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Figure 1. Frame-by-frame reconstruction results for a 2K resolution image sequence. The image sequence is captured by a smartphone.

Abstract

High-quality 3D human body reconstruction requires
high-fidelity and large-scale training data and appropriate
network design that effectively exploits the high-resolution
input images. To tackle these problems, we propose a sim-
ple yet effective 3D human digitization method called 2K2K,
which constructs a large-scale 2K human dataset and in-
fers 3D human models from 2K resolution images. The
proposed method separately recovers the global shape of
a human and its details. The low-resolution depth network
predicts the global structure from a low-resolution image,
and the part-wise image-to-normal network predicts the de-
tails of the 3D human body structure. The high-resolution
depth network merges the global 3D shape and the detailed
structures to infer the high-resolution front and back side
depth maps. Finally, an off-the-shelf mesh generator recon-
structs the full 3D human model, which are available at
https://github.com/SangHunHan92/2K2K. In
addition, we also provide 2,050 3D human models, including
texture maps, 3D joints, and SMPL parameters for research
purposes. In experiments, we demonstrate competitive per-
formance over the recent works on various datasets.

1. Introduction

Reconstructing photo-realistic 3D human models is one of
the actively researched topics in computer vision and graph-
ics. Conventional approaches search for correspondences

across multiple views. Therefore, it was necessary to em-
ploy multiple camera systems [9, 11] to acquire high-quality
human models. However, the bulky and expensive camera
systems limit the usage of normal users such as personal
content creators and influencers. Recent progress in deep
learning has shown the possibility of reconstructing human
models from a single image [1,15,21,30,35,40,46,48,54,55].
Nevertheless, there still exists room to improve the quality of
3D human models, especially given an input single image.

Existing approaches fall into two categories; the first is to
predict a deep implicit volume [15, 40, 41] and the second is
to infer multiple depth maps [13] from an image. In the case
of the first approach, the implicit volume can be directly pre-
dicted through a deep learning network [46] or the volume
can be constructed by predicting each voxel [40, 41] mil-
lions of times. Therefore, these approaches are demanding
either in memory or in time. The second approach requires
to predict at least two depth maps, one for the front and the
other for the back, to build a complete 3D human model.
Gabeur et al. [13] propose an adversarial framework to pre-
dict double-sided depth maps; however, it shows poor results
owing to inadequate training data generated by using 19
human scan models in addition to the synthetic dataset [47].
Here, researchers have paid attention to recover not only
geometric details [41] such as facial regions but also people
in various postures by predicting surface normal maps and
parametric template models [33].

We claim that the prediction quality of 3D human mod-
els is primarily affected by suitably designed deep neu-
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ral networks and high-quality training datasets, i.e., high-
resolution images and 3D human models. Existing ap-
proaches, however, could not handle high-resolution images,
e.g., 2048×2048, because it requires massive learnable pa-
rameters to train, and there was no such large-scale dataset
for 3D human digitization.

There are human datasets opened publicly for research
purposes [49–51, 55]. These datasets, however, lack both
quality and quantity to train a network generating high-
fidelity human models. In this paper, we present a practical
approach to reconstructing high-quality human models from
high-resolution images and a large-scale human scan dataset
consisting of more than 2,000 human models, where existing
methods utilize a few hundred human scans to train their
networks.

Our framework takes high-resolution images as input up to
2K, 2048×2048, and it is the first to predict high-resolution
depth maps for the task of 3D human reconstruction, named
2K2K. To minimize the number of learnable parameters
and memory usage, we split the human body into multiple
body parts such as arms, legs, feet, head, and torso, with
the aid of a 2D pose human detector [8]. In addition, we
align each body part by rotating and scaling to a canonical
position which makes the proposed method robust under
human pose variation while excluding background regions
from the computation. By doing this, the part-wise image-
to-normal prediction network can predict accurate surface
normals even in the presence of pose variations. Afterward,
we merge predicted normal maps into a single normal map
and feed it to the normal-to-depth prediction network. Note
that it is hard to predict depth maps directly for each body
part because of the scale ambiguity; predicting the depth map
from a merged normal map can alleviate this problem. We
also predict a coarse depth map and feed it to the normal-
to-depth prediction network to obtain consistent depth maps
over different body parts. Finally, we generate high-fidelity
human meshes through Marching cubes [26], whose example
is shown in Fig. 1.

