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Abstract

Recently, event-based stereo matching has been studied
due to its robustness in poor light conditions. However,
existing event-based stereo networks suffer severe perfor-
mance degradation when domains shift. Unsupervised do-
main adaptation (UDA) aims at resolving this problem with-
out using the target domain ground-truth. However, tradi-
tional UDA still needs the input event data with ground-
truth in the source domain, which is more challenging and
costly to obtain than image data. To tackle this issue,
we propose a novel unsupervised domain Adaptive Dense
Event Stereo (ADES), which resolves gaps between the dif-
ferent domains and input modalities. The proposed ADES
framework adapts event-based stereo networks from abun-
dant image datasets with ground-truth on the source do-
main to event datasets without ground-truth on the target
domain, which is a more practical setup. First, we pro-
pose a self-supervision module that trains the network on
the target domain through image reconstruction, while an
artifact prediction network trained on the source domain as-
sists in removing intermittent artifacts in the reconstructed
image. Secondly, we utilize the feature-level normalization
scheme to align the extracted features along the epipolar
line. Finally, we present the motion-invariant consistency
module to impose the consistent output between the per-
turbed motion. Our experiments demonstrate that our ap-
proach achieves remarkable results in the adaptation ability
of event-based stereo matching from the image domain.

1. Introduction
Stereo matching [22, 41] is one of the most widely used

methods for obtaining 3D information by establishing cor-
respondences between stereo images. With considerable in-
terest, learning-based stereo methods have achieved state-
of-the-art performance in many benchmark datasets. How-
ever, some challenges in stereo matching still exist due
to the shortcoming of sensors (e.g., low dynamic range,
motion blur due to large exposure time). Event cameras
[3] are novel sensors that asynchronously report per-pixel
changes of intensity by imitating the human eye. Thanks
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Figure 1. The proposed ADES framework for adaptive dense event
stereo network. ADES aims to exploit the existing frame-based
stereo dataset for learning the event stereo network.

to the high dynamic range and low latency, the event cam-
era can be considered as a promising sensor for depth es-
timation, especially in driving scenarios. Recent works
[2,8,9,28,30,48,59] have attempted to utilize event cameras
for stereo matching even under poor light conditions.

Despite advances in event stereo, most prior works [9,
28, 48] still experience a significant degradation in perfor-
mance when domains shift. Unsupervised domain adap-
tation (UDA) can resolve this problem without using the
target domain ground-truth. When UDA is applied for
event stereo domain adaptation, it still needs the input event
data with ground-truth in the source domain. However,
as mentioned in [32], accurate synchronization of events
with high temporal resolution and other devices (e.g., Li-
DAR) requires additional hardware and post-processing,
so it is more challenging to obtain accurate ground truth
than images. In this paper, we draw attention to large im-
age datasets with ground-truth, which are easily accessible
(e.g., DrivingStereo [57], SceneFlow [24] and KITTI [25]).
In this setup, abundant image data from diverse environ-
ments helps the event stereo network improve generaliz-
ability with high performance. To this end, as shown in
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Fig. 1, we propose a novel Adaptive Dense Event Stereo
(ADES), which adapts the stereo network from the source
domain having image data with ground-truth to the target
domain having event data without ground-truth. ADES re-
solves gaps between the different domains and input modal-
ities.

The proposed ADES framework consists of three com-
ponents: smudge-aware self-supervision module, feature
normalization, and motion-invariant consistency module.
The proposed smudge-aware self-supervision module lever-
ages dense traits of images via image reconstruction on the
event target domain. Image reconstruction using only the
event is often interrupted by blurry artifacts, what we call a
smudge, so the network cannot estimate the sharp and ac-
curate disparity map. To predict the smudge effect in the
target domain, we design the self-supervision pipeline on
the source image domain to estimate and suppress the arti-
fact area in the reconstructed image on the target domain.

In addition, we exploit the feature normalization be-
fore generating the cost volume. Normalization scheme
[29, 43, 49, 58] was generally used in the domain adapta-
tion between the image modalities. However, due to the
characteristics of the event, it is not efficient to normalize
over the entire pixel area. Since most of the events are trig-
gered around an edge of objects, some regions (e.g., sky)
have very sparse events. Therefore, vanilla normalization
can mislead the values of features to shift to the values of
the regions without events. While reducing the difference
in features between the two domains, we apply a normal-
ization along the epipolar line to take into account the char-
acteristics of events and stereo matching.

