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Figure 1. Comparison of EvShutter to state-of-the-art event-based RS correction method [28]. Our method introduces a novel event
transformation, which allows us to correct RS artifacts in the presence of non-linear motion or large displacements.

Abstract

Widely used Rolling Shutter (RS) CMOS sensors capture
high resolution images at the expense of introducing dis-
tortions and artifacts in the presence of motion. In such
situations, RS distortion correction algorithms are critical.
Recent methods rely on a constant velocity assumption and
require multiple frames to predict the dense displacement
field. In this work, we introduce a new method, called
Eventful Shutter (EvShutter)1, that corrects RS artifacts us-
ing a single RGB image and event information with high
temporal resolution. The method firstly removes blur us-
ing a novel flow-based deblurring module and then com-
pensates RS using a double encoder hourglass network. In
contrast to previous methods, it does not rely on a constant
velocity assumption and uses a simple architecture thanks
to an event transformation dedicated to RS, called Filter
and Flip (FnF), that transforms input events to encode only

1The evaluation code and the dataset can be found here https://
github.com/juliuserbach/EvShutter

the changes between GS and RS images. To evaluate the
proposed method and facilitate future research, we collect
the first dataset with real events and high-quality RS im-
ages with optional blur, called RS-ERGB. We generate the
RS images from GS images using a newly proposed simula-
tor based on adaptive interpolation. The simulator permits
the use of inexpensive cameras with long exposure to cap-
ture high-quality GS images. We show that on this realistic
dataset the proposed method outperforms the state-of-the-
art image- and event-based methods by 9.16 dB and 0.75 dB
respectively in terms of PSNR and an improvement of 23 %
and 21 % in LPIPS.

1. Introduction

Most consumer cameras like cell phones or action cam-
eras use a rolling shutter (RS) sensor which instead of
capturing the whole frame in a single shot as in a global
shutter (GS) camera, it acquires each row sequentially as
shown in Fig. 2. Specifically, it obtains each row y at time
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Figure 2. Rolling Shutter Explained. While recording with a RS
camera (left), image rows are exposed sequentially, while in the
case of a GS camera (right) they are exposed all at the same time.

ty = y · tH/H , where H is the height of an image and tH is
the mid-exposure time of the last row. RS cameras are often
prefered due to their high spatial resolution and high frame
rates at low cost. Global shutter sensors have a more com-
plicated circuitry, and therefore a smaller resolution than
rolling shutter sensors of the same physical size. A larger
sensor size in turn increases the cost of the lens. However,
in the presence of fast camera or object movement, RS sen-
sors can produce skew distortion in images (see Fig. 1) and
jello artifacts in videos.

To correct such artifacts, RS correction methods are
widely used. Conventional methods attempt to recover the
corresponding GS image from the RS output by first esti-
mating the camera motion or dense displacement field dur-
ing the image acquisition and sequentially applying motion
compensation to align all the pixels to a fixed timestamp.
However, these methods make strong assumptions on the
motion type and are prone to fail in the presence of com-
plex motion patterns like local or non-linear motion, which
no longer satisfy the assumptions.

In this work, we address the fundamental problem of
modeling scene changes during image acquisition by us-
ing the high temporal information provided by an auxiliary
event camera. Instead of measuring synchronous frames
of absolute brightness, event cameras only measure asyn-
chronous brightness changes at each pixel with a high tem-
poral resolution in the order of microseconds [3]. Un-
like image-based methods, event cameras allow to estimate
the motion without relying on a constant speed assumption
and synthesizing images by directly adding the brightness
changes registered by the events to an image. This en-
ables exciting computational photography applications such
as event-guided image deblurring [12, 18, 24], video inter-
polation [8,22,23] and high dynamic range imaging [6,16].

