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Abstract

Federated learning shows a bright promise as a privacy-
preserving collaborative learning technique. However,
prevalent solutions mainly focus on all private data sampled
from the same domain. An important challenge is that when
distributed data are derived from diverse domains. The pri-
vate model presents degenerative performance on other do-
mains (with domain shift). Therefore, we expect that the
global model optimized after the federated learning pro-
cess stably provides generalizability performance on mul-
tiple domains. In this paper, we propose Federated Proto-
types Learning (FPL) for federated learning under domain
shift. The core idea is to construct cluster prototypes and
unbiased prototypes, providing fruitful domain knowledge
and a fair convergent target. On the one hand, we pull the
sample embedding closer to cluster prototypes belonging
to the same semantics than cluster prototypes from distinct
classes. On the other hand, we introduce consistency reg-
ularization to align the local instance with the respective
unbiased prototype. Empirical results on Digits and Office
Caltech tasks demonstrate the effectiveness of the proposed
solution and the efficiency of crucial modules.

1. Introduction
Federated learning is a privacy-preserving paradigm [47,

83], which reaches collaborative learning without leaking

privacy. The cornerstone solution, FedAvg [47], aggregates

parameters from participants and then distributes the global

model (averaged parameters) back for further training,

which aims to learn a high-quality model without central-

izing private data. However, an inherent challenge in feder-

ated learning is data heterogeneity [26, 39, 69, 87]. Specifi-

cally, the private data is collected from distinct sources with

diverse preferences and presents non-iid (independently and
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Figure 1. Illustration of heterogeneous federated learning. The

feature visualization on inter domains (→ represents testing on tar-

get domain i.e., M → SV means that local dataset is from MNIST

and test model on SVHN). The top row indicates that local train-

ing results in domain shift. The bottom row shows that our method

acquires generalizable performance on different domains.

identically distributed) distribution [87]. Each participant

optimizes toward the local empirical risk minimum, which

is inconsistent with the global direction. Therefore, the av-

eraged global model unavoidably faces a slow convergence

speed [40] and achieves limited performance improvement.

A mainstream of subsequent efforts delves into introduc-

ing a variety of global signals to regulate private model

[13, 28, 38, 40, 51, 66, 70]. These methods focus on la-

bel skew, where distributed data are from the same do-
main, and simulate data heterogeneity via imbalanced sam-

pling, e.g., Dirichlet strategy [32] to generate different la-

bel distributions. Nonetheless, another noticeable data het-
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erogeneous property in federated learning is domain shift
[21,22,41,55,57]. In particular, private data is derived from

various domains, leading to distinct feature distributions.

In this scenario, we argue that naive learning on private data

brings poor generalizable ability in Fig. 1. Specifically, the

private model fails to provide discrimination on other do-

mains because it overfits local domain distribution. The

aforementioned methods mainly regulate the private model

via global knowledge (i.e., the average signals from partici-

pants). Therefore, these algorithms share a common weak-

ness: the global information is insufficient to describe di-
verse domain knowledge, which is magnified under the do-

main shift and thus hinders the improvement of generaliz-

ability. An intuitive solution is to preserve multiple models

for distilling respective domain knowledge. However, it in-

curs a high cost of both communication and computation.

Taking into account both the effectiveness and efficiency,

we rethink the prototype [11, 36, 67, 82, 91], which is the

mean value of features with identical semantics. It rep-

resents class-wise characteristics and is vector type [90].

Given the enormous participant scale in federated learning,

it is not efficient and feasible to maintain all prototypes.

However, directly averaging all prototypes to get global pro-

totypes would arise the same impediment as global mod-

els because averaging operation weakens the domain diver-

sity. Besides, global prototypes probably yield biased to the

dominant domain due to the unknown of private domains

proportion, which results in disadvantageous performance

on minority domains. Driven by these two issues, on the

one hand, we find representative prototypes by clustering

all prototypes. Therefore, each class is abstracted by a set

of diverse prototypes, capturing rich domain variance. On

the other hand, we generate unbiased prototypes based on

cluster prototypes to construct fair and stable global signals,

which avoid optimizing toward the underlying primary do-

main and thus ensure stability on different domains. Com-

pared with original feature vectors, cluster and unbiased

prototypes are privacy-friendly because it experiences twice

and third times averaging operation [70]. Hence, it is less

feasible to disentangle each raw representation and subse-

quently reconstruct private data. We analyze the superiority

of cluster prototypes and unbiased prototypes in Sec. 3.2.