Finally, we focus on the different motion of event cam-
eras from the source and target domains, leading to a severe
domain gap. Therefore, we present the motion-invariant
consistency module to predict consistent disparity even if
the camera motion changes to some extent. This module
help the network to adapt the target domain and also reduces
the gap from camera motion. To the best of our knowledge,
our work is the first attempt to move from unpaired image
domain to event domain for stereo matching. Our main con-
tributions are summarized as below:

• Our work is the first that transfers the disparity estima-
tion task from the rich image dataset with ground-truth
to the event stream, resolving gaps between the differ-
ent domains and input modalities.

• We propose a novel adaptive event stereo network,
ADES, containing the smudge-aware self-supervision
module, feature normalization, and motion-invariant
consistency module.

• Extensive experiments demonstrate that the ADES
framework achieves significantly better performance
than the prior works in the adaptation ability between
the different domains and modalities for event stereo.

2. Related Works
2.1. Stereo depth estimation using Events

Recent event-based stereo matching [2,8,9,28,30,48,59]
achieved the high accuracy than early works [5,7,20,35–37,
39, 60, 64, 65] by adopting a learning-based approach with
various embedding scheme. They propose additional mod-
ules that consider the temporal continuity of events, but the
overall framework is similar to frame-based stereo: embed-
ding, matching, and regularization modules. Our proposed
pipeline of adaptive stereo matching also follows the gen-
eral stereo matching, then can be easily applied on other
event-based stereo networks.

2.2. Domain Adaptation in Stereo Matching

To overcome the performance degradation from the do-
main gap, several works have explored unsupervised do-
main adaptation (UDA) in frame-based stereo matching.
Some works utilize the knowledge distillation [14] and Cy-
cleGAN [23,62] to narrow the domain gap. After that, com-
pact and efficient domain adaptation studies [33, 43, 47] for
stereo have been conducted. On the other hand, the do-
main adaptation ability of event stereo networks has not
been studied, and we tackle it for the first time.

2.3. Adaptation from Images to Events

Event-to-image reconstruction methods [10, 27, 31, 34,
38, 42, 44, 50, 52, 53] can be considered the proxy task
to transfer a labeled image domain (source) to an unla-
beled event domain (target). The results of the event-to-
image reconstruction have been used as inputs of end-task
(e.g., object recognition, semantic segmentation) network
pre-trained on image (source) domain. However, they in-
troduce the extra latency in the inference time and still pose
a domain gap between source and target domain.

One of the attempts to properly do domain adaptation
was grafted networks [17] by utilizing the pre-trained im-
age network. They replaced the encoder of pre-trained net-
work with event encoder, then finetuned it on paired event
and image datasets. This setup takes advantage of each
modalities, but requires pixel-wise aligned events and im-
ages. To overcome the limitation of paired setting, EvDis-
till [51] leveraged the unpaired images to boost the perfor-
mance of event-based networks. Through the bidirectional
modality reconstruction and cross-modal knowledge distil-
lation, they can transfer the knowledge from image network
to event network. After that, research on transferring from
an unpaired image to event has been of continuous interest.
EV-Transfer [26] hallucinate the motion to generate the fake
events from still images. ESS [46] achieve the feature-level
alignment with the motion-invariant event embeddings.

Existing works only focus on the tasks from a single
camera (e.g., semantic segmentation, object recognition).
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Figure 2. Overview of the proposed ADES framework. During training, image datasets (e.g., KITTI) are used for the source domain, and
event datasets without ground-truth are used for the target domain. We utilize feature normalization (Sec. 3.4) to narrow the gap between
features from other domains. The proposed smudge-aware self-supervision module (Sec. 3.3) and motion-invariant consistency module
(Sec. 3.5) are only used in training phase.

Due to the novel characteristics of event cameras, high-
quality large stereo datasets have recently appeared, so re-
lated research has yet to be studied. In this paper, we pro-
pose an employable ADES framework for an event stereo.
Unlike the prior works, we consider the characteristics of
the event in the specific situation of stereo matching.