In this paper, we propose a RS compensation method,
called Eventful Shutter (EvShutter), that only requires a sin-
gle RS image and the corresponding events. The method
firstly removes blur using a novel flow-based deblurring
module and then compensates RS using an hourglass net-
work with two encoders relying on complementary geo-
metric and synthesis-based interpolation approaches. The
proposed method is the first method that does not rely on

constant velocity assumption and uses a simple architec-
ture thanks to the newly introduced event transformation,
that we call Filter and Flip (FnF). FnF transforms the input
events to encode just changes between GS and RS images.
To train and evaluate the proposed method, we collect the
first dataset with real events and high quality RS images
(optionally with blur), called RS-ERGB. The RS images are
generated from GS images using our new simulator based
on adaptive interpolation. This pipeline allows the use of
an inexpensive high speed camera and the use of long expo-
sures while capturing the GS images.

Contributions of this work are as follows
1. Eventful Shutter (EvShutter) : the first event-assisted

RS distortion compensation and deblurring method
that avoids constant speed motion assumptions.

2. Filter and Flip (FnF): an event transformation module
that transforms the input event stream to encode only
the brightness change from GS to RS image and sim-
plifies the architecture of downstream modules.

3. Rolling Shutter Events and RGB (RS-ERGB) dataset
and simulator: the first dataset with real events and RS
images with optional blur generated using a new real-
istic RS-simulator, based on adaptive interpolation.

2. Related Work
Previous works on RS correction attempt to recover the

GS image by estimating the camera motion or dense dis-
placement field during image acquisition and applying mo-
tion compensation to align all the pixels to a fixed times-
tamp. They can be classified according to their motion
estimation method into following categories: gyro-based,
single image-based, multiple image-based and event-based.
Below we describe each category in detail.

Gyroscope-based methods [7, 13] utilize a gyro sen-
sor to estimate the rotational motion of the camera. These
methods are widely used in mobile devices, due to their
speed and reliability. However, they assume a static scene
and a simplified rotational camera motion. hence, they
can not correct RS distortions due to moving objects (e.g.
see Fig. 1), or in the presence of more complex camera mo-
tion where the purely rotational assumption is violated.

Single image-based methods infer the motion from a
single RS image by relying on a prior model of the scene.
Methods in [14,19] assume the presence of multiple straight
lines in the scenes (Manhattan world assumption) for mo-
tion estimation. These hand-crafted priors fail when the
scene deviates from the assumed model. Recent meth-
ods [21, 31] rely on deep learning to automatically learn
scene priors that are used to estimate the camera motion.
While these methods are more robust, they are still lim-
ited to certain scene types with static scene and constant
depth (except [31]).

Multiple image-based methods estimate the motion be-
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tween sequential RS images and use it to approximate the
motion during image exposure relying on a parametric mo-
tion model. While early methods [2, 5] use image feature
matching to estimate a rotational or planar homography,
more recent methods [1, 15, 27] compute the dense optical
flow between RS images and can correct RS distortion due
to object motion. However, they suffer from limitations of
image-based motion estimation: they do not work with a
single image, image blur and illumination changes. More-
over, they lack the exact information about the motion dur-
ing exposure and can fail in the presence of large displace-
ments in between frames and highly non-linear motion.

Event-based method. Recently, [28] developed an
event-assisted RS compensation method based on the work
of [23]. To ensure that interpolation in a given row is per-
formed from mid-exposure time of that same row to mid-
exposure time of the latent GS image their method uses ad-
ditional conditioning mechanisms and assumptions in the
sub-modules, notably constant velocity assumption similar
to images-based methods [1, 15, 27]. In contrast, we elim-
inate the need of additional strong assumptions and condi-
tioning in downstream modules by introducing a simple yet
effective event transformation that modifies the input events
to encode the transformation from GS to RS image.

RS Deblur. Besides RS distortion, in presence of fast
motion RS images often suffers from blur. In those cases,
RS restoration methods needs to simultaneously perform
deblur and distortion correction. [27] directly incorporate a
deblurring stream in the RS correction network, while [28]
adds an optional deblur module before the RS correction.

