselines for these tasks. The code is released in
https://github.com/tinyvision/SOLIDER.

1. Introduction
Human-centric visual analysis plays an important role

in widespread applications, such as surveillance, sports,
augmented reality, and video production. Person re-
identification [13, 14, 41, 82], attribute recognition [72, 78],
person search [76, 92], pedestrian detection [3, 24, 32],
human parsing [27, 53], and pose estimation [58, 90]
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Figure 1. A representation space learned by DINO [6]. Seven
human images are represented in seven different colors. Each
image is split into four parts according to their semantic regions,
i.e., upper body (as ▲), lower body (as +), shoes (as ⋆) and
background (as ×, not visualized to avoid distraction). It can be
seen that different parts of a same person are closer to each other
even they share different semantic meanings.

have achieved considerable progress in recent years.
In another aspect, there are massive human images
available in the current computer vision community. For
example, even an unlabeled person re-identification dataset,
LUPerson [25, 26] (#Img≈4.18M) is 4 time larger than the
ImageNet dataset (#Img≈1M). How to use unlabeled data
to build a human representation is challenging, especially
when it needs to benefit various downstream tasks.

Self-supervised learning has achieved great develop-
ments by using unlabeled data to learn representations.
Many pretext tasks have been designed, such as contrastive
learning [6, 10, 35] and masking image modeling [2, 34, 77,
95]. Although these methods have achieved great success
in learning general image representations, there is a lack of
specific design targeting human-centric tasks.

Some researchers [55, 81, 97] focus to extend self-
supervised learning methods on human-centric visual tasks.
They use DINO [6] with LUPerson [25,26] dataset to build
pre-trained models for person re-identification task. When
applying the pre-trained models to other human-centric

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

15050



tasks, such as human parsing and pedestrian detection,
we usually get sub-optimal results. It is due to the lack
of semantic information in their learned representations.
As shown in Fig. 1, in the representation space learned by
DINO [6]1, different parts of a same person are gathered
together due to their appearance continuity, no matter what
semantic meanings they have.

As we’ve known, semantic information is as important as
appearance information for human-centric visual tasks [40,
50, 96]. Therefore, we tend to train the representation with
more semantic information to extend the representation to
different downstream human-centric visual tasks. In this
paper, a Semantic cOntrollable seLf-supervIseD lEaRning
framework (SOLIDER) is proposed. In SOLIDER, we
take advantage of prior knowledge from human images to
discover semantic information, which can produce pseudo
semantic labels for every token. And a token-level semantic
classification pretext task is imported and supervised by
these pseudo labels. With the new pretext task, we can train
representation with stronger semantic information.

During the usage of our trained representation on down-
stream tasks, we find that even though semantic information
and appearance information are both important, different
downstream tasks require different ratios of them. Adjust-
ing their ratio in the representation would lead to a better
performance in downstream tasks. However, as long as the
pretext task is trained, the representation can not be changed
in current self-supervised learning methods. Different from
previous methods, we design SOLIDER as a conditional
network involving a semantic controller. The controller
takes a value as input and produces a latent representation.
In the usage of the pre-trained model from SOLIDER, we
send a value (indicting the ratio of semantic information in
the representation) to the controller which can adjust the
model and output a representation with the required ratio.

In summary, our paper makes four contributions:
1) A general human representation is learned in this

paper, which is used as a better pre-trained model benefiting
to downstream human-centric visual tasks.

2) A semantic controllable self-supervised learning
framework (SOLIDER) is proposed. It takes advantages of
prior knowledge in human images to produce pseudo
semantic labels, and utilize it to train the human
representation with more semantic information.

3) A semantic controller is designed in SOLIDER. With
the controller, the pre-trained model can generate represen-
tations with various degrees of semantic information that
can meet different needs of downstream tasks.

4) The effectiveness of the SOLIDER representation is
verified on six downstream human-centric tasks. We believe
this paper can promote the development of these human-
centric tasks in computer vision community.