3. Method
3.1. Problem Setting

Given consecutive stereo image pairs (It−1
l , It−1

r ),
(Itl , I

t
r) with ground-truth disparity map d̃tl on source do-

main, our goal is to train the model to predict the disparity
map Dt̂

l at time t̂ from stereo event streams E t̂
l , E

t̂
r on tar-

get event domain. To make it clear that the source and the
target domains are unpaired, we denote time for the source
domain as t and the target domain as t̂. We represent an
event stream as a voxel grid [63], the most commonly used
representation, e.g., by converting E t̂

l to V t̂
l .

3.2. System Overview

As shown in Fig. 2, our proposed Adaptive Dense
Event Stereo (ADES) consists of three novel components:
smudge-aware self-supervision module, feature normaliza-
tion, and motion-invariant consistency module.

For the source domain, we leverage the pre-trained
video-to-event reconstruction network to extract the event
representations from image data for the event-based stereo
network. There are several video-to-event methods [11,18],
but among them, we adopt the network proposed in [61]
that is lightweight and describes events well even with
only two sequential images. Each left and right sequen-
tial image pairs are passed through the video-to-event net-

work GI→E and transformed into voxel grids as follows:
V t
l = GI→E(I

t−1
l , Itl ), V

t
r = GI→E(I

t−1
r , Itr). The gener-

ated voxel grid pairs (V t
l , V

t
r ) from the source domain and

the voxel grid pairs (V t̂
l , V

t̂
r ) from the target domain are

simultaneously fed into a weight shared event-based stereo
network. In the process, we narrow the gap between the two
domains by normalizing the extracted features. The predic-
tion of source domain dtl is supervised by ground-truth dis-
parity d̃tl , while the result of the target domain is adaptively
optimized by the proposed smudge-aware self-supervision
module and motion-invariant consistency module.

3.3. Smudge-aware Self-supervision Module (SSM)

Prior works [21,45,56] verified that self-supervised aux-
iliary tasks are helpful for domain adaptation, especially in
stereo matching task [43]. We also utilize the photometric
reconstruction as an auxiliary task of domain adaptation for
stereo matching. First, as shown in the bottom of Fig. 3, we
generate the image from voxel event representation in tar-
get domain. To this end, we leverage the widely used pre-
trained event-to-image reconstruction network [38]. How-
ever, the reconstructed image from event has intermittent
artifacts near the boundary of an object. Those blurring and
distortion effects, what we call a smudge, disturbs predict-
ing sharp disparity. To estimate the irregular smudge in the
target domain, we further design a self-supervision pipeline
for smudge prediction in the source domain.

In the source domain, as shown in the top of Fig. 3,
we perturb the random region of image with distortion and
blur kernel for imitating smudge effects. To depict realistic
smudge effects, we do not generate the smudge on the ran-
domly selected rectangle region but on the regions parsed
by superpixel algorithm [1]. Since the edges of superpix-
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Figure 3. Illustration of the Smudge-aware Self-supervision Mod-
ule (SSM). To estimate the smudge artifact of the reconstructed
image on the target domain, we train the smudge prediction net-
work to predict the smudge in the source domain.

els are generally placed on the boundary of an object, they
can mimic the characteristics of the smudge effect caused at
the boundary of the object due to the noisy sensors. Then,
domain-shared smudge prediction network, which is a light-
designed U-Net [40] with few convolution layers, is super-
vised from generated smudge mask. In other words, the
output M t

i of smudge prediction network is supervised from
generated artifact mask M̃ t

i by minimizing the binary cross
entropy loss: Lmask

source =
∑

i∈{l,r} BCE(M t
i , M̃

t
i ).