To summarize, the contributions of this paper are:

1. Accuracy. Our method recovers the details of a hu-
man from high-resolution images up to a resolution of
2048×2048.

2. Efficiency. The part-wise normal prediction scheme
naturally excludes background regions from computa-
tion, which results in a reduced memory footprint.

3. Data. We release a large-scale 3D human dataset con-
sisting of 2,050 human models with synthesized images.

2. Related Work
We review clothed human 3D reconstruction from sin-

gle images with respect to datasets, model-free approaches,
and parametric model-based approaches. Here, we refer to

Dataset License # of subjects # of Frames # or vertices RGB Mesh Texture SMPL(-X) Keypoint3d

BUFF [51] Non-commercial 6 >13.6k 150k X X X X X

CAPE [28] Non-commercial 15 >140k 6890 X X X

DFAUST [5] Non-commercial 10 >40k 190k X X X X X

Humbi [50] Non-commercial 772 26M 50k X X X X X

THuman [55] Non-commercial 200 6000 150k X X X X

THuman2.0 [49] Non-commercial 200 526 300k X X X

MultiHuman [53] Non-commercial 150 453 500k X X X

HuMMan [6] Non-commercial 1000 60M 300k X X X X X

RenderPeople [39] Commercial - - 223k X X X

AXYZ [4] Commercial - - 100k X X X

Twindom [44] Commercial - - 200k X X X

2K2K (Ours) Non-commercial 2050 2050 1M X X X X X

Table 1. A summary of the clothed human body dataset.

the parametric model as the Skinned Multi-Person Linear
(SMPL) model [25,33] that has been widely used for human
pose estimation and reconstruction.

2.1. Datasets for dressed human reconstruction

The clothed human dataset is fundamental for the study
of reconstructing the 3D human surface. Early studies use
a limited amount of data [5, 51] consisting of few subjects
or simple posture. Subsequently, as the parametric model
gain popularity in this field, a dataset [28] expressing cloth
by modifying SMPL vertices appeared. However, it become
necessary to reconstruct human surfaces with more complex
postures and difficult clothes. Therefore, a number of stud-
ies [49, 53, 55] capture their own datasets and release the
data to the public.

On the other hand, commercial human datasets [4,39,44]
are used for research to ensure professional quality. However,
these datasets cost a lot for research. Recently, large-scale
human datasets [6, 50] are released but they lack geometry
information for detailed face and cloth reconstruction. To
overcome this, we release a non-commercial 3D human
dataset with the largest number of subjects, i.e. humans, and
high-resolution geometry features. The characteristics of
each dataset are summarized in Table. 1.

2.2. Model-free human reconstruction

BodyNet [46] and DeepHuman [55] exploit human body
segmentation or 2D poses and combine them to predict deep
implicit volumes. However, the end-to-end training of a vol-
ume prediction network requires a large memory footprint
and computation. For this reason, BodyNet represents the
3D shape of the human body with a voxel volume whose
resolution is 128 × 128 × 128. Caliskan et al. [7] use an
additional implicit 3D reconstruction module to overcome
the low resolution. As one of the model-free approaches,
depth prediction [20, 43] is an effective approach to building
3D human models. For example, Mustafa et al. [29] show
that multiple humans can be reconstructed with the aid of
instance segmentation. ARCH [18] and ARCH++ [16] re-
cover the body geometry in a canonical space not only to
predict accurate human models but also to animate recon-
structed human models. PIFu [40] and its variants [15, 17]
train a deep implicit function defined over a pre-defined
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(a) Capture studio (d) Texture map (e) 3D pose(b) 3D model (f) SMPL(c) Rendered image
Figure 2. Our datasets provides high-fidelity 3D human models, captured by 80 DSLR cameras, texture maps, 3D poses (openpifpaf-
wholebody [24]), and SMPL model parameters [25].
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Figure 3. Statistics of the scanned human models in the proposed dataset.