1MAE [34] shares a similar phenomenon as DINO [6].

2. Related Work
2.1. Self-supervised learning approaches

Self-supervised learning approaches have attracted sig-
nificant interests in computer vision, especially when used
for learning image representation as the pretext task.

In current self-supervised learning, contrastive meth-
ods [5,6,10,15,35,95] have achieved great success, and pro-
vided state-of-the-art performance for image representation.
The goal of contrastive learning is to minimize the distances
between two augmented views of a same image [5, 10],
and distinguish each image from all the others [6, 15, 35].
MoCo [15, 35] improves the training of contrastive meth-
ods by storing representations from a momentum encoder
instead of the trained network. SimCLR [10] shows that the
memory bank can be entirely replaced with the elements
from the same batch if the batch is large enough. DINO [6]
combines most of these techniques, including momentum
encoder [35], multi-crop training [5], and the use of small
patches with ViTs [22], which builds a much better baseline.

Besides contrastive methods, masked image modeling
methods [2, 34, 77] arouse extensive attention from re-
searchers. BEiT [2] proposes to predict discrete tokens.
SimMIM [77] and MAE [34] find that a moderately large
masked size and a light prediction head would be beneficial
for the masked image modeling. Although masked lan-
guage modeling manages to import semantic information
into image representations, it can not explicitly figure out
the semantic information from the image to supervise the
training. In the proposed SOLIDER, we cluster tokens and
use human prior to assign semantic labels to these tokens,
which can train a stronger human semantic representation.

It is worth noting that DeepCluster [4] also use cluster
to learn representations. But it is on image-level and can
not produce semantic labels for tokens. Some unsupervised
semantic segmentation methods [18] extend DeepCluster
on pixel-level. But it still faces problems and can not learn
a satisfied representation, which is explained in Section. 3.1

2.2. Human-centric visual tasks

By looking through human-centric visual tasks in com-
puter vision, we find that there are many tasks directly or in-
directly related to human2, e.g., person re-identification [23,
28, 29, 37, 82], attribute recognition [51, 72, 78], person
search [76,92], pedestrian detection [3,24,32], multi-object
tracking [11,12,48,49,67], human parsing [27,53] and pose
estimation [58, 90].

Among them, we sort out six representative tasks,
i.e., person re-identification, attribute recognition, person
search, pedestrian detection, human parsing and pose

2In this paper, we focus on feature representations for images,
therefore, only downstream tasks on 2D image-level are our main
concerns, and tasks about 3D data or sequential data are out of our scope.
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Figure 2. The pipeline of the proposed SOLIDER.

estimation. Person re-identification [8, 39, 59, 69, 89] aims
at retrieving a person of interest across multiple non-
overlapping cameras. Attribute recognition [20, 42, 51, 72]
tries to mine the attributes of target people when given
person images, of which the attributes are understandable
semantic descriptions. Person search [76, 92] aims to find
a probe person from the whole scene which shows great
significance in video surveillance community to track
lost people. Pedestrian detection [21, 24, 32, 86] focuses
on detecting people in general images, which is a key
ability for a variety of important applications. Human
parsing [27, 43, 53], a sub-task of semantic segmentation,
aims to understand human-body parts on pixel level.
Human pose estimation [1, 58, 83] dedicates to locate the
human body skeletons from images.

Recently, Wang et al. [84] also focus on human-centric
visual tasks and design a Token Clustering Transformer
(TCFormer), but TCFormer is a supervised method which
can not take advantages of massive public unlabeled data.

3. The SOLIDER
The whole pipeline of the proposed SOLIDER is shown

in Fig. 2. In this section, we first explain how to generate
pseudo semantic labels from human prior knowledge and
use it to supervise a token-level semantic classification
pretext task. Then, we introduce how the learned represen-
tation can be controlled in SOLIDER.