In the target domain, as shown in the bottom of Fig. 3,
we utilize a shared smudge prediction network from source
domain for photometric-based self-supervision. The recon-
structed left image Î t̂l and right image Î t̂r from voxels V t̂

l

and V t̂
r are fed into the smudge prediction network. Then,

smudge prediction network provides the predicted smudge
map M t̂

l and M t̂
r , which include per-pixel probability of

smudge from 0 to 1. Next, from the predicted dense dis-
parity map Dt̂

l , we can reconstruct the warped left image
Wr→l(Î

t̂
r) from right image Î t̂r. Considering the smudge

mask maps of both left and right sides, we can calculate the
pixel-wise photometric reconstruction error as follows:

Lrecon
target = α

1− SSIM(Î t̂l ⊙M t̂,Wr→l(Î
t̂
r)⊙M t̂)

2

+(1− α)∥Î t̂l ⊙M t̂ −Wr→l(Î
t̂
r)⊙M t̂∥1,

(1)

where M t̂ = 1 − (M t̂
l ⊙ Wr→l(M

t̂
r)), ⊙ means element-

wise multiplication, SSIM denotes structural similarity pro-
posed in [54] with a 3× 3 kernel filter, and α is set to 0.85.

Our proposed smudge prediction network is shared in the
source and target domains with the same weights. Com-
pared to the stereo network, which is a high-level task,
the smudge prediction, which pixel-wisely finds regions of
noise and smudge, is a low-level task and less affected by

(a) Source (b) Target

Voxel Grid Features Voxel Grid Features

Figure 4. Visualization of voxel grids and features extracted by
the event stereo network from source (e.g., KITTI) and target
(e.g., DSEC) domain. In the upper region of features with few
events, there are no activated pixels; in contrast, there are many ac-
tivated pixels in the lower region with a lot of structure for events.

the domain gaps. Therefore, in the target domain, artifacts
in the boundary are well predicted in the reconstructed im-
age to estimate the sharp disparity through self-supervision.

3.4. Feature Normalization

We adopt the feature-level normalization to reduce the
gap in the cost volume between two distinct domains. To
align the distributions between different domains, the fea-
ture normalization [29,49,58] is widely used for image data.
Similarly, event features can be also normalized to reduce
the gap between the two domains; however, as can be seen
in our experimental results (see Table 5), due to the sparsity
of the event data, an existing normalization technique [43]
for images rather hinders learning of event-based network.

For event feature normalization, we focus on the char-
acteristics of event-based stereo matching. Events are nat-
urally sparse and triggered predominantly to the edges of
the objects. For accurate prediction with sparse informa-
tion, event stereo networks tend to focus intensely on ar-
eas with event information, which leads to features of areas
without events not being activated. Therefore, normalizing
over all pixels provides results with shifted bias on the re-
gion without an event for each scene. Instead, we focus
on the correlation between the amount of events and spa-
tial positions. For example, events rarely occur in the upper
regions (e.g., sky), while more events occur in the lower
regions where illuminance easily changes and rich textures
exist (e.g., building). This phenomenon can be qualitatively
verified by the extracted features of the network, as shown
in Fig. 4. The lower region of the feature map is strongly
activated in both domains, while the upper region, where no
event occurs, is hardly activated. Therefore, applying the
normalization over all pixels used in the dense image [43]
to event stereo rather hinders reducing the domain gaps. In
addition, since the stereo disparity is defined as the posi-
tion difference in the horizontal direction when the cameras
are rectified, normalization over all spatial positions leads
to ambiguity in accurate matching. Therefore, we propose
a strategy to normalize the feature along the epipolar (hori-
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Figure 5. Illustration of the Motion-invariant Consistency Module
(MCM). Normalize over time denotes to converting temporal val-
ues into a range between 0 and 1.

zontal) line, which does not violate the regularity according
to regions. This normalization is also spatial but less depen-
dent on the global distribution of event data.

We modify the parameter-free normalization scheme
proposed in prior works [43]. Given extracted feature F
from network with size of C × H × W (C: channel, H:
height, W : width), let F (k, i, j) denotes kij-th element,
where k is the index of channel and i, j are spatial dimen-
sions. Then, we apply the normalization along channel-
dimension to both left and right features as follows:

F (k, i, j) =
F (k, i, j)√∑C−1

c=0 ∥F (c, i, j)∥2 + ε
. (2)

After that, we apply the normalization along the epipolar
line, which is defined as:

F (k, i, j) =
F (k, i, j)√∑W−1

w=0 ∥F (k, i, w)∥2 + ε
. (3)

3.5. Motion-invariant Consistency Module (MCM)

The motivation of the motion-invariant consistency mod-
ule on the target domain is two-folds. The first is to resolve
the domain gap caused by different camera motion. Sec-
ond, we desire the event stereo network to be robust on
perturbation or noise, adapting to the target domain. The
perfectly adapted network should be able invariant to the
motion of event camera and estimate the prediction stably,
even if there is some perturbation in the input.