space. Once the implicit function is trained, it is possible to
construct an implicit volume by using the implicit function
repeatedly, i.e., for each voxel. PHORHUM [3] predicts both
geometric and photometric information simultaneously by
using global illumination and surface normal prediction. PI-
FuHD [41] presents the implicit function for high-resolution
images whose input size is up to 1024×1024. They generate
high-and low-resolution feature maps and embed them to
compute the 3D occupancy field for reconstructing a high-
fidelity 3D human model accurately. However, PIFuHD still
needs much memory and has slow inference time due to the
per-pixel calculation to construct coarse and fine implicit
volumes.

Our body part-wise approach allows fast, lightweight, and
high-fidelity 3D reconstruction for human models against
existing model-free approaches. In addition, we alleviate
the potential problems of the model-free approach such as
robustness under pose variations.

2.3. Parametric model-based human reconstruction

Pavlakos et al. [33] introduce SMPL-X, which proposes
latent pose features to exclude invalid human poses effi-
ciently. SMPLpix [36] estimates realistic images with var-
ious viewpoints and poses from sparse 3D vertices using
RGB-D images obtained from the SMPL model. PaMIR [54]
fuses the SMPL model features and image features in the
implicit field to reconstruct the detailed 3D human model.
Moreover, thanks to the initial geometry cue from the SMPL,
it can robustly deal with depth ambiguity. Tan et al. [42]
propose a supervised approach to predict depth maps from a
video by imposing the consistency between different frames
through the initial SMPL model. SMPLicit [10] predicts the
unsigned distance to the object surface using the SMPL oc-

clusion map in the latent space. Zhu et al. [56,57] propose to
deform initial SMPL vertices using image-aligned features.
ICON [48] reconstructs clothed human surfaces in various
postures by feeding initial normal maps from the predicted
SMPL model. DensePose [14] introduces a simplified hu-
man mesh model that is represented by the predefined UV
map. Alldieck et al. [2] utilize DensePose to extract and
project human image textures in the UV map. Their method
first infers surface normal maps from the UV texture map
and afterward reconstructs a 3D human model in a single
predefined pose, e.g., T or A pose. Jafarian and Park [19]
adopt DensePose to infer depth information from the video.
Having the depth information of a previous frame in one
hand, they sequentially improve the details of 3D human
body structures. Zhao et al. [52] modify the SMPL tem-
plates for A-posed humans and compute the dynamic offset
through the UV map to reconstruct human models.

Unlike the above works, our 2K2K only needs single
images to capture fine 3D details. In addition, the proposed
method can deal with various human poses, clothes, and ac-
cessories because it does not count on the parametric human
model, which has difficulty capturing geometric details.

3. Human Scan Dataset
Since the performance of human reconstruction primar-

ily depends on the quality and quantity of training data,
we release our high-quality human scan models in public,
consisting of 2,050 3D human models scanned by our scan
booth. The booth contains 80 DSLR cameras, i.e., Nikon
D50 model, where the cameras are aligned vertically and
horizontally as illustrated in Fig. 2 (a). The pitch angle of
a camera is adjusted manually, assuming an average human
height is standing in the middle, i.e., 5.9 feet tall. The highest
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Figure 4. An overall framework of the proposed method. The first phase predicts the low-resolution front/back view depth maps, and
the high-resolution front/back view normal maps. The high-resolution depth network upsamples the low-resolution depth maps with the
guidance of the high-resolution normal maps. Finally, the mesh generation reconstructs the full 3D model.

cameras look at the head region; the second-highest cameras
look at the upper body; the third-highest cameras capture
the mid-body region; the fourth-highest cameras look at the
lower body; the lowest cameras are pointing at the knees.
We generate initial human models by using commercial soft-
ware, i.e., RealityCapture [38], and manually post-process
the models by filling holes and enhancing geometric details
in hair regions by experts. Finally, we decimate meshes
while keeping important geometric structures. The number
of vertices for released models is about 1M, whose example
is shown in Fig. 2 (b). The scanned model preserves the geo-
metric details such as fingers and wrinkles properly mainly
because of high-quality images captured in a controlled en-
vironment.