3.1. Semantic Supervision from Human Prior

DINO [6] is a state-of-the-art self-supervised learning
method, which is widely used for image representation. As
a constrastive learning based method, the visual appearance
information is well learned in DINO’s representation. We
use DINO as our baseline and plan to involve more semantic
information into its representation.

We cluster the token vectors from the learned DINO
representation and show in Fig. 3(b). It can be seen that the
representation is split into several parts based on its visual
appearance. In other words, it can find things in images,

although be not able to tell their meanings.
Some methods [4, 18] go further and try to assign

semantic labels for these clustered things. Instead of cluster
on single image, they do the clustering across images
and aim to build the semantic relationship among images.
However, as the features used for clustering are trained from
visual appearance clue, the clustered results are dominated
by appearance. As shown in Fig. 1, in original DINO space,
the features of “blue short” (+) is closer to “blue shirt”
(▲) due to similar appearance, but farther to “black short”
(+), even though they share the same semantic meaning of
“short pants”. After clustering, the blue things (“blue short”
and “blue shirt”) will be clustered together, and the things
with the same semantic meaning (“blue short” and “black
short”) are split apart. In other words, these methods can
not produce the semantic labels we wanted.

After scanning through the unlabeled human images,
we find that most of images have a fixed pattern [64, 96]:
the person body erectly occupies the entire image, and the
head is always on the top of the image while the feet is at
the bottom of the image. With this observation, we give
semantic labels to clustered parts of all images based on
the order of their y-axis coordinates, i.e., the top part of
all images are labeled as upper body, and the bottom part
is marked as shoes. These pseudo semantic labels provide
semantic information for every token vector. A token-
level semantic classification pretext task is imported and
supervised by these semantic labels. To better use these
labels, we involve extra modifications, listed as following.

Involving Background&Foreground Clustering. In
these labels, we find that there are some background frag-
ments which cause noise disturbance on the clustering re-
sults and mislead the alignment. To handle this problem, we
introduce another clustering before the semantic clustering.
Specifically, we observe that the background tokens always
have smaller responses compared to foreground tokens
during training [57, 96], as shown in Fig. 3(c). Thus, we
cluster the token vectors into two categories based on their
vector magnitudes, i.e., foreground and background. The
results are shown in Fig. 3(d). Then the semantic clustering
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(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

Figure 3. (a) The original images. (b) Initial semantic clustering
results. (c) Attention maps. (d) Foreground clustering results. (e)
Final semantic clustering results.

is only performed on the foreground tokens, and the new
results are listed in Fig. 3(e). It can be clearly seen that
the foreground tokens are well clustered into three semantic
parts, i.e., upper body, lower body, shoes3.

Involving Masked Image Modeling. Inspired by the
masked image modeling methods [34, 77], we would like
to further introduce more semantic information into the
representation. As we have known, people can easily locate
every semantic part in a human image even when some
parts are occluded. Therefore, we assume that if a semantic
part is missing or occluded in the human image, the model
would still be able to predict its semantic meaning based
on other surrounding parts. For this purpose, we upgrade
our semantic supervision into masked semantic supervision.
Specifically, we randomly mask out a semantic part from
the image x and re-feed this masked image x̃ through the
framework. Then the output tokens are supervised by the
original semantic labels, because it is expected that the
model would be able to provide the true semantic labels for
the masked tokens with the help of other tokens.

The whole semantic self-supervision is presented in
Fig. 2. Specifically, during training, for every iteration, we
obtain the output feature maps F from backbone with the
size of (n, c, h, w). For each image x, we consider its fea-
ture maps4 Ft as w∗h token vectors with the size of c. Then
we use K-means [31] to cluster them into two categories
according to the magnitude (i.e., l2 normalization) of c, and
consider the category with larger magnitude as foreground
mask M . After that, another K-means is applied on the
tokens in foreground mask M to conduct the semantic
clustering, to obtain N predefined semantic categories and
assign semantic label y for each token. Meanwhile, a
semantic head5 is involved to classify the vectors Fs from
the student branch based on these semantic labels y. The
corresponding semantic classification loss is as below:

3In this paper, we treat heads/chests/arms as upper body, waist/thighs
as lower body and calves/feet as shoes.