In this subsection, we denote the voxel grid correspond-
ing to the events E t̂,T accumulated during time T until t̂ as
V t̂,T . Specifically, events are converted to a voxel grid pair
V t̂,T
l , V t̂,T

r , and fed to the network to estimate a disparity
map Dt̂

l . Since the motion in the datasets is already acquired
and immutable, we use a trick to augment event streams of
fast or slow motions with temporal perturbation τ . If events

are stacked for a longer time T + τ (i.e., more events) after
normalizing temporal value in events (converting temporal
values into a range between 0 and 1) and converted for the
same bin of voxel grid, it is able to imitate the voxel grid of
an event from an actual fast motion. Conversely, if stacked
for a shorter time T − τ (i.e., fewer events), it is the same
as the voxel grid made with events of slow motion. From
this, we can generate a motion perturbed event voxel V t̂,T̂ ,
where T̂ = T ± τ without additional data acquisition. As
shown in Fig. 5, perturbed voxel pairs V t̂,T̂

l , V t̂,T̂
r are fed

into the event stereo network to predict the perturbed dis-
parity map D̃t̂

l . Then, for pixel-wise consistency between
the prediction of motion-perturbed input and the original
input, our consistency loss is defined via L1 distance:

Lconsistency
target = ∥Dt̂

l − D̃t̂
l∥1 (4)

More details about the implementation of motion-invariant
consistency module can be seen in supple.

3.6. Loss functions

On the source domain, we use the two losses for train-
ing the network. We adopt the smooth L1 loss for dispar-
ity estimation: Ltask

source = smoothL1(d̃
t
l − dtl), and the bi-

nary cross entropy loss for artifact prediction: Lmask
source =∑

i∈{l,r} BCE(M t
i , M̃

t
i ).

On the target domain, we use the reconstruction loss
Lrecon
target (Eq. 1) and consistency loss Lconsistency

target (Eq. 4).
Finally, the total loss for an end-to-end optimization pro-

cess is defined as:

Ltotal = Ltask
source + λ1Lmask

source + λ2Lrecon
target+

λ3Lconsistency
target ,

(5)

where λ1, λ2 and λ3 are weight for each loss terms.

4. Experiments
4.1. Datasets

For source domain datasets, we utilize the KITTI dataset
[25] and the SceneFlow dataset [24]. The KITTI dataset is
a real-world dataset with two subsets (i.e. KITTI 2012 [13]
and KITTI 2015 [25]), containing 394 stereo images with
sparse ground-truth for training. On the other hand, the
SceneFlow dataset [24] is a large synthetic dataset contain-
ing diverse scenes. The SceneFlow dataset provides 35k
stereo images with dense ground-truth disparity maps.

For target domain, we use the recently published bench-
mark dataset of DSEC [12], a large-scale high-quality driv-
ing dataset with challenging scenes. DSEC provides high-
resolution (640×480) stereo event streams captured in out-
door driving scenes. It contains 53 driving scenarios taken
in various lighting conditions, and provides 17k stereo pairs

17801



Table 1. Cross-domain comparisons with other traditional / domain generalization / domain adaptation stereo methods from various source
domains. The 2-pixel error (%), 3-pixel error (%), end-point-error, and root mean square error are adopted for evaluation. Zu and In denote
the Zurich City and Interlaken sequences, respectively.