3.1. Synthesizing images for training

Instead of directly using images taken in our scan booth,
we augment our data to mimic realistic environments and
diversify the training data. There are many ways to render
such images [47]. In terms of synthesizing approaches, it is
possible to generate photo-realistic images with environmen-
tal assets and rendering software such as Unreal [12] and
Unity [45]. An example result is shown in Fig. 2(c), where
the reflecting materials and shadings are rendered realisti-
cally. However, this ray-tracing approach is time-consuming
and requires manual settings by experts. Therefore, we use
a more straightforward approach i.e., the Phong lighting
model while superimposing the background using randomly
selected images. Therefore, one can also recover shadings
and lighting directions from the shaded input. In addition,
we also note that multiple humans can be placed at random
positions, or a single person can be placed at the center of the
image. The latter assumes that humans are already detected
and appropriately cropped, thanks to the recent advances
in object detection technology. We additionally provide
texture map, 3D keypoint, and SMPL Model as shown in
Fig. 2(d),(e),(f) for the effectiveness of the dataset. In this
paper, we generate human-centered training images, whose
details will be described in Sec.5.

3.2. Statistics and bias

There are many kinds of human appearances in the real
world, determined by various factors such as gender, country,
and culture. We believe, therefore, it is crucial to share
statistics of scanned humans to make our dataset applicable
to diverse research topics. In order to compile distribution
statistics for our dataset, we limit those to 12 categories as
shown in Fig. 3. Due to the geographic circumstances, more
than 90% of models are from Asian countries, which is a
common issue on the person-related dataset. By considering
various combinations of the treat, our dataset enables deep
learning networks to form diverse feature representations of
human bodies.

4. Proposed Method
We aim to produce a high-quality 3D human model V

from a single high-resolution image I with a resolution of
up to 2048 × 2048. As illustrated in Fig. 4, the proposed
method Φ(·) conducts reconstruction formulated as below:

V = Φ(I, J, S), (1)

where ji ∈ J refers an ith joint and si ∈ S denotes pre-
defined patch size cropped centered at ji. Using these in-
puts, the first phase predicts low-resolution depth maps Dl

and high-resolution normal maps Nh from low-resolution
normal maps Nl. The second phase produces the high-
resolution front and back-sided depth maps Dh from Dl and
Nh. Finally, the high-fidelity 3D model V is reconstructed
from Dh.

4.1. Part-wise image-to-normal network

Body part extraction and alignment. Since the image-to-
normal network takes aligned part images as input, we first
crop image patches using 2D joints for the 12 body parts i.e.,
head, torso, upper arms, lower arms, upper legs, lower legs,
and feet. Let P = {pi|0 ≤ i < 12} be the twelve patches
cropped from image I by using 2D joints J, centered at 2
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Figure 5. (a) Based on human joints, the body parts are categorized
into five parts, i.e. a head, a torso, arms, legs, and feet. Afterward,
we transform them in the predefined sizes and positions and align
the same body parts in the same direction to have a roughly similar
structure. (b) We adopt the AU-Net [31] to generate front and back
view part-wise normal maps ni. Then, we warp each normal map
to the original position and scale with the transformation matrix
Mi, and then finally obtain the high-resolution normal maps Nh.