In this paper, we propose Federated Prototype Learning

(FPL), which consists of two components. First, in or-

der to improve the generalizability on the premise of dis-

criminability. We introduce Cluster Prototypes Contrastive

Learning (CPCL), which leverages cluster prototypes to

construct contrastive learning [7,19,79,84,85]. CPCL adap-

tively enforces the query embedding to be more similar to

cluster prototypes from the same class than other prototypes

with different semantics. In particular, such an objective en-

courages instance feature to be close to representative proto-

types in the same semantic and separates it away from other

class prototypes, which incorporates diverse domain knowl-

edge and maintains a clear decision boundary. Second, we

utilize unbiased prototypes to provide a fair and stable con-

vergence point and propose Unbiased Prototypes Consis-

tent Regularization (UPCR). Specifically, we average clus-

ter prototypes to acquire unbiased prototypes. The local

instance is required to minimize the feature-level distance

with the corresponding unbiased prototype. Therefore, the

local model would not be biased toward dominant domains

and exhibits stable performance on inferior domains. We

conjecture that these two components together make FPL

a competitive method for federated learning with domain

shift. The main contributions are summarized below.

• We focus on heterogeneous federated learning with do-

main shift and identify that the inherent limitation of ex-

isting methods is that global regularization signal is in-

sufficient to depict diverse domain knowledge and biased

toward major domain among participants.

• We propose a simple yet effective strategy to learn a well

generalizable global model in federated learning with do-

main shift. Inspired by the success of prototype learn-

ing, we introduce cluster prototypes to provide rich do-

main knowledge and further construct unbiased proto-

types based on the average of cluster prototypes to further

offer fair and stable objective signal.

• We conduct extensive experiments on Digits [23, 33, 52,

61] and Office Caltech [16] tasks. Accompanied with a

set of ablative studies, promising results validate the effi-

cacy of FPL and the indispensability of each module.

2. Related Work
2.1. Data Heterogeneous Federated Learning

Federated learning is proposed to handle privacy con-

cerns in the distributed learning environment. A pioneer-

ing federated method, FedAvg [47] trains a global model by

aggregating local model parameters. However, its perfor-

mance is impeded due to decentralized data, which poses

non-i.i.d distribution (called data heterogeneity). Based

on FedAvg, existing methods of tackling data heterogene-

ity problem mainly leverage global penalty term. Fed-

Prox [40], FedCurv [66], pFedME [68], and FedDyn [1]

calculate global parameter stiffness to control discrepan-

cies. Besides, MOON [38], FedUFO [86], FedProto [70],

and FedProc [51] maximize feature-level agreement of lo-

cal model and global model. Moreover, SCAFFOLD [28]

and FedDC [13] leverage global gradient calibration to con-

trol local drift. The major limitation of these methods is that

they focus on single domain performance under label skew

scenario and overlook the problem of domain shift, lead-

ing to an unsatisfying generalizable performance on multi-

ple domains. Closely related methods such as FedBN [41],

ADCOL [37], FCCL [22] focus on personalized models

rather than a shared global model. Besides, the latter two
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methods require additional discriminator and public data,

which incurs a heavy burden for either the participant or the

server side. In this paper, we introduce cluster prototypes

(diverse domain knowledge) and unbiased prototypes (con-

sistent optimization direction) to learn a generalizable and

stable global model during the federated learning process.

2.2. Clustering Federated Learning

Clustered federated learning involves grouping clients

with similar data distributions into clusters, such that each

client is uniquely associated with a particular data distri-

bution and contributes to the training of a model tailored

to that distribution [64, 80]. Existing methods can mainly

leverage four types of clustering signals: model parameters

[5, 43], gradient information [10, 64], training loss [15, 46]

and exogenous information [2, 42]. However, we leverage

the clustering strategy to select representative prototypes in

order to address the federated learning with domain shift.