4The feature maps Ft from the teacher network is chosen for semantic
clustering. The feature maps from the student network is marked as Fs.

5The semantic head contains several blocks, and each block includes a
fully connected layer, a batch norm layer and a ReLU.

Lsm =
1

w × h

∑
u∈w
v∈h

N+1∑
i=1

−y(u,v) log
fs(u, v)

(i)∑N+1
k=1 fs(u, v)(k)

(1)
where fs = hsm(flatten(Fs)). flatten() is used to
reshape Fs from (n, c, h, w) to (n ∗h ∗w, c), and hsm is the
semantic head. N means the number of clustered semantic
parts. fs(u, v)

(i) indicates the predicted probability of
token (u, v) on part i. After image x, we randomly mask
out a part of x to obtain image x̃, and send x̃ to Eq. 1 too.

The total loss for the whole SOLIDER framework is:

L = αLdino + (1− α)Lsm (2)

where α is a balance weight and set to 0.5 by experience.

3.2. Semantic Controller

When the learned representation is used as the pre-
trained model for downstream tasks, we expect the ap-
pearance and semantic information learned in the rep-
resentation can help downstream tasks. However, each
downstream task has its own focus. For example, in person
re-identification [41,82], although the semantic information
can help to align parts across person images [62,88], the ap-
pearance information is the key clue to distinguish different
people, which is the most important information [80,94]. So
a pre-trained model with more appearance information and
less semantic information would provide a better startup for
person re-identification task. On the contrary, in pedestrian
detection [3, 24] and human parsing [27, 43, 53], the se-
mantic information plays a key role for these tasks, while
the appearance difference is useless and should be partly
ignored. Its pre-trained model is expected to contain enough
semantic information.

To fit the needs of different tasks, it requires the pertained
model can be adjusted according to the downstream tasks.
However, as the pertained model is trained, it is hard
to change its parameters for different downstream tasks.
Task token [54] is a potential way to solve this problem,
which pre-sets an extra one-hot token for each task. But
it has several problems. First, the number of task tokens
should be pre-defined before learning representation. In
real applications, we can not determine what tasks the
learned representation would be utilized on in advance.
Second, although we can pre-defined task tokens from
semantic perspective (two task tokens, i.e., with and without
semantic information), the task token is a discrete variable,
which leaves the downstream tasks with limited choice
of representations. Third, the task token is essentially a
re-weighted sum of original learned tokens. It is hard
to cooperate with Swin [52] backbone, which is a more
friendly transformer backbone for visual tasks, because of
the shifted windows in Swin [52].
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In this paper, SOLIDER uses a conditional network with
a semantic controller to handle this problem. During the
pretext task training, due to the unavailability of down-
stream task, we can not adjust the representation for specific
task, so we import the semantic controller to make the
pre-trained model conditional. The inputs of the semantic
controller are the image feature maps and a continuous
value λ ∈ [0, 1]. The λ represents the required ratio
of semantic information in representation. The output is
the new feature maps with the ratio we required. The
details of the proposed semantic controller can be seen in
Fig. 2. In semantic controller the value λ is encoded into a
weight vector and a bias vector. After a Softplus activation
function, the weight vector is multiplied onto the original
feature maps, and the bias vector is added for final outputs.