Datasets. BS-RSCD [27] dataset is recorded by using a
beamsplitter setup with temporally and geometrically syn-
chronized GS and RS cameras. Other datasets, such as
Fastec-RS [15] or Gev-RS [28] are collected by first us-
ing a high speed GS camera and later synthesizing RS im-
ages by sequentially copying rows from the high frame rate
GS images. For Gev-RS events are simulated from high
speed GS images using V2E [10]. Unfortunately, training
with synthetic events often does not generalize well to real
event data. Moreover, RS images synthesized by the above
method suffer from noise, low contrast and have small res-
olution, due to very short exposure time in the high speed
cameras. We address two of the above problems by captur-
ing a new dataset with real events using GS RGB and event
cameras arranged in a beamsplitter setup and introducing
new high fidelity simulator that generates high quality RS
images with optional blur from GS images.

3. Method

3.1. Eventful Shutter (EvShutter) Network

At first, we perform event-assisted deblurring of the in-
put RS image Irsblur image using a pre-processing deblurring

module inspired by [24]. Next, we compensate RS distor-
tion to obtain at a GS estimate at reference time tref using
the pipeline shown in Fig. 3. As shown in the Fig. 3, in-
stead of directly feeding all the raw events E0→tH to the
network as in [28], we firstly pre-process them by using the
proposed Filter and Flip (FnF) transformation, described
in details in Sec. 3.2. Next, we encode the transformed
events Egs→rs into a voxel grid representation Vgs→rs as
described in [32]. Then we feed the voxel grid and the RS
image Irs to an hourglass network composed of a warping
encoder and a synthesis encoder using complementary in-
terpolation approaches as in [22, 23]. Lastly, the fusion de-
coder progressively combines multi-scale images and warp-
ing and synthesis features to produce the final GS image
Igs. Below we explain the main modules of the proposed
method.

Deblurring. Besides the RS distortion, RS images can
suffer from motion blur due to camera or object motion dur-
ing the exposure time. Therefore, we propose to deblur RS
images using events before passing them to our RS distor-
tion compensation method. The overall pipeline of the de-
blurring is shown in Fig. 4. First, we filter out all events
triggered not during the exposure time of the correspond-
ing image rows and then, we shift them according to the
row-wise delay, similar to [28]. This allows the use of GS
event-based deblurring methods, such as [24]. The origi-
nal method estimates a deblur operator directly from events
using offsets and masks of deformable convolutions [29].
However, we found that it is possible to estimate better de-
blur operators from more a explicit motion representation,
such as optical flow. To estimate flow, we re-use the same
network and weights as in the main RS distortion compen-
sation pipeline.

Warping Encoder. The warping-based encoder takes
the voxel grid Vgs→rs and estimates optical flow Fgs→rs

relating the latent GS image to RS image using a flow net-
work from [23]. Note that because the transformed events
only encode changes from GS to RS image we can directly
estimate optical flow between them without relying on a
constant speed assumption. In other words, we can directly
estimate row-wise flow, where each row y represents the
pixel displacement from time tref to time y · tH/H . In
contrast in [1, 15, 26, 28], the authors predict optical flow
between frames or during the exposure time of the frame
using events and approximate the displacement between
RS and GS by multiplying with a row dependent coeffi-
cient, which is only accurate for linear motions. The es-
timated flow is used to warp multi-scale features extracted
from the RS image Irs using the image encoder result-
ing in multi-scale warping interpolation features Fw

→gs =

(F
w(0)
→gs , F

w(1)
→gs , F

w(2)
→gs ). Similarly, a multi-scale image pyra-

mid computed from the RS image is warped to get Irs→gs =

(I
rs(0)
→gs , I

rs(1)
→gs , I

rs(2)
→gs ). The warping is performed by using
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Figure 3. RS distortion compensation pipeline. At first the proposed method pre-processes input events with FnF transformation to
encode only the brightness change between GS and RS frames. The transformed events are then passed to double encoder hourglass
network with complementary warping and synthesis encoders relying on different interpolation principles. Then multi-scale features and
images from both encoders are fused in the decoder to produce a GS image. The first fusion block of the decoder is shown in detail.