2.3. Prototype Learning

Prototype refers to the mean vector of the instances be-

longing to the identical class [67]. Due to its exemplar-

driven nature and simpler inductive bias, it has boosted

great potential in a variety of tasks. For example, in super-

vised classification tasks, it labels testing images via cal-

culating its distance with prototypes of each class, which

is considered to be more robust and stabler [81] in han-

dling few-shot [48, 67, 75, 81], zero-shot [25]. Moreover,

it also has been a surge of interest in semantic segmentation

task [35, 77, 90], unsupervised learning [18, 36, 79, 84, 85]

and so on. As for federated learning, prototypes can pro-

vide diverse abstract knowledge while adhering to privacy

protocols. There exist a few works incorporating pro-

totypes to handle data heterogeneous federated learning.

PGFL [49] leverages prototypes to construct weight atten-

tion parameter aggregation. FedProc [51] and FedProto

[70] aim to reach feature-wise alignment with global pro-

totypes. CCVR [44] generates virtual feature based on ap-

proximated Gaussian Mixture Model. FedPCL [71] focuses

on personalized federated learning and utilizes prototypes

to learn personalized models. However, these methods fo-

cus on single-domain performance. In domain shift, it is vi-

tal to consider generalization on diverse domains. Our work

sheds light on leveraging cluster and unbiased prototypes to

achieve this goal in federated learning.

2.4. Contrastive Learning

Contrastive learning has recently become a promising

direction in the self-supervised learning field, achieving

competitive performance as supervised learning. The clas-

sic methods [7, 19, 53, 79, 84, 85] mainly construct a pos-

itive pair and a negative pair for each instance and lever-

age InfoNCE [54] to contrast positiveness against neg-

ativeness. A major branch of subsequent research fo-

cuses on elaborating the selection of the informative pos-

itive pairs [3, 12, 30, 31, 34, 56, 59, 65] and negative pairs

[8, 14, 24, 27, 50, 60, 72, 88]. Another line explicitly inves-

tigates the semantic structure and introduces unsupervised

clustering methods to construct fruitful prototypes as rep-

resentative embeddings for groups of semantically similar

instances [6, 18, 36, 73, 89]. Differently, in this work, Clus-

ter Prototypes Contrastive Learning (CPCL) is designed for

providing generalization ability in federated learning with

domain shift. We leverage the unsupervised clustering al-

gorithm to select representative prototypes for each class

and then seek to attract each instance to cluster prototypes

in the same semantics while pushing away other cluster pro-

totypes from different classes, which brings both generaliz-

able and discriminative ability.

3. Methodology
3.1. Preliminaries

Following the typical federated learning [40, 47], there

are M participants (indexed by m) with respective private

data, Dm = {xi, yi}Nm
i=1, where Nm denotes the local data

scale. Under heterogeneous federated learning, the condi-

tional feature distribution P (x|y) varies across participants

even if P (y) is consistent, resulting in domain shift:
• Domain shift: Pm(x|y) �= Pn(x|y) (Pm(y) =
Pn(y)). There exists domain shift among private data.

Specifically, for the same label space, distinctive fea-

ture distribution exists among different participants.

Besides, participants agree on sharing a model with the

same architecture. We regard the model with two modules:

feature extractor and unified classifier. The feature extractor

f : X → Z , encodes sample x into a compact d dimen-

sional feature vector z = f(x) ∈ R
d in the feature space

Z . A unified classifier g : Z → R
|I|, maps feature z into

logits output l = g(z), where I means the classification

categories. The optimization direction is to learn a gener-

alizable global model to present favorable performance on

multiple domains, through the federated learning process.

3.2. Prototypes Meet Federated Learning

Motivation. Each prototype ck ∈ Rd is calculated by the

mean vector of the features belonging to same class:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

f(xi), (1)

where Sk means the set of samples annotated with class

k. Prototypes are typical for respective semantic informa-

tion. Besides, it carries the specific domain style informa-

tion because the prototypes are not consistent on different

domains. Therefore, it motivates us to leverage prototypes

from different domains to learn a generalizable model with-

out leaking privacy information. We further define the kth
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Eq. (11)

Eq. (8)

Eq. (10)

Figure 2. Architecture illustration of Federated Prototypes Learning (FPL). Participants upload local prototypes to server. Based on these

prototypes, we introduce cluster prototypes ( ) to construct Cluster Prototypes Contrastive Learning (CPCL in Sec. 3.3.1), bringing

diverse domain information. Besides, we acquire unbiased prototypes ( ) and propose Unbiased Prototypes Consistent Regularization

(UPCR in Sec. 3.3.2) to provide a stable consistency signal. Best viewed in color. Zoom in for details.

class prototype from the mth participant as:

ckm =
1

|Sk
m|

∑
(xi,yi)∈Sk

m

fm(xi)

Om = [c1m, . . . , ckm, . . . , c|I|m ] ∈ R
|I|×d,

(2)

where Sk
m = {xi, yi|yi = k}Nk

m
i=1 ⊂ Dm represents the

private dataset Dm of the kth class for the mth participant.