to 4 joints. For example, the upper arm region is extracted
by using two joints, the shoulder and elbow, and the torso
region is extracted by using two shoulder joints and two
pelvis joints. Then, we warp image patches,

p̄i = Mipi, (2)

where p̄i ∈ P̄ is the body part transformed by a similarity
transformation Mi. An example of cropped images is illus-
trated in Fig. 5 (a), where we feed P̄ to the normal-to-image
network. An inverse similarity transformation M−1

i is then
used for merging the part-wise normal maps by inversely
warping each patch. This pipeline is simple yet effective
to train high-resolution images not only because it reduces
the computational complexity but also because a less com-
plicated network can be used for aligned part-wise depth
prediction.
Part-wise normal prediction. We generate the part-wise
surface normals by using an image-to-normal network
GN,i(·) as below:

n̄i = GN,i(p̄i,M
−1
i Nl), (3)

where n̄i denotes a double-sided normal map for ith aligned
body part. The double-sided normal map indicates the
stacked normal maps for front and rear views. The Nl is
used to separate the background and provide an initial geom-
etry, which will be explained in Sec. 4.2. Note that instead
of training twelve independent networks, we train the five
image-to-normal prediction networks for head, torso, arms,
legs, and foot regions, respectively, as shown in Fig. 5 (b).
The separation scheme enforces each network to focus on
its unique structure and patterns of the body parts as well as
to reduce the number of learnable parameters. In addition,
we use the AU-Net [31] as our backbone network to predict

Figure 6. The high-resolution depth network takes the low-
resolution depth and the high-resolution normal maps in Eq. (4) to
render the high-resolution depth maps Dh. All of normal maps and
depth maps consist their front and back views.

normal maps. Once normal maps are predicted for all body
parts, we assemble them into the high-resolution normal
maps Nh as follows:

Nh =
K∑
i=1

(Wi � ni) , (4)

where ni = M−1
i n̄i is an inverse warped normal map of

n̄i by applying M−1
i and � stands for an element-wise

product. Since the multiple normal vectors can be projected
onto the same pixel in the original image, we blend normal
vectors when they are near the boundary region and projected
multiple times. The blending weight Wi(x, y) is computed
as,

Wi(x, y) =
G(x, y) ∗ φi(x, y)∑
iG(x, y) ∗ φi(x, y)

,

φi(x, y) =

{
1 if

∑
ni(x, y) 6= 0>

0 otherwise ,

(5)

where (x, y) denotes a pixel location, ∗ stands for a convo-
lution operator, and 0> is the six dimensional zero vector.
We compute a pixel weight Wi(x, y) w.r.t. the pixels hav-
ing projected normal vectors which results in decreasing
weights near the boundary regions conditioned by the size of
a Gaussian kernel G(·, ·) with the boundary region σ = 7px.

4.2. Low-resolution depth prediction network

Rather than directly predicting the depth maps from the
merged normal maps Nh, we predict the coarse depth maps
to guide predicting high-resolution depth maps. The low-
resolution depth network sequentially infers coarse normal
maps Nl and depth maps Dl. Although it lacks geometric
details, the smaller image size better captures the global
geometric information. In this work, we adopt the depth
prediction network used in [32] because the dual-encoder
AU-Net (D-AU-Net) selectively captures meaningful fea-
tures from photometric and geometric information, therefore,
different information can be complementary each other. On
the other hand, the attention module makes the network con-
verges quickly compared to the conventional U-Net structure.
We first down-sample the input image I to a low-resolution
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image I l. The image-to-normal network in the D-AU-Net
predicts double-sided coarse normal maps Nl from Il. Dif-
ferent from [32] which generates double-sided depth and
normal maps, our low-resolution depth network GDl(·) addi-
tionally yields a mask map M̂l to deal with the background.
Finally, the low-resolution depth map Dl is computed by the
element-wise product � of D̂l and M̂l.

Dl = D̂l � M̂l,

D̂l, M̂l,Nl = Gl
D(I l).

(6)

Here, we set the resolution of an input image to 256× 256
which is smaller than the input by a factor of 8.