KITTI-to-DSEC SceneFlow-to-DSEC

Method 2PE 3PE EPE RMSE 2PE 3PE EPE RMSE
Zu In Zu In Zu In Zu In Zu In Zu In Zu In Zu In

E2VID [38] on target domain
SGM [16] 53.7 55.3 47.7 49.7 9.3 10.1 16.1 17.0 53.7 55.3 47.7 49.7 9.3 10.1 16.1 17.0

GwcNet [15] 38.2 37.1 29.1 22.0 3.5 2.9 8.2 5.8 43.3 45.0 28.8 31.2 3.0 4.2 6.5 12.2
PSMNet [6] 36.5 35.5 25.9 24.1 3.4 2.9 6.0 5.1 36.4 39.7 24.3 29.6 2.6 5.4 4.9 14.7
AANet [55] 46.3 39.3 35.3 26.3 7.4 3.8 17.2 8.6 42.8 39.2 29.2 27.3 3.6 3.1 7.2 5.1

DSMNet [58] 41.1 41.6 30.4 32.1 3.2 4.2 5.6 8.1 46.6 45.3 31.2 30.6 4.1 3.7 5.1 16.2
StereoGAN [23] 70.9 68.8 66.4 63.1 11.4 9.8 13.3 12.2 73.2 72.2 68.0 73.1 15.4 13.4 15.4 14.3

EventGAN [61] on source domain
GwcNet [15] 25.5 27.3 19.8 16.8 4.6 3.1 12.2 9.1 55.1 56.3 37.2 37.1 7.4 7.3 16.4 16.1
PSMNet [6] 18.9 20.5 11.9 13.6 4.2 2.7 14.8 10.4 48.8 50.6 35.0 37.8 6.8 5.8 17.6 13.1
AANet [55] 50.4 47.3 42.5 38.6 9.8 5.4 21.7 11.3 58.8 55.4 45.3 42.4 5.7 5.8 11.0 10.6

DSMNet [58] 18.8 23.6 10.5 12.6 2.1 2.4 4.5 6.7 51.2 52.3 44.6 43.2 6.2 5.9 18.3 14.4
StereoGAN [23] 61.4 60.3 52.8 50.7 15.3 13.7 18.9 18.9 75.2 71.7 65.5 66.3 13.3 10.6 20.3 21.0

ADES (Ours)
AANet 13.8 19.9 7.1 9.8 1.4 1.7 2.7 3.4 22.3 24.9 11.1 13.9 1.6 1.9 2.7 3.4

PSMNet 10.9 10.2 5.6 5.5 1.2 1.3 2.5 3.2 17.5 12.8 9.4 6.7 1.4 1.3 2.7 2.8

for training. Following the previous image-to-event transfer
tasks for segmentation [46], we adopt sequences acquired
during the day with monotonous illuminance, called Zurich
City. Furthermore, we also conduct experiments on In-
terlaken sequences containing the high dynamic range and
challenging illuminance scenes. More details about a split
of datasets are provided in the supple.

4.2. Implementation details

The weights λ1, λ2 and λ3 are set as 0.3, 1, and 0.2, re-
spectively. We train our end-to-end framework using the
Adam optimizer [19]. We set the learning rate to 1 × 10−3

with a batch size of 8 using 384 × 336 random crops. To
generate the artifacts in Sec. 3.3, we utilize the Blur and
OpticalDistortion transforms from library [4]. More details
are provided in supple.

4.3. Comparisons with Other Methods

We compare our proposed ADES framework with the
other traditional algorithm (SGM [16]), domain generaliza-
tion (DSMNet [58]), and domain adaptation (StereoGAN
[23]). In addition, we evaluate PSMNet [6], GwcNet [15],
and AANet [55], which have achieved comparable perfor-
mance in stereo matching. We train those networks in the
source domain and test the network in the target domain. To
align the different modalities between the source and target
domains, we utilize E2VID [38] or EventGAN [61]. In the
case of E2VID, an image-based stereo network is trained
using a grayscale image in the source domain, and when
testing, events in the target domain are reconstructed into a
gray image using E2VID. Conversely, in the case of Event-
GAN, the event-based stereo network is trained using the
events, which are converted by EventGAN from consecu-

tive images in the source domain. We evaluate the proposed
framework by applying it to AANet and PSMNet, which
can represent networks using 3D and 4D cost volumes. Es-
pecially, AANet is efficient, so it is a widely adopted struc-
ture in recent event stereo research [28, 30]. When training,
the proposed modules are used, but when evaluating, all the
proposed modules without normalization are removed, and
only the event stereo network is used to predict the disparity.
Table 1 shows the results of training on the various source
dataset, such as KITTI and SceneFlow datasets.