Global Prototypes. Considering that number of partici-

pants is large-scale in federated learning, the straightfor-

ward solution to leverage prototypes is the global proto-

types (G) via directly averaging operation akin to the global

model. Hence, the global prototypes are formulated into:

Gk =
1

N

N∑
m=1

ckm ∈ R
d

G = [G1, . . . ,Gk, . . . ,G|I|].

(3)

However, global prototypes mainly suffer from two notable

problems. � Global prototype unavoidably faces the same

dilemma as the global model. In detail, it depicts each class

signal by only one prototype, bearing no domain variation

under heterogeneous federated learning with domain shift.

� Moreover, due to the unknown of participants data dis-

tribution in federated learning, global prototypes would be

biased toward the dominant domain distribution, leading to

a skewed optimization objective during federated process.

Cluster Prototypes. Inspired by such limitations, we first

propose cluster prototypes. Compared with global proto-

types, we select representative prototypes rather than sin-

gle one via unsupervised clustering method, FINCH [63].

Compared with well-known clustering techniques such as

Kmeans [4, 45] and HAC [78], FINCH is parameter-free

and thus suitable for federated learning with uncertain par-

ticipants scale. Specifically, FINCH views that the nearest

neighbor of each sample is a sufficient support for grouping.

It implicitly picks characteristic prototypes because proto-

types from different domains are less likely to be the first

neighbor. Therefore, prototypes from different domains

probably fail to merge together, while prototypes from sim-

ilar domains fall into the same group, conversely. Specifi-

cally, we leverage cosine similarity to evaluate the distance

between any two prototypes and view the prototype with

minimum distance as its ’neighbor’, sorted into the same

set. We define the kth class prototype adjacency matrix as:

Ak(m,n) =

{
1, if n = vkm or m = vkn or vkm = vkn;

0, otherwise,
(4)

where vkm denotes the first neighbor (largest cosine similar-

ity) of the class k prototype from the mth participant, ckm.

Then, we select several representative prototypes in the em-

bedding space based on the clustering results via Eq. (4).

Thus, the cluster prototypes (P) are denoted as:
Pk = {ckm}Nm=1 Cluster−−−−→ {ckm}Jm=1 ∈ R

J×d

P = {P1, . . . ,Pk, . . . ,P |I|}.
(5)

We cluster N prototypes into J representatives of class k,

which effectively addresses the aforementioned problem �.

Unbiased Prototypes. Nevertheless, the scale of cluster

prototypes is variant because the unsupervised clustering

methods generate them after each communication, which

can not ensure a stable and fair convergent point. Thus, we

further average cluster prototypes to get a consistent signal:

unbiased prototypes (U ), which is calculated as follows:

Uk =
1

J

∑
ck∈Pk

ck ∈ R
d

U = [U1, . . . ,Uk, . . . ,U |I|].

(6)

Note that compared with global prototypes (G), unbiased

prototypes (U ) largely avoid being biased toward dominant

domains in heterogeneous federated learning and provide a

stable optimization target. Thus, we hypothesize that unbi-
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Global Prototype Cluster Prototype Unbiased Prototype

Figure 3. Illustration of different prototypes. Global prototype

( ) fails to describe diverse domains information and is biased

toward the underlying dominant domain. Cluster prototype (

) and unbiased prototype ( ) carry multiple domain knowledge

and stable optimization signal. See details in Sec. 3.2.

ased prototypes could depict the considerably fair conver-

gent point and further leverage them to conduct consistent

regularization, which productively handles the problem �.