Estimate 
offsets & masks

Figure 4. RS deblurring pipeline. First we filter out all the events
which are not triggered during the exposure time, then we deblur
the RS image using an improved version of [24], that relies on
optical flow estimation to predict deblur kernels.

differentiable backward interpolation. To downscale im-
ages and optical flow we perform average pooling and in
case of flow we additionally divide the flow by the down-
scale factor.

Synthesis-based Encoder. The synthesis-based encoder
takes both voxel grid Vgs→rs and RS image Irs as inputs
and computes multi-scale synthesis interpolation features
Fs. Intuitively, this encoder integrates brightness changes
from the event stream and adds them to the RS image. No-
tice that, in contrast to the warping encoder, this module can
handle illumination changes and fill motion occlusions.

Fusion Decoder. The fusion decoder progressively com-
bines synthesis Fs and warping-based Fw

→gs features, orig-

Figure 5. Event transformation workflow. Top row: Event
stream is transformed by first applying and event filtering followed
by a flipping step around an arbitrary reference time. Bottom row:
An example of events. Right: Animation (best viewed with Ac-
robat Reader) between RS-input and GS estimations at different
reference times.

inal RS image Irs and warped RS image Irs→gs on multi-
ple scales to reconstruct the GS image Igs. We use short-
cut connections from the original RS image to help the de-
coder to reconstruct static parts of the image. To select
the most informative features on each scale the decoder re-
lies on Squeeze-and-excitation (SE) blocks [9] attenuating
channels, and modulated deformable convolutions [29], at-
tenuating the feature maps spatially.
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3.2. Filter and Flip (FnF) Transformation

The auxiliary event camera records an event stream
E0→tH encoding all brightness changes from time 0 to
tH . However, to recover the GS image Igs correspond-
ing to a given RS image Irs, we are only interested on
those events Egs→rs encoding brightness changes between
latent GS and observed RS image. In this work, we pro-
pose a well-suited RS event transformation called Filter and
Flip (FnF), which transforms the event stream E0→tH to
Egs→rs through two steps: filtering and flipping steps as
shown in Fig. 5 and described below.

Filtering step. For each row y, we only keep those
events triggered between time ty and the reference time
tref , where ty is mid-exposure time of row y in observed
RS image.

Flipping step. We reverse all events before the refer-
ence time tref by inverting their polarities and recomputing
their timestamps such that they are flipped around tref as
shown in Fig. 5. This process ensures that the events encode
changes in the direction from GS-frame to RS-frame and
that the transformed events start at the time, which matches
the GS-frame and end at the RS-time.

Applying the event transformation eliminates the need
in time conditioning mechanisms and additional assump-
tions in the downstream modules. For example, in con-
trast to [28], the proposed method does not require constant
speed assumption in the flow estimation module and atten-
tion mechanisms in the synthesis-based encoder, which al-
lows re-using already pretrained modules on widely used
GS images. Also, notice, that the FnF transformation can
be adapted to arbitrary reference times.

In order to allow a good comparison to other works, we
set tref = tH/2, which corresponds to the mid-exposure
time of the central row.

3.3. RS-ERGB Dataset

To bridge the sim-to-real gap from synthetic to real
events we build a hybrid imaging system of a high speed
GS RGB-camera and an event camera in a beam splitter
setup. We use hardware temporal synchronization and geo-
metrically align events and images as described in the Supp.
Mat. With this setup we capture the first RS dataset with
real events and high quality images. We generate high qual-
ity RS images with optional blur using our novel simulator
based on adaptive interpolation described below.