KITTI-to-DSEC. Even if the networks are trained on
the source domain, the results of networks using the events
from EventGAN can not achieve high performance. Some
networks (PSMNet, GwcNet, and AANet) do not have the
ability of domain generalization and adaptation. In addi-
tion, the distribution gap of disparity and motion between
the domains lead to further degradation of performance.
Similarly, most of the results using reconstructed images
with E2VID do not show comparable performance. The
reconstructed image on the target domain has a large gap
with the real image on the source domain, which cannot
be dealt with generalization (DSMNet), adaptation (Stere-
oGAN) and conventional methods (SGM). Compared with
existing works, our network achieves significantly high per-
formance, considering the gap between domains such as
motions and disparity. It is noticeable that in case of
AANet+ADES, the performance improvement is signifi-
cant, e.g., 2PE decreases from 50.4 to 13.8, and RMSE de-
creases from 21.7 to 2.7 in Zurich City sequence.

SceneFlow-to-DSEC. The experiment results trained on
the synthetic source domain show a more significant do-
main gap. Due to the effect of the syn-to-real gap, prior
works show significantly lower performance than those
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Figure 6. Qualitative results for the proposed method with other methods. Compared to EventGAN [61] and E2VID [38], our method can
predict accurate and sharp disparity maps.

Table 2. Results on DSEC benchmark testset
Method Supervision RMSE ↓ MAE ↓ 1PE ↓ 2PE ↓

[48] ✓ 1.386 0.576 10.92 2.91
[28] ✓ 1.222 0.529 9.96 2.65
[30] ✓ 1.231 0.519 9.58 2.62
[59] ✓ 1.264 0.527 9.52 2.36

Ours (PSM) 1.698 0.771 18.37 5.36
Ours (AA) 1.982 0.936 24.01 7.87

trained on KITTI datasets, e.g., 2PE of PSMNet using
EventGAN significantly increases from 20.5 to 50.6 in the
Interlaken sequence. Although our proposed method cannot
avoid the performance degradation, the decreasing amount
is relatively acceptable, e.g., 2PE of PSMNet+ADES in-
creases from 10.2 to 12.8 in the Interlaken sequence. Fur-
thermore, the performance increases in some metrics thanks
to the various scenes in the synthetic dataset, e.g., RMSE
of PSMNet+ADES decreases from 3.2 to 2.8 in the Inter-
laken sequence. These results show that our method can be
used universally and not limited to a specific source dataset,
whether synthetic or real-world.

In Fig. 6, we provide qualitative comparisons of our
method with other methods. E2VID or EventGAN can re-
duce the gap between modality, but it cannot bridge between
domains. On the other hand, our ADES framework predicts
sharp and accurate disparity on both AANet and PSMNet.
These results demonstrate that our training pipeline resolves
the gaps from both domain and modality. More qualitative
comparisons are provided in supple.

4.4. Results on DSEC test dataset

To compare with supervised methods, we utilize the
KITTI dataset, which contains ground-truth, as the source
domain and the full DSEC train dataset, which lacks

Table 3. Ablation studies for sub-modules: Smudge-aware Self-
supervision Module (SSM), Feature Normalization (FN), and
Motion-invariant Consistency Module (MCM). D1-error (%) is
adopted.

Model SSM FN MCM Zurich Interlaken

AANet

35.2 26.3
✔ 33.1 24.5

✔ 29.6 22.7
✔ 13.3 15.1
✔ ✔ 11.2 14.6
✔ ✔ 8.1 10.2
✔ ✔ ✔ 7.0 9.7

PSMNet

15.6 17.2
✔ 13.8 16.1

✔ 13.1 15.5
✔ 7.3 8.9
✔ ✔ 6.6 7.1
✔ ✔ 6.0 6.2
✔ ✔ ✔ 5.6 5.7

ground-truth, as the target domain. Table 2 demonstrates
that despite not relying on ground-truth data for the target
domain, our approach achieves comparable performance to
other supervised methods.