Discussion. We further explain the difference of these three

kinds of prototypes in Fig. 3. Global prototypes inherently

present limited domain knowledge and show skewed fea-

ture space toward the potentially dominant domains in het-

erogeneous federated learning. Cluster and unbiased proto-

types complementarily handle these two problems because

the former provides fruitful domain knowledge and the lat-

ter represents an ideal optimization target, collaboratively

ensuring both generalization and stability. Compared with

existing methods that leverage the global model to construct

regularization term, prototypes are substantially smaller in

size than model parameters, which bring less computation

cost for participants. Besides, cluster prototypes and un-

biased prototypes are privacy-safe because they experience

twice and third times averaging operations through unsu-

pervised clustering. Therefore, leveraging these two kinds

of prototypes: cluster prototypes and unbiased prototypes

is not only a computation-friendly media but also a privacy-

preserving solution in heterogeneous federated learning.

3.3. Federated Prototypes Learning

For generalizability and stability in heterogeneous fed-

erated learning with domain shift, we leverage cluster pro-

totypes and unbiased prototypes to obtain fruitful domain

knowledge and stable consistency signal. The proposed

method comprises two key components: Cluster Prototypes

Contrastive Learning (CPCL in Sec. 3.3.1) and Unbiased

Prototypes Consistent Regularization (UPCR in Sec. 3.3.2).

3.3.1 Cluster Prototypes Contrastive Learning

We deem that a well-generalizable representation should

not only be discriminative to provide a clear decisional

boundary for different classes but also be as invariant as

possible to diverse domain distortions that are applied to

this sample. Specifically, for instance (xi, yi) ∈ Dm, we

feed it into network and acquire its feature vector zi =

f(xi). Then, we enforce the instance feature to be simi-

lar to respective semantic prototypes (Pk) and dissimilar to

different semantic prototypes (N k = P − Pk). We define

the similarity of the query sample embedding zi with corre-

sponding cluster prototypes c ∈ P as follows:

s(zi, c) =
zi · c

||zi|| × ||c||/τ , (7)

where temperature hyper-parameter, τ controls the concen-

tration strength of representations [76]. Thus, we expect to

enlarge the similarity with semantic coincident cluster pro-

totypes than other different cluster prototypes, which aims

to maintain a clear class-wise decision boundary. In our

work, we introduce Cluster Prototypes Contrastive Learn-

ing (CPCL) to contrast cluster prototypes with the same

class for each query sample against other remainder of clus-

ter prototypes with different semantics. It is natural to de-

rive the following optimization objective term:

LCPCL=− log

∑
c∈Pk exp(s(zi, c))∑

c∈Pk exp(s(zi, c)) +
∑

c∈Nk exp(s(zi, c))

=log(1 +

∑
c∈Nk exp(s(zi, c))∑
c∈Pk exp(s(zi, c))

),

(8)

We give a detailed optimization direction analysis of Eq. (8)

and thus reformulate the CPCL loss function as follows:
minLCPCL

≡ log(

∑
c∈Nk exp(s(zi, c))∑
c∈Pk exp(s(zi, c))

)

≡ log(
∑

c∈Nk

exp(s(zi, c)))

︸ ︷︷ ︸
Discriminative

− log(
∑
c∈Pk

exp(s(zi, c)))

︸ ︷︷ ︸
Generalizable

.

(9)

Note that minimizing Eq. (8) equally requires pulling em-

bedding vector zi closely to its assigned positive cluster

prototypes (Pk) and pushing zi far away from others neg-

ative prototypes (N k), which not only aims to be invariant

to diverse domain distortions but also enhances the seman-

tic spread-out property, promising both generalizable and

discriminative property of feature space and thus acquiring

satisfying generalizable performance in federated learning.

3.3.2 Unbiased Prototypes Consistent Regularization

Although cluster prototypes bring diverse domain knowl-

edge for the sake of plasticity under domain shift, the cluster

prototypes are dynamically generated at each communica-

tion and its scale is changing due to the unsupervised clus-

tering method. Therefore, cluster prototypes could not offer

a stable convergence direction at different communication

epochs. We assume that unbiased prototypes (U in Eq. (6))

based on averaged cluster prototypes, could provide a rela-

tively fair and stable optimization point and thus cope with

the problem of convergence instability. Thus, in this paper,

we purpose Unbiased Prototypes Consistent Regularization
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(UPCR) to leverage unbiased prototypes. Specifically, we

utilize a consistency regularization term to pull the feature

vector zi closer to the respective unbiased prototype, Uk as:

LUPCR =

d∑
v=1

(zi,v − Uk
v )