High quality RS simulator. Our proposed pipeline al-
lows to record GS sequences at lower speed than previous
methods (160 fps compared to [15, 28] that record GS se-
quence at 2400 or 5700 fps). This allows us to use a longer
exposure and as a result, acquire images of higher qual-
ity. Then we adaptively interpolate captured images us-
ing Super Slomo [11], so that the maximum displacement
between interpolated frames is at most 1 pixel similar to

Figure 6. Synthetic RS-images from a sequence of GS-Images
Ii. Each row is constructed separately by computing the weighted
average of the GS-frames, which are assumed to be a close ap-
proximation of the latent GS-frames.

Vid2E [4]. This procedure ensures that a sufficient tempo-
ral resolution is achieved to synthesize realistic blur and RS
effect. As shown in Fig. 7, using a fixed interpolation fac-
tor can give unrealistic results as the amount of motion can
differ significantly by region and scene. The resulting in-
terpolated video sequence can be thought of as discrete ap-
proximation of latent GS-images Ii of the true latent frames
Ilatent(t, x, y). To synthesize a row yrs of a RS-image the
integral of Ilatent(t, x, y = yrs) has to be computed over
the exposure time for this row, as

Irs(tstart, tend, yi) =
1

tend − tstart

tend∫
tstart

Ilatent(t, yi) dt.

(1)
We use a discrete approximation instead and compute a
weighted average of the approximated latent frames Ii as
shown in Fig. 6. Using this procedure a synthetic exposure
time and readout time T are chosen to synthesize corre-
sponding RS frames. Notice that exposure time and readout
time can be set separately allowing us to create blurry RS
images with sharp RS ground truth for the task of RS de-
blurring. Video interpolation has already been used in the
past to generate more realistic blur from videos [17], but to
the best of our knowledge, we are the first to use an adaptive
upsampling scheme to get consistently realistic results. Ex-
amples of our dataset with different amounts of blur and a
comparison to a version without adaptive interpolation can
be seen in the Supp. Mat..

Comparison to Gev-RS [28] is shown in Tab. 1. Com-
pared to Gev-RS, our dataset has real events and the RS and
GS image have better quality and resolution, despite using
a lower end camera 2, since our new synthesis procedure
allows using lower frame rate with longer exposure.

4. Experiments
In this section, first, we ablate the key contributions of

the proposed EvShutter method. Second, we benchmark

2Phantom VEO 640 is used for collecting Gev-RS cost 60k$ while
Blackfly S used for collecting our datasets costs just 500$.

13908



Figure 7. Benefit of the proposed RS simulator In contrast to
a simulator with fixed interpolation rate, the proposed simulator
with an adaptive interpolation does not suffer from aliasing arti-
facts regardless of the motion speed.

RS-ERGB (ours) Gev-RS [28]
Event data real (Prophesee Gen4M) synthetic
GS camera 160 fps 5.7k fps

Blackfly S Phantom VEO 640
№ sequence 34 29
Image quality high low
Resolution 970×625 640×360

Table 1. Details of our RS-ERGB compared to Gev-RS [28].
Best-suited properties are shown in bold.

the EvShutter against state-of-the-art image-based [15, 27]
and event-based [28] methods on our RS-ERGB dataset, as
well as on the public Fastec-RS dataset [15].

Details of the objective loss, training procedure and run-
time comparisons together with ablation on additional de-
sign choices can be found in the Supp. Mat.

4.1. Ablation Study

FnF event transformation. To evaluate the proposed
FnF transformation Tab. 2 we dissect our pipeline in purely
warping-based, purely synthesis-based and the full pipeline.

We compare the purely warping-based method to a ver-
sion that relies on a constant velocity assumption similar to
EvUnroll [28] by applying a row-wise scaling to the optical
flow computed from tGS to t0 and from tGS to tH . Our
FnF transformation improves the warping-based method by
0.77 dB in PSNR and 0.0104 in LPIPS [25].

We also test the purely synthesis based module with and
without the FnF transformation. As shown in Tab. 2 the
synthesis module with the transformation outperforms the
version without by 3.92 dB in PSNR and 0.0376 in LPIPS.

The overall architecture also benefits from the FnF trans-
formation by 2.61 dB in PSNR and 0.0203 in LPIPS.