4.3. High-resolution depth prediction network

We design the high-resolution depth network based on
a shallow convolution network architecture that consists
of three cascaded blocks as shown in Fig. 6. The high-
resolution depth network Gh

D(·) is defined as below:

Dh = D̂h � M̂h,

D̂h, M̂h = Gh
D(Nh,Dl),

(7)

where it takes the low-resolution depth maps Dl and the
high-resolution surface normal maps Nh as input to predict
high-fidelity depth maps Dh via the element-wise product
� of D̂h and M̂h. The cascade block basically increase
the resolution of input by the factor of 2, as illustrated in
Fig. 6. Here, the first two blocks fuse depth and normal
information to generate feature maps, and the last block
generates double-sided depth map Dh from Nh and fused
features. Unlike the existing works that calculate the signed
distance function through the implicit function of the MLP
structure, we choose the CNN structure to encode the normal
locality information. This contributes to forming a detailed
geometry by exchanging information with adjacent pixels in
the network structure.
Mesh generation. There are multiple ways to generate a
3D model from depth maps. In this work. we take a similar
approach to [13]. We convert the depth maps into 3D point
clouds, and then compute a surface normal for each point
from its neighboring points. Afterward, we run a screened
Poisson surface construction [22] to obtain the smooth hu-
man mesh V.

4.4. Training scheme and loss functions

To train our network, we divide the training procedure
into two phases while employing different loss functions.
In the phase1 of Fig. 4, we use both a L1 loss and LSSIM

loss to optimize the image-to-normal networks, GN,i(·) and
Gl

N(·) as follows:

Lphase1, N =αL1(Nl
GT ,N

l)+βLSSIM(Nl
GT ,N

l)+∑
i(αL1(n̄GT,i, n̄i)+βLSSIM(n̄GT,i, n̄i)),

(8)

where LSSIM denotes the SSIM loss to preserve high-
frequency information in shape boundaries. The depth net-
work Gl

D(·) is then trained by minimizing a linear combina-
tion of a smooth-L1 loss Ls1 and binary cross-entropy loss
LBCE as below:

Lphase1, D =αLs1(Dl
GT ,D

l)+
βLs1(Nl

GT ,N
l
D)+γLBCE(Ml

GT ,M
l
D).

(9)

We also utilize a regularization term to maintain a consis-
tency between the ground-truth normal maps and the normal
maps Nl

D converted from the predicted depth maps Dl, sim-
ilar to [19]. LBCE is used to learn the foreground mask with
the binary cross-entropy loss. Three hyper-parameters are
empirically set to α=0.85, β=0.15, and γ=0.15.

For training the phase 2 in Fig. 4, we freeze the networks
trained in the phase 1 and train for the high-resolution depth
generator Gh

D(·). For this, we use the same losses used in
Eq. (9):

Lphase2 =αLsl1(Dh
GT ,D

h)+
βLsl1(Nh

GT ,N
h
D)+γLBCE(Mh

GT ,M
h
D),

(10)

We also use the same hyper-parameters as in Eq. (9). Intu-
itively, fine-tuning the entire models can be a viable option.

5. Experimental Results
For training, we use Adam optimizer [23] with β1 = 0.9,

β2 = 0.99, and stochastic gradient descent with the warm
restarts scheduler with T0 = 5 [27]. The learning rate and
batch size are set to 0.0001 and 2, respectively. We set the
kernel size to 15× 15 and σ to 5 for the Gaussian smoothing
kernel G(x, y). We train our model for 30 epochs using the
publicly available PyTorch framework, which takes about 3
days on a machine with four NVIDIA RTX A6000 GPUs.

5.1. Training data generation

Overall, we scanned 2,050 human models. We will re-
lease our human scan models to the public upon the accep-
tance of this paper. We also trained our network by using
all the human models to see how far the proposed frame-
work can improve the performance of human model gen-
eration. In addition, 368 high-quality human models [39]
are employed, denoted as the RenderPeople dataset, and the
THuman2.0 [49] model was also used for this experiment.
We synthesized a background image from [37] to the input
image to increase the reconstruction efficiency for the real
environment.