2, (10)

where v indexes the dimension of feature output. We expect

to achieve feature-level alignment between query embed-

ding and the corresponding unbiased prototype. Besides,

we construct CrossEntropy [9] loss and use the logits output

(li = g(zi)) with original annotation signal (yi) to maintain

local domain discriminative ability via:

LCE = −1yi log(σ(li)), (11)

where σ denotes softmax. Finally, we carry out the fol-

lowing optimization objective in local updating phase:

L = LCPCL + LUPCR + LCE . (12)

The overall federated learning algorithm is shown in Al-

gorithm 1. In each communication epoch, the server dis-

tributes the cluster prototypes and unbiased prototypes to

participants. In local updating, each participant optimizes

on local data, while the objective is defined in Eq. (12).

4. Experiments

4.1. Experimental Setup

Datasets. We evaluate methods on two classification tasks:

• Digits [23, 33, 52, 61] includes four domains: MNIST

(M), USPS (U), SVHN (SV) and SYN (SY) with 10

categories (digit number from 0 to 9).

• Office Caltech [16] consists four domains: Caltech

(C), Amazon (A), Webcam (W) and DSLR (D), which

is formed of ten overlapping classes between Office31

[62] and Caltech-256 [17].

We initialize 20 and 10 participants for Digits and Office

Caltech tasks and randomly allocate domains for partici-

pants. In detail, the Digits task is MNIST: 3, USPS: 7,

SVHN: 6 and SYN: 4. The Office Caltech is Caltech: 3,

Amazon: 2, Webcam: 1 and DSLR: 4. For each participant,

local data is randomly selected from these domains with dif-

ferent proportions (i.e., 1 % in Digits and 20 % in Office

Caltech), based on the difficulty and scale of the tasks. We

fix the seed to ensure reproduction of our results.

Model. For these two classification tasks, we conduct ex-

periment with ResNet-10 [20]. The feature vector dimen-

sion is 512. Note that all methods use the same network

architecture for fair comparison in different tasks.

Counterparts. We compare ours against several sota

federated methods focusing on learning a shared global
model: FedAvg (AISTATS’17 [47]), FedProx (arXiv’18

[40]), MOON (CVPR’21 [38]), FedDyn (ICLR’21 [1]), Fe-

dOPT (ICLR’21 [58]), FedProc (arXiv’21 [51]) and Fed-

Proto (AAAI’22 [70] with parameter averaging).

Algorithm 1: FPL

Input: Communication epochs E, local rounds T ,

number of participants M , mth participant private

data Dm(x, y), private model θm
Output: The final global model θE

for e = 1, 2, ..., E do
Participant Side;

for m = 1, 2, ..., N in parallel do
θem,Om ← LocalUpdating(θe, P , U)

Server Side;

θe+1 ← ∑N
m=1

|Dm|
|D| θem

/* Cluster prototypes */

Pk = {ckm}Nm=1 Cluster−−−−→ {ckm}Jm=1 via Eq. (5)

/* Unbiased prototypes */

Uk = 1
J

∑
ck∈Pk ck by Eq. (6)

LocalUpdating(θe, P , U ):
θem ← θe ; // Distribute global parameter

for t = 1, 2, ..., T do
for (xi, yi) ∈ Dm do

zi = fe
m(xi)

li = gem(zi)

/* Cluster Prototypes Contrastive
Learning */

LCPCL ← (zi,P) in Eq. (8) ; // Sec. 3.3.1

/* Unbiased Prototypes Consistent
Regularization */

LUPCR ← (zi,U) in Eq. (10) ; // Sec. 3.3.2

LCE ← (li, yi) in Eq. (11)

L = LCPCL + LUPCR + LCE

θem ← θem − η∇L
Om = {} ; // Initialize local prototypes

/* Local prototypes */
for k = 1, 2, ..., |I| do

Sk
m = {xi, yi|yi = k}Nk

m ⊂ Dm

ckm = 1
Nk

m

∑
(xi,yi)∈Sk

m
fm(xi)

Om = Om ∪ {ckm} in Eq. (2)

return θem,Om

Implement Details. To enable a fair comparison, we fol-

low the same setting in [22,38]. We conduct communication

epoch for E = 100 and local updating round T = 10, where

all federated learning approaches have little or no accuracy

gain with more communications. We use the SGD opti-

mizer with the learning rate lr = 0.01 for all approaches.