We apply the semantic controller after each block of
Swin Backbone, and the feature maps F (λ) with new ratio
λ is sent to the next block. We use the following equation
to produce our semantic controllable model:

L = αLdino(F (λ)) + λ(1− α)Lsm(F (λ)) (3)

In the pretext task training stage, λ is randomly sampled
for every iteration. We tried different distributions of λ,
i.e., binomial distribution B(p = 0.5), continuous uni-
form distribution U [0, 1] and beta distribution β(0.2, 0.2).
β(0.2, 0.2) is better than U [0, 1], implying that emphasizing
the sampling on two borders is more important for training
the controller, which is consistent with the conclusions of
Mixup [85]. Finally, B(p=0.5) is found to perform the
best, a.k.a., a binary distribution from {0,1}. When the pre-
trained model is applied to downstream tasks, λ is set man-
ually to adapt the pre-trained model to each downstream
task. The pre-trained model with λ provides a better startup
for downstream fine-tuning, and all parameters of the pre-
trained model are fine-tuned.

In sum, after a conditional pre-trained model is trained
from SOLIDER, we can send different λ to the model to
produce representations with different ratios of semantic
information for downstream tasks. A training pseudo code
is provided in Supplementary Material to further clarify the
whole training process of SOLIDER.

4. Experiments
The pre-trained model from SOLIDER is verified on

six downstream human-centric visual tasks, including per-
son re-identification, attribute recognition, person search,
pedestrian detection, human parsing and pose estimation.

4.1. Training Settings

4.1.1 Datasets

For pretext tasks, LUPerson [25, 26] is used for training,
the same as [55, 97]. It contains 4.18M human images

without any label. From each downstream task, we conduct
experiments on their commonly-used datasets. Specifically,
in person re-identification, the experiments are conducted
on Market1501 [91] and MSMT17 [74]. In attribute
recognition, PETAzs [38], RAPzs [38] and PA100k [51] are
considered. In person search, we adopt CUHK-SYSU [76]
and PRW [92] in our experiments. CityPerson [86] is
utilized for pedestrian detection. In human parsing and pose
estimation, LIP [27] and COCO [47] pose estimation are
used respectively.

4.1.2 Evaluation Metric

In person re-identification and person search,
mAP/Rank1 [91] are adopted as evaluation metrics.
For attribute recognition, the evaluation metrics are mean
accuracy (mA) [38]. To evaluate the performance on
pedestrian detection, we employ the log-average Miss Rate
over false positive on Reasonable and Heavy Occluded
(MR−2 on R/HO) [32]. Human parsing uses mIoU [43]
for evaluation, and pose estimation utilizes Average
Precision/Recall (AP/AR) [83] as the evaluation metric.

4.1.3 Optimization

We use Swin-Transformer [52] as the backbone throughout
all the experiments. In the pretext task training, SGD is
used as the optimizer, and the learning rate is 0.0005. The
model is trained for 100 epochs, and the learning rate is
declined by Cosine Annealing scheduler. The batch size
is 48/32/24 when training on 8 Tesla V100 32G GPUs for
Swin-Tiny/Small/Base.

It is worth noting that, as the semantic clustering process
is time-consuming, we do not directly train SOLIDER with
100 epochs from scratch. Instead, we first train DINO
with 100 epochs, and then finetune the SOLIDER on the
trained DINO model with another 10 epochs using a smaller
learning rate 0.00005.

For downstream tasks, we reproduce a state-of-the-art
method in each task as our baseline. The methods we
used as baseline are listed in Table. 1. What we do is
just replacing their backbones to the Swin-Transformer [52]
backbone which is pre-trained by the proposed SOLIDER.

4.2. Qualitative and Quantitative Analysis

Analysis on semantic clustering. To observe the se-
mantic representation ability of our pre-trained model in
qualitative analysis, we randomly select some images from
the training data, and visualize their representation features
learned before and after SOLIDER. The visualization is
provided in Fig. 4. It can be found that, before introducing
the semantic supervision, the representation features are
distributed mainly based on the identities of the images.
And the images sharing similar appearance stay closer, even
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Figure 4. The representation space learned before and after involving SOLIDER. For each image, we split its features into four parts
according to their semantic regions, i.e., upper body (as ▲), lower body (as +), shoes (as ⋆) and background (as ×, not shown for a clearer
presentation). It can be seen that before SOLIDER is introduced, the features tend to gather by appearance. While after SOLIDER, the
features with same semantic meanings are closer to each other.