To train our network, images and depth maps are gener-
ated for front and back views through perspective projection,
and the normal maps are then obtained from the generated
depth maps. First, we shift each human model to be located
at the center of the rendered image using the centroid value.
Then, we rotate the shifted model horizontally from -30 to
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Method
RenderPeople THuman2.0 Inference

Time(s)↓P2S↓ Chamfer↓ Normal↓ IoU↑ P2S↓ Chamfer↓ Normal↓ IoU↑
PIFu 1.96 2.10 8.11 64.1 3.10 3.02 8.52 59.5 4.16

PIFuHD 1.45 1.66 6.56 70.1 2.42 2.81 8.89 59.7 13.67
PaMIR 1.51 1.68 6.50 67.8 2.04 2.43 6.19 71.6 2.70
ICON 0.55 0.57 3.78 87.5 1.21 1.19 6.65 74.6 9.61

2K2K 1.12 0.92 3.64 84.4 1.53 1.65 5.71 69.0 0.31

Table 2. Single-view human reconstruction evaluation results on
the RenderPeople and THuman2.0 datasets.

30 with an interval of 10 degrees. Here, the virtual cam-
era position faces the subjects from the [0, 0, -1] position.
The field of view is 50 degrees, and the image resolution
is 2048×2048. In the rendering process, ambient and dif-
fuse lighting is placed around the model to create a realistic
training image. The ambient lighting applied to the object’s
center is fixed, the intensity and color of diffuse lighting are
randomly changed, and 90 diffuse lights are placed around
the object. As a result, shaded front images, back images,
depth maps, and normal maps are generated for training.

In addition, we demonstrate the robustness of our network.
To do this, we use two public datasets: RenderPeople [39]
and THuman2.0 dataset [49]. We purchase 368 commer-
cial subjects for RenderPeople dataset and split them whose
train/test set ratio is about 9:1 (331/37). For THuman2.0,
the number of the train and test sets is 500 and 26, respec-
tively, following the evaluation protocol in ICON [48] for fair
comparison. As an ablation study, we demonstrate both the
usefulness of our dataset and its synergy with our network by
checking the performance improvement of our network with
respect to the number of training images and its resolution.
For the ablation study, we use up to 2,000 training subjects
and 50 test subjects.

5.2. Quantitative and qualitative evaluation

We compare 2K2K with the state-of-the-art (SOTA) meth-
ods, including PIFu [40], PIFuHD [41], PaMIR [54] and
ICON [48] with human scanned data from RenderPeo-
ple [39], THuman2.0 [49]. For evaluation, we use popularly
used metrics in the literature: average point-to-surface(P2S)
distance, Chamfer distance, average surface normal error,
and Intersection over Union(IoU). Metric units are centime-
ters for P2S and Chamfer, and radian for surface normal. For
the P2S distance and Chamfer distance metrics, RenderPeo-
ple used the original scale, and Thuman2.0 was evaluated by
normalizing the mesh scale for fair evaluation because the
scale is different for each subject.

Table. 2 shows the quantitative comparison results. Ours
achieves the best results in almost measures. Although ICON
shows promising result in terms of the P2S distance and
Chamfer distance, we outperform the SOTA models in the
surface normal metric, thanks to the strength of CNN archi-
tecture taking locality information to the end of the network.
We add its detailed explanation in supplementary. For infer-
ence time, other implicit function methods require a huge

Resolution P2S↓ Chamfer↓ Normal↓ Inference
Time(s)↓

Memory(MB)
Whole Img. Part-wise

512×512 1.17 1.20 4.72 0.043 6,565 5,735(87%)
1024×1024 1.15 1.10 4.36 0.091 15,065 11,011(73%)
2048×2048 0.96 1.01 3.69 0.308 47,195 30,413(64%)

Table 3. Performance evaluation w.r.t. the different resolution in-
puts. As the resolution of input becomes larger, our approach
more effectively predicts the depth maps. Our method predicts high-
quality depth maps at 20/10/3 fps for different resolutions of inputs.