The corresponding weight decay is 1e − 5 and momentum

is 0.9. The training batch size is 64. The hyper-parameter

setting for FPL presents in the next Sec. 4.2.

Evaluation Metric. Following [40, 47], Top-1 accuracy is

adopted for fair evaluation in these two classification tasks.

We conduct experiments for three times and utilize the last

five communication epochs accuracy as final performance.
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Figure 4. Analysis of FPL with different temperature (Eq. (7)).
”Base” denotes FedAvg. See details in Sec. 4.2.

Digits
CPCL UPCR

MNIST USPS SVHN SYN AVG

98.14 90.85 76.56 55.01 80.14

� 98.03 91.13 79.76 56.84 81.44

� 98.23 93.12 81.18 55.40 81.98

� � 98.31 92.71 80.27 61.20 83.12
Office Caltech

CPCL UPCR
Caltech Amazon Webcam DSLR AVG

60.15 75.44 45.86 36.00 54.36

� 61.65 78.16 43.62 45.33 57.19

� 64.26 79.54 48.39 44.67 59.21

� � 63.39 79.26 55.86 48.00 61.63
Table 1. Ablation study of key components of our method in

Digits and Office Caltech task. Please see Sec. 4.2 for details.

Caltech Amazon Webcam DSLR

Cluster
Global

MNIST USPS SVHN SYN

Digits Office Caltech
Prototype

AVG 	 AVG 	
Global G 80.82 - 56.37 -

Cluster P 81.44 +0.62 58.45 +2.08
Figure 5. Comparison of cluster (P in Eq. (5)) and global pro-
totypes (G in Eq. (3)) for CPCL (Sec. 3.3.1) on each domain (Top

Row) and overall performance (Bottom Row) in Digits and Office

Caltech tasks with τ = 0.02. See details in Sec. 4.2.1.

4.2. Diagnostic Analysis

For thoroughly analyzing the efficacy of essential mod-

ules in our approach, we perform an ablation study on

Digits and Office Caltech to investigate: Cluster Proto-

types Contrastive Learning (CPCL) and Unbiased Proto-

types Consistent Regularization (UPCR). We firstly present

the overall performance with different contrastive tempera-

ture (τ in Eq. (8)). The Fig. 4 reveals that a smaller temper-

ature benefits training more than higher ones, but extremely

low temperatures are harder to train due to numerical insta-

bility (L = NaN in Eq. (12) when τ = 0.01), corroborat-

ing relevant observations reported in [7, 29, 74, 76]. Specif-

ically, the accuracy progressively increases as τ enlarges,

and the amelioration becomes marginal when τ = 0.02.

Hence, we choose τ = 0.02 by default. We further give a

quantitative result on these two components in Tab. 1. The

first row refers to the FedAvg which directly averages model

parameter without extra operation. Three crucial conclu-

sions can be drawn. First, CPCL leads to significant perfor-

mance improvements against the baseline on different tasks.

This evidences that CPCL strategy is able to produce gener-

alizable feature space. Second, we notice gains by incorpo-

rating UPCR into the baseline. This proves the importance

of considering consistent regularization. Third, combining

CPCL and UPCR achieves better performance, which sup-

ports our motivation of exploiting joint generalization and

stability in heterogeneous federated learning.

4.2.1 Cluster Prototypes Contrastive Learning

To prove the superiority of cluster prototypes (P in Eq. (5))

in providing generalizable and discriminative ability, we

compare them with global prototypes (G in Eq. (3)) on Of-

fice Caltech task under contrastive temperature τ = 0.02 in

Fig. 5. The results reveal that leveraging cluster prototypes

performs better than global prototypes and thus confirm our

motivation of leveraging multiple prototypes to capture di-

verse domain knowledge. For example, in Office Caltech

task, cluster prototypes achieve 2.08% overall performance

gain compared with global prototypes.

4.2.2 Unbiased Prototypes Consistent Regularization

Note that both global prototypes (G) and unbiased proto-

types (U ) are able to offer consistent regularization. We

conduct experiments on Digits and Office Caltech in Tab. 3.

These results confirm the superiority of utilizing unbiased

prototypes to offer consistent signal. As seen, the unbiased

prototypes provide a better convergence signal than global

prototypes and present the increased performance on differ-

ent tasks i.e., Digits (+0.82) and Office Caltech (+0.73).