(a)

(b)

Figure 5. (a) The intra-image and intra-image distances under
different λ. (b)The performance of person re-identification and
pedestrian detection under different λ. The dash line indicates two
distances and two task results from the original DINO model.

.
with different semantic meanings. For example, the features
of “blue short” (+) is closer to “blue shirt” (▲) due to similar
appearance “color blue”, but further to “black short” (+),
even they share the same semantic meanings “short pants”.

However, after involving the semantic supervision by
SOLIDER, the feature distribution pays more attention on
the semantic meaning. We can find that the images hold
similar semantic meanings are closer to each other, even
though they share different appearance. It implies that the
human prior discovered by our SOLIDER can provide a
better semantic supervision for representation, which helps

the pre-trained model involves more semantic meanings.
Analysis on semantic controller. To further verify the

semantic controller, we provide another two experiments.
We first define two distance, i.e., intra-image distance and
inter-image distance. Intra-image distance is the average
distance between any two parts from the same image. Inter-
image distance indicates the average distance between parts
of the same semantic meaning but coming from different
images. Small intra-image distance and large inter-image
distance indicate the appearance information is dominant
in the representation, otherwise the semantic information
dominates. After the SOLIDER is trained, we set the
semantic weight λ from 0 to 1, to observe two distances
of these different representations in the whole LUP dataset.
The results are shown in Fig. 5(a). It can be seen that
with the increase of λ, the intra-image distance gets larger,
while the inter-image distance becomes smaller, which
suggests that more semantic information is involved into the
representation and become dominant.

Meanwhile, as we’ve known, person re-identification
requires more appearance information, while pedestrian de-
tection is prone to the semantic information. We list the per-
formance of two tasks using the pre-trained representations
with different λ As shown in Fig. 5(b), with the increase of
λ, the person re-identification performance becomes worse
and the pedestrian detection performance turns to better. In
other words, the representation with a large λ can provide a
better startup for pedestrian detection, while a small λ fits
more to person re-identification. This phenomenon further
implies the effectiveness of our semantic controller.

4.3. Ablation Study

The ablation study is provide to verify the effectiveness
of each module in SOLIDER, and all the experiments are
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Table 1. The performance of different pre-trained models on downstream tasks. “Sup” implies the supervised training. “+Clustering”
indicate the training with semantic supervision. “+Control” means the semantic controller is involved. For each downstream task, we list
its name, evaluation metric and the state of the art that we used as our baseline. ↑/↓ means the larger/smaller value the better performance.

Pretrain Methods Sup DINO [6] + Clustering + Clustering&Controller

Pretrain Data ImageNet LUP1M LUP1M LUP1M

Person Re-identification
mAP/Rank1 ↑

TransReID [36]

Market1501 78.1/90.2 89.6/95.9 89.5/95.5 89.9/96.1

MSMT17 49.7/73.6 63.3/83.2 61.6/82.2 63.9/83.8

Attribute Recognition
mA ↑

RethinkPAR [38]

PETAzs 72.86 73.64 73.90 74.20

RAPzs 72.10 73.04 73.16 73.21

PA100k 80.67 82.98 82.98 84.15

Person Search
mAP/Rank1 ↑
SeqNet [45]

CUHK-SYSU 93.0/94.1 93.6/94.3 93.6/94.1 94.0/94.7

PRW 50.0/84.4 52.9/84.7 53.0/84.0 54.1/85.0

Pedestrian Detection
MR−2(R/HO) ↓

CSP [73]
CityPerson 11.6/43.8 11.4/43.1 11.1/41.7 10.8/40.7

Human Parsing
mIOU ↑

SCHP [43]
LIP 51.10 54.45 55.25 55.45

Pose Estimation
AP/AR ↑

HRFormer [83]
COCO 72.4/78.2 73.1/78.5 73.4/78.7 74.4/79.7

conducted on Swin-Tiny [52] backbone. We use different
methods to train the pretext task, and verify pre-trained
models on all downstream human-centric visual tasks.