(a) Input (g) ICON(f) PaMIR(e) PIFu(d) PIFuHD(c) 2K2K(b) GT

Figure 7. Qualitative results. 2K2K shows accurate results over
(c)-(g). Particularly, our results show that the detailed shape of the
human body are better expressed compared to other methods.

time to compute the signed distance function, while since our
method predicts the depth map in the end-to-end manner, the
inference is done within 0.3 seconds even with 2K resolution
images. Fig. 7 compares the normal maps by using predicted
human models from RenderPeople and THuman2.0 images.
As shown, our method can recover details of facial regions
compared to the other methods.
Effectiveness. We evaluated the memory footprint, e.g.,
required memory for a single batch training, at different
resolutions. Table. 3 shows the actual memory usage dur-
ing training and the perfomance changes. When we use 2K
resolution images, we can obtain the impressive results as
expected. In addition, our part-based approach enable our
network to use the high-resolution images as input. That
means that the proposed method is more efficient and power-
ful than those of the direct usage of whole images as input.
Geometric detail. Table. 3 shows the performance accord-
ing to the image resolutions in our dataset. The P2S and
Chamfer metrics imply that there is a little performance
gain when using higher-resolution images. However, we
observe that the significant improvements exist in terms of
the normal metric, which means high-frequency details are
well preserved. In addition, Fig. 9 compares the different
quality of outputs w.r.t the resolution changes. As expected,
1024×1024 and 512×512 results show blurry results be-
cause downsampling the image erases meaningful informa-
tion. The most important comparison is in Fig. 9 (a) and
(b) where the input resolution is same but the whole-body
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Reconstructed shapeInputInput Reconstructed shape Input Reconstructed shape Input Reconstructed shape

Figure 8. Single image 3D human reconstruction results in the wild. The images are downloaded in internet.

(a) Ours (b) 2048×2048 (c) 1024×1024 (d) 512×512
Figure 9. An example of our result. (b) is the part-ware result
of the 2048 resolution image, and (c) (e) are the results of direct
prediction of normals in the 2048, 1024, and 512 resolution images.

Figure 10. Smooth side-view quality of the reconstructed model.

approach loses details compared to the part-wise approach.
This indicates that the part-wise approach is not only effi-
cient but also accurate, with the aid of the part-wise normal
prediction scheme.

Fig. 10 shows the smooth surface of the reconstructed
human model even from the side-view. We note that our
method works well for non-front-facing humans because we
rotate human models in the augmentation step. In addition,
Table. 4 shows the performance change according to the
number of training datasets. The metric indicates that the
overall performance is saturated when the number of the
subjects is 2,000.
In-the-wild performance. Fig. 8 shows the qualitative re-
sult made from internet photos. Although image and lighting
information not included in the training set, our method
shows high-fidelity reconstructions from in-the-wild images.
Limitations. Since we explicitly predict normal maps for
each body part, our method do not take severe self-occlusion
into account, e.g., when a lower arm is behind the back. We
claim that this phenomenon is inherently ambiguous, possi-

# of scan models P2S↓ Chamfer↓ Normal↓
250 1.44 1.35 7.00
500 0.99 1.05 4.36

1,000 0.98 1.04 4.06
2,000 0.965 1.010 3.65

Table 4. A comparison of performance changes according to the
number of training datasets. This table verifies that the number of
scan models is an important factor.

ble remedies are either predicting semantics for occluding
pixels or to employ human body prior [34] to guide the depth
prediction. We show several failure cases in the supplemen-
tary material due to the space limit.

6. Conclusion
We have proposed 2K2K, an effective framework for

digitizing humans from high-resolution single images. To
achieve this, we first built a large-scale human model dataset
by scanning 2,050 human models, and used them to train our
networks, consisting of part-wise normal prediction, low-
resolution, and high-resolution depth prediction networks.
To effectively handle the high-resolution input, we crop and
weakly align each body part not only to handle pose vari-
ations but also to better recover fine details of the human
body such as facial expressions. We demonstrated that the
proposed method works effectively for the high-resolution
images, for the various datasets.
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