4.5. Ablation Studies

Effectiveness of each components. In Table 3, we con-
duct the ablation studies to validate the effectiveness of
each component. We set the KITTI and DSEC dataset as
source and target domain, respectively. Based on AANet
and PSMNet from which all proposed modules were re-
moved, the performance was measured while adding the
proposed module one by one. The SSM achieves the great-
est performance gain as a unitary component, e.g., reducing
error rates by 21.9% on Zurich, and 11.2% on Interlaken
from AANet. In addition, using FN stand-alone reduces the
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Table 4. Comparison of results with and without smudge predic-
tion. D1-error (%) is adopted.

Methods Zurich Interlaken
w/o Smudge Prediction 16.1 12.3
w/ Smudge Prediction 7.0 9.7

Events Ground-truth w/o smudge w/ smudge

Figure 7. Qualitative results of disparity predictions with and with-
out smudge prediction.

error by 1.7%∼5.6% depending on the target domain and
model, compared to the baseline. Similarly, MCM also re-
duces the error by 1.1%∼2.1%. These FN and MCM work
even if implemented together with SSM, e.g., compared to
the case of using only SSM from AANet in Zurich, when
FN and MCM are used together, errors are more reduced by
5.2% and 2.1%, respectively. Finally, the performance gain
is the most significant when all of the proposed modules are
used, and these results validate that all modules are effective
for domain adaptation.
Effectiveness of smudge predictions. We investigate the
effect of the proposed smudge prediction on SSM. Using the
KITTI as the source domain, the quantitative and qualitative
results with and without smudge prediction from AANet are
shown in Table 4 and Fig. 7. Compared with the absence
of smudge prediction, our method utilizes the photometric
loss of image reconstruction effectively. Therefore, through
SSM using smudge prediction, the performance of the dis-
parity estimation is improved e.g., the D1-error decreases
from 16.1 to 7.0 in Zurich City sequence. Specifically, as
can be seen in Fig. 7, smudge prediction helps the network
to robustly infer the boundary of an object, making a sharp
disparity map. We visualize the smudge mask in Fig. 8 to
show how smudge masks can aid effective learning in SSM.
As shown in 1st row of Fig. 8, when an image is recon-
structed from an event via E2VID, smudge-like blurry ar-
tifacts appear around the boundary of the object due to the
noisy nature of the event streams. Our smudge prediction
estimates these artifacts regions, helping to sharpen dispar-
ity when performing self-supervision and boosting the per-
formance of disparity estimation.
Comparison of normalization. Table 5 reports the com-
parison of our feature normalization with the existing
learning-free normalization method [43]. We set the KITTI
dataset as the source domain and the model to AANet. Al-
though our epipolar norm is a modified module of the ex-

Table 5. Comparison of epipolar norm with existing cost norm
[43]. D1-error (%) is adopted.

Methods Zurich Interlaken
w/o Norm 11.2 14.6

Cost Norm [43] 12.3 11.1
Our Epipolar Norm 7.0 9.7

Figure 8. Generated smudge mask on the target domain. Top:
reconstructed images, Bottom: corresponding smudge mask.

isting work, the results verify that it is more effective for
the domain adaptation ability of event stereo matching. For
example, in the case of [43], which performs the normal-
ization along all pixels in spatial manners, the performance
is rather reduced due to the specificity of event stereo. For
example, especially in Zurich City, the D1-error increases
from 11.2 to 12.3 after introducing the cost norm [43]. On
the other hand, our epipolar norm shows a performance im-
provement in both sequences. From these results, we can
confirm that the event stereo network requires a different ap-
proach than the existing normalization method, and our nor-
malization is suitable for the domain adaptive event stereo
matching.

5. Conclusion
In this paper, we propose a novel framework, ADES, for

adaptive dense event stereo from the image domain. Our
work is the first that transfers the disparity estimation task
from the rich image dataset with ground-truth to the event
stream to tackle the absence of ground-truth disparities
on the target event domain. To this end, we propose the
smudge-aware self-supervision module, feature normaliza-
tion, and motion-invariant consistency module by focusing
on the specificity of event stereo. Extensive experiments
demonstrate our framework achieves remarkable perfor-
mance on both 3D and 4D cost volume networks, whether
the source domain is synthetic or real-world image dataset.
Furthermore, these results demonstrate that our modules
can be used universally in existing event stereo net-
works. We open up the possibility of using event stereo in
domains without ground-truth and expect more future work.
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