ImageNet and LUP1M are datasets used for the pretext
task training. ImageNet indicates the model is trained
on ImageNet. This training is supervised with labels in
ImageNet. LUP1M is a subset randomly sampled from
LUP, which contains 1 million person images and has a
similar image number with ImageNet for fair comparison.
Due to no labels in LUP1M, the training process is self-
supervised. We take DINO [6] as our baseline. “+Clus-
tering” indicates that we involve the human prior into
DINO by semantic clustering. “+Clustering&Controller”
means that the semantic controller is imported to control
the ratio of semantic information in representation. In
downstream tasks, we set λ to a small value (0.0-0.2)
for person-re-identification, and a large value (0.8-1.0) for
pedestrian detection, human attributes, human parsing and
pose estimation. For person search, where appearance
information is as important as semantic information, we
set λ to a moderate value. Details of the λ selection for
downstream tasks are provided in Supplementary Material.

From the comparison in Table. 1, it can be found that
after involving the semantic information (“+Clustering”),
the pre-trained model achieves a better performance on
most of downstream tasks. It implies the effectiveness of the

representation with more semantic information. It is worth
noticing that the performance on person re-identification
and person search are somewhat declined after involving
semantic supervision. The reason is that after the semantic
information is imported, the model is more inclined to rep-
resent semantic information, and its power on distinguish-
ing different identities is weakened to some extent, which
needs a more careful balance. The semantic controller
is exactly designed for this problem. After involving the
semantic control (“+Controller”), the performance further
improved, especially for person re-identification and person
search. Comparing our SOLIDER results to DINO’s on per-
son re-identification, we can observe that our improvement
is limited. Because the key clue in person re-identification
is appearance information, which is already well learned in
DINO. The semantic information imported from SOLIDER
plays an auxiliary role leading to only a slight increment.

It is noteworthy that the larger improvement of DINO
LUP1M compared to Sup ImageNet on person ReID is
due to the street-view scenarios of LUPerson images which
are similar to ReID datasets. Except for the ReID task,
the DINO LUP1M brings an average of 1.4 improvement
(72.6 vs. 74.0) on five tasks compared to Sup ImageNet,
which implies the advantage of the appearance informa-
tion learned from DINO. With SOLIDER, the average
performance is raised to 74.9. The further 0.9 increase
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Table 2. The comparison of the proposed SOLIDER with other state of the arts.

Person
Re-identification

mAP/Rank1 ↑

SCSN [16] ABDNet [9] TransReID [36] UP-ReID [81] PASS [97] Swin-T
SOLIDER

Swin-S Swin-B

Market1501 88.5/95.7 88.3/95.6 89.5/95.2 91.1/97.1 93.3/96.9 91.6/96.1 93.3/96.6 93.9/96.9