Importance of optical flow in RS deblur module. We
show benefits of estimating the deblur operator from opti-
cal flow instead of raw events in Tab. 3. By introducing the
optical flow explicitly to the deblurring network we observe

Method PSNR↑ LPIPS↓ SSIM↑
Warping

Linearized flow 28.39 0.1721 0.870
FnF-Transform 29.16 0.1617 0.883

Synthesis
w/o FnF-Transform 25.87 0.2233 0.807
FnF-Transform 29.79 0.1857 0.867

Warping & Synthesis
Linearized flow 28.97 0.1703 0.870
FnF-Transform 31.58 0.1500 0.897

Table 2. Importance of FnF event transformation. The transfor-
mation improves performance of synthesis encoder and warping
encoder. In the warping encoder it allows to avoid constant speed
motion assumption. Ablation is made on the RS-ERGB validation
set and best method is shown in bold.

an improvement of 1.4 dB in PSNR without effectively in-
creasing the capacity, since we reuse the optical flow mod-
ule from the RS correction pipeline. Furthermore, we vi-
sualized the offsets and masks of the deformable kernels
in Fig. 9 and observed that in the case of large motions
the kernels did not follow the motion in the original im-
plementation of [24], but with our flow based adaption the
deformable kernel is well aligned with the motion. For the
sake of completeness we also add the results for deblurring
of the EvUnroll [28] deblur module finetuned on our data.

Method PSNR↑ LPIPS↓ SSIM↑
EDDMA [24] 34.92 0.0588 0.936
EDDMA [24]+Flow 36.32 0.0488 0.951
EvUnroll + Deblur [28] 35.64 0.0499 0.934

Table 3. Importance of optical flow in RS deblur module.
For this experiment we generate RS images with 50ms exposure
and compare RS-Deblurring results without RS correction. Best
method is shown in bold. We also show performance of EvUnroll
deblur module for reference.

4.2. Comparison with SOTA methods

RS-ERGB dataset. We compare our method to
the state-of-the-art image-based methods DSUN [15],
RSCD [27] and the recent event-based EvUnroll [28] on
RS-ERGB-Sharp dataset without blur and RSCD [27] and
EvUnroll [28] on the RS-ERGB-Blurry dataset with blur.
All methods were finetuned on our datasets. For more de-
tails please refer to the Supp. Mat. The results are reported
in Tab. 4 and qualitative comparisons are shown in Fig. 8.
On the RS-ERGB dataset, we outperform the best image-
based method DSUN [15] by 9.16 dB in terms of PSNR
and 0.0966 in LPIPS and the event-based method EvUn-
roll [28] by 0.75 dB in PSNR and 0.0966 in LPIPS. On the
RS-ERGB-Blurry dataset, we outperform EvUnroll [28] by
0.48 dB in PSNR and 0.053 in LPIPS. The image based-
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RS-ERGB-Sharp

RS-ERGB-Blurry

Input RS-image DSUN [15] (i) EvUnroll [28] (i+e) EvShutter (Ours) (i+e) Ground truth

Figure 8. Quantitative results on RS-ERGB-Sharp and ER-ERGB-Blurry datasets. Image-based methods are marked by (i) and event
and image based methods are marked by (i+e). The best method is shown in bold.

Figure 9. Visualization of deformable convolutions offsets in
deblurring module for the original method [24](left), and our
method (right), where offset are computed from optical flow.

method RSCD [27] seems not able to handle the difficult
combination of large RS distortion and blur. Our method
improves current image-based SOTA methods especially in
areas with large displacements between RS and GS-frame.
DSUN [15] is able to reconstruct the overall shape of the ob-
ject, but produces strong artifacts. EvUnroll [28] is able to

recover the structure of the GS images very well, but seems
to heavily rely on their synthesis branch in areas with large
non linear motion. We hypothesize that the fusion in RGB
space makes it more difficult to combine the fine detail and
texture from the warping branch with the coarse structurally
correct results from the synthesis branch, which often lack
precise colors. Additional comparisons can be found in the
Supp. Mat..