4.3. Comparison to State-of-the-Arts

The Tab. 2 plots the final accuracy metric by the end of

federated learning process with popular sota methods. It

clearly depicts that our method performs significantly better

than counterparts, which confirms that FPL can acquire well

generalizable ability and thus effectively boost performance

on different domains. Take the result of Office Caltech as an

example, our method outperforms the best counterpart with

a gap of 4.59%. We visualize the t-SNE visualization anal-

ysis of FPL at different communication epochs in Fig. 7,
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Digits Office Caltech
Methods

MNIST USPS SVHN SYN AVG � Caltech Amazon Webcam DSLR AVG �
FedAvg [ASTAT17] [47] 98.14 90.85 76.56 55.01 80.14 - 60.15 75.44 45.86 36.00 54.36 -

FedProx [arXiv18] [40] 98.11 90.24 77.01 56.66 80.50 +0.36 60.21 77.44 48.62 37.33 55.90 +1.54

MOON [CVPR21] [38] 97.44 92.15 77.62 38.79 76.50 -3.64 56.19 71.54 41.04 30.22 49.74 -4.62

FedDyn [ICLR21] [1] 98.01 91.00 78.95 54.22 80.54 +0.40 61.64 75.54 48.28 35.56 55.25 +0.89

FedOPT [ICLR21] [58] 96.23 91.80 73.03 57.85 79.72 -0.42 56.31 56.74 63.33 48.89 56.31 +1.95

FedProc [arXiv21] [51] 97.86 88.99 78.90 45.84 77.89 -2.25 58.07 73.65 42.76 30.22 51.17 -3.19

FedProto [AAAI22] [70] 98.30 92.44 80.35 53.58 81.16 +1.02 64.02 79.37 50.17 40.33 58.47 +4.11

FPL 98.31 92.71 80.27 61.20 83.12 +2.98 63.39 79.26 55.86 48.00 61.63 +7.27
Table 2. Comparison with the sota methods on Digits and Office Caltech tasks. AVG denotes average accuracy calculated on all

domains. See details in Sec. 4.3. Best in bold and second with underline. These notes are the same to others.

Figure 6. Comparison of average accuracy on different communication epochs with counterparts on Digits and Office Caltech tasks.

Please see details in Sec. 4.3.

Digits
Prototype

MNIST USPS SVHN SYN AVG 	
G 98.30 92.44 80.35 53.58 81.16 -

U 98.23 93.12 81.18 55.40 81.98 +0.82
Office Caltech

Caltech Amazon Webcam DSLR AVG 	
G 64.02 79.37 50.17 40.33 58.47 -

U 64.26 79.54 48.39 44.67 59.21 +0.73
Table 3. Comparison of consistent regularization with global

prototypes (G in Eq. (3)) and unbiased prototypes (U in Eq. (6))

on Digits and Office Caltech tasks. See details in Sec. 4.2.2.

E : 5 (90.3%) E : 15 (96.9%) E : 50 (97.7%) E : 75 (97.9%)

E : 5 (38.0%) E : 15 (76.03%) E : 50 (78.8%) E : 75 (80.0%)

Figure 7. t-SNE Visualization of FPL at different communica-
tion epoch on randomly participants from MNIST (Top Row) and

SVHN (Bottom Row). Please refer to Sec. 4.3 for details.

which depicts that FPL is feasible to learn a generalizable

decision boundary. We draw the the average accuracy met-

ric in each communication epoch during training phase in

Fig. 6. We observe that FPL presents faster and stabler con-

vergence speed than other methods in these two tasks.

5. Conclusion

In this paper, we explore the generalizability and stabil-

ity problem under domain shift in heterogeneous federated

learning. Our work introduces a simple yet effective fed-

erated learning algorithm, Federated Prototypes Learning

(FPL). We leverage prototypes (class prototypical represen-

tation) to tackle these two problems by enjoying the com-

plementary advantages of cluster prototypes and unbiased

prototypes: diverse domain knowledge and stable conver-

gence signal. The effectiveness of FPL has been thoroughly

validated with many popular counterparts over various clas-

sification tasks. We wish this work to pave the way for fu-

ture research on heterogeneous federated learning.
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