MSMT17 58.5/83.8 60.8/82.3 69.4/86.2 63.3/84.3 74.3/89.7 67.4/85.9 76.9/90.8 77.1/90.7

Attribute
Recognition

mA ↑

MsVAA [61] VAC [30] ALM [66] JLAC [65] RethinkPAR [38] Swin-T
SOLIDER

Swin-S Swin-B

PETAzs 71.53 71.91 73.01 73.60 71.62 74.37 76.21 76.43

RAPzs 72.04 73.70 74.28 76.38 72.32 74.23 76.84 77.06

PA100k 80.41 79.16 80.68 82.31 81.61 84.14 86.25 86.37

Person
Search

mAP/Rank1 ↑

NAE+ [7] AlignPS+ [79] TCTS [68] SeqNet [45] GLCNet [93] Swin-T
SOLIDER

Swin-S Swin-B

CUHK-SYSU 92.1/92.9 94.0/94.5 93.9/95.1 94.8/95.7 95.8/96.2 94.9/95.7 95.5/95.8 94.9/95.5

PRW 44.0/81.1 46.1/82.1 46.8/87.5 47.6/87.6 47.8/87.8 56.8/86.8 59.8/86.7 59.7/86.8

Pedestrian
Detection

MR−2(R/HO) ↓

RepLoss [71] CSP [73] NMS-Loss [56] ACSP [70] PedesFormer [33] Swin-T
SOLIDER

Swin-S Swin-B

CityPerson 13.2/56.9 11.0/49.3 10.8/- 9.3/46.3 9.2/36.9 10.3/40.8 10.0/39.2 9.7/39.4

Human
Parsing
mIOU ↑

JPPNet [46] BraidNet [50] CE2P [60] PCNet [87] SCHP [43] Swin-T
SOLIDER

Swin-S Swin-B

LIP 51.37 54.40 53.10 57.03 59.36 57.52 60.21 60.50

Pose
Estimation

AP/AR ↑

CPN [17] SimpleBase [75] TokenPose [44] HRNet [63] HRFormer [83] Swin-T
SOLIDER

Swin-S Swin-B

COCO 68.6/- 74.3/79.7 75.8/80.9 76.3/81.2 77.2/82.0 74.4/79.6 76.3/81.3 76.6/81.5

shows the success of involving semantic information by our
SOLIDER. And this improvement is consistent on all tasks.

Besides, we conduct experiments on the influence of
the clustered part number and the semantic head size in
SOLIDER, which are present in Supplementary Material.

4.4. Comparison to State of the Arts

We compare our results with state of the arts on six
human-centric tasks. The state-of-the-art methods for com-
parison are listed in Table. 2. In person re-identification,
we use TransReID without side information as our base-
line. Even without side information, we can achieve a
better performance than other self-supervised works, e.g.,
TransReID [36] and PASS [97], which also trained on
LUPerson dataset. For the PRW results of person search,
the mAP of our results outperform other state of the arts
with more than 10%. The mAP criterion reflects the
detection ability of models. It implies that our pre-trained
model can lead to a better detection result, which may
thanks to the imported semantic information. In pedestrian
detection, PedesFormer [33] achieves a better performance
than ours on pedestrian detection task is because it also
involves extra data from autonomous driving datasets which
are specific for pedestrian detection task and not for other
human-centric tasks. For pose estimation, we report the
best performance of HRFormer [83] which is trained on
HRFormer backbone instead of Swin. After HRFormer [83]
backbone is switched to Swin, the result is 75.9/81.1 re-

ported in MMPose [19], which is lower than ours 76.6/81.5.
From the comparison in Table. 2, we can see that the pre-
trained from SOLIDER can provide a better initialization
for these human-centric tasks, and can be used as a new
baseline for further works on these tasks.

We also conduct SOLIDER on different backbones, also
summarize in Table. 2. It can be seen that with the
model size increasing in Swin-Transformer backbones, the
performance is further improved. In some tasks, Swin-
Small achieves a better performance than Swin-Base, it is
because of a larger batch size in Swin-Small compared to
that in Swin-Base under a limited GPU memory.

5. Conclusion

This paper proposes a semantic controllable self-
supervised learning framework called SOLIDER. It
can utilize prior knowledge from human images to train
representations with more semantic information. Moreover,
the pre-trained model from SOLIDER can be adjusted by
an input value through the semantic controller, which can
produce representations with different ratios of semantic
information and to satisfy the requirements on downstream
tasks. The human representations from SOLIDER is
verified on six human-centric visual tasks, which can
promote the development of these human-centric tasks in
computer vision community.
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