Fastec-RS dataset To compare the proposed method to
other SOTA on the public Fastec-RS dataset [15] we synthe-
sized events from the original high speed sequences shared
by the authors using ESIM [20] with the same parame-
ters as in [28] and re-train our method from scratch. We
run JCD [27] and DSUN [15] using the publicly available
checkpoints. For [26, 30], we extract the metrics from the
JCD paper [27] and for EvUnroll [28] and SUNet [1] from
their respective papers. The results are reported in Tab. 5.
The proposed method outperforms the best image-based ap-
proach by 4.07dB in PSNR and the event-based approach
by 1.09dB in PSNR, 0.023 in terms of LPIPS and 0.03 in
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Input RS-image EvUnroll original [28] EvUnroll trained on RS-ERGB Ours

Figure 10. Qualitative comparison on Real Events and RS images from EvUnroll [28]. Note that no ground truth data is provided for
this dataset.

Method PSNR [dB]↑ LPIPS↓ SSIM↑
RS-ERGB-Sharp

DSUN [15] (i) 22.97 0.2670 0.7976
RSCD [27] (i) 22.62 0.2759 0.7884
EvUnroll [28] (i+e) 31.38 0.2334 0.8614
EvShutter (Ours) (i+e) 32.13 0.1704 0.8866

RS-ERGB-Blurry
RSCD [27] (i) 17.87 0.3713 0.7109
EvUnroll [28] (i+e) 31.07 0.2576 0.8592
EvShutter (Ours) (i+e) 31.55 0.2046 0.8780

Table 4. RS correction on RS-ERGB dataset with real events.
The best method is shown in bold. Image-base methods are
marked by (i) and image and event-based methods by (i+e).

SSIM. Additionally, some qualitative examples are shown
in the Supp. Mat.. Similarly, to the results on the RS-ERGB
dataset we observe that our method performs better at object
boundaries, where the displacement is not homogeneous.
We obtain sharper and less ”wobbly” results.

Method PSNR ↑ LPIPS↓ SSIM↑
DSUN [15] (i) 26.52 0.122 0.79
RSCD [27] (i) 24.84 0.107 0.78
SUNet [1] (i) 28.34 - 0.84
ESTRNN [26] (i) 27.41 0.189 0.84
EvUnroll [28] (i+e) 31.32 0.084 0.88
EvShutter (Ours) (i+e) 32.41 0.061 0.91

Table 5. RS correction on Fastec-RS dataset with synthetic
events. The best method is shown in bold. Image-base methods
are marked by (i) and image and event-based methods by (i+e).

Qualitative comparison on real RS dataset from [28]
For qualitative comparison on real data, we evaluated our
method on the dataset published in [28], which features real
events and real RS images, but no ground truth. In Fig. 10,
we compare to the results from EvUnroll [28] trained on
their synthetic dataset with synthetic events and their model
trained on our RS-ERGB dataset, see Fig. 10. We observe
that by training on our RS-ERGB dataset with real events
EvUnroll [28] greatly improves their performance. This
shows the benefits of the proposed dataset with real events
and the novel RS image simulator. Our method performs
even better and does not suffer from strong ghosting ar-
tifacts as the EvUnroll [28]. Additonal examples can be
found in Supp. Mat.

5. Conclusion
This paper proposes a method for RS distortion correc-

tion and deblurring. The method estimates deblurring op-
erator from event-based optical flow and then compensates
RS using a double encoder hourglass network. In contrast
to previous methods, it does not rely on a constant veloc-
ity assumption and uses a simple architecture thanks to the
proposed event transformation. Additionally, we propose
the first RS dataset with optional blur containing real events
and simulated high-quality RS images and show that train-
ing on this dataset increases performance of methods in real
case scenarios. We carefully ablate each of the contribu-
tions and demonstrate the qualitative and quantitative per-
formance boost compared to previous state-of-the-art meth-
ods.
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