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Abstract

Backdoor attacks against neural networks have been in-
tensively investigated, where the adversary compromises
the integrity of the victim model, causing it to make wrong
predictions for inference samples containing a specific trig-
ger. To make the trigger more imperceptible and human-
unnoticeable, a variety of stealthy backdoor attacks have
been proposed, some works employ imperceptible pertur-
bations as the backdoor triggers, which restrict the pixel
differences of the triggered image and clean image. Some
works use special image styles (e.g., reflection, Instagram
filter) as the backdoor triggers. However, these attacks sac-
rifice the robustness, and can be easily defeated by common
preprocessing-based defenses.

This paper presents a novel color backdoor attack,
which can exhibit robustness and stealthiness at the same
time. The key insight of our attack is to apply a uniform
color space shift for all pixels as the trigger. This global
feature is robust to image transformation operations and the
triggered samples maintain natural-looking. To find the op-
timal trigger, we first define naturalness restrictions through
the metrics of PSNR, SSIM and LPIPS. Then we employ the
Particle Swarm Optimization (PSO) algorithm to search for
the optimal trigger that can achieve high attack effective-
ness and robustness while satisfying the restrictions. Exten-
sive experiments demonstrate the superiority of PSO and
the robustness of color backdoor against different main-
stream backdoor defenses.

1. Introduction

Neural networks have been applied in an increasing vari-
ety of domains, including image classification [10], speech
recognition [16] and natural language processing [1]. How-
ever, recent studies show that neural networks are suscep-
tible to backdoor attacks [9, 14]. The adversary can embed

*This work was done at NTU as a visiting student.
†Corresponding author

a backdoor into the victim model by poisoning the train-
ing dataset. Consequently, the backdoored victim model
will perform normally on clean samples but behave wrongly
on samples containing a specific trigger. Such threat can
bring severe damages to many critical applications in the
real world, such as face authentication [36], malware detec-
tion [30], speech recognition [39], autonomous driving [13],
etc.

Researchers advance the backdoor study by proposing
a variety of sophisticated attack techniques. These attacks
are improved from two perspectives. (1) Stealthiness. The
backdoor in the infected model can bypass existing detec-
tion approaches. Additionally, the triggers are designed to
look natural and evade human inspection. (2) Robustness.
The backdoor and the triggers are expected to be robust and
cannot be easily removed by the defender. A backdoor at-
tack with these features will be very difficult to mitigate.

However, we observe that pursuing the visual stealthi-
ness can sacrifice the attack robustness. Specifically, there
can be two kinds of strategies for stealthy backdoor attacks.
The first one is invisible triggers, which restrict the pixel
distances between the clean and triggered images [2,17,46].
Some attacks further enforce the consistency of the latent
representation besides the pixels to achieve stealthiness in
the feature space [5, 27, 44]. The second strategy is nat-
ural triggers, which use special image styles (e.g., reflec-
tion [22], Instagram filter [21], weather condition [3]) to
activate the backdoor. The triggered images do not need
to maintain the similarity from the clean images, but just
look natural to human eyes. Unfortunately, these delicate
backdoor triggers can be easily invalidated by common im-
age transformation operations, and the corresponding back-
door attacks are vulnerable to some preprocessing-based
defenses, e.g., DeepSweep [25], image compression [37],
ShrinkPad [19] (see Section 4.4.1 for evaluation results).
Besides, some methods [3, 5, 27, 44] require the adversary
to have full control over the victim’s training process, which
can not be applied to the data poisoning threat model.

To overcome these limitations, we propose color back-
door, a novel poisoning-based backdoor attack that can ex-
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(a) Original images

(b) Triggered images of color backdoor

Figure 1. Visual comparisons of the original images and triggered
images from ImageNet.

hibit both stealthiness and robustness. Our color backdoor
is inspired by the shape bias property of the human cogni-
tive system [12] (i.e., humans prefer to categorize objects
according to their shapes rather than colors). It employs
a uniform color space shift for all pixels as the backdoor
trigger. As illustrated in Figure 1, the triggered image se-
mantically represents the same object as the original image
in a very natural way, and can evade the inspection of the
defender. We also use Local Interpretable Model-Agnostic
Explanations (LIME) [28] to explain the effectiveness of
our attack. As presented in Figure 2, LIME visualizes
the areas contributed to the predictions of the backdoored
model, the model focuses on the object itself when the test
sample is clean and on the whole image when the test sam-
ple is triggered. This is because the model can learn the
structural information (i.e., the specific color space shift) of
the image and recognize backdoor samples with this feature.

Figure 2. LIME explanation.
Left: clean image. Right: back-
door image

Nevertheless, find-
ing an appropriate
trigger (color space
shift) for color back-
door is non-trivial: a
large shift makes the
triggered samples less
realistic (see Figure
4), while a small shift
makes it difficult for the model to learn this feature,
resulting in low effectiveness and robustness. To address
this problem under the practical black-box setting1, we
adopt Particle Swarm Optimization (PSO) [6], an effective
gradient-free optimization algorithm, to systematically
search for the optimal trigger. Specifically, we first use
the backdoor loss of a semi-trained model (with surrogate
model architecture) to efficiently estimate the effectiveness
of a trigger. Then, we quantify the naturalness of a trigger
through three popular similarity metrics, PSNR [42],
SSIM [35] and LPIPS [42], based on which we define
a naturalness restriction. After that, we add a penalty
function of the naturalness restriction during the searching
process of PSO and find the optimal trigger. Finally, the
color backdoor is embedded into the victim model when

1The attacker is assumed to have no knowledge of the victim model.

training with the poisoned dataset.
We perform extensive experiments to demonstrate the

superiority of PSO over other optimization algorithms. We
show our color backdoor is more resilient against state-of-
the-art preprocessing-based defenses compared to existing
attacks. Besides, it can also bypass other mainstream de-
fenses including Neural Cleanse [34], Fine-Pruning [20],
STRIP [8], Grad-Cam [29] and Spectral Signature [31].

2. Related Work
2.1. Backdoor Attacks

Gu et al. [9] presented the first backdoor attack against
DNN models. They adopted pixel patches as the trigger
to activate the backdoor in the model, where the malicious
samples look suspicious, and can be easily recognized by
humans. Recent works make progress in improving the
attack stealthiness, which can be categorized as follows.
(1) Invisible trigger: some works generate imperceptible
perturbations as the backdoor trigger [2, 17, 46]. This is
achieved by restricting the pixel differences between the
original and triggered images. A number of attacks fur-
ther enforce the consistency in the latent representation of
the clean and triggered images for higher stealthiness by
manipulating the training loss function to embed the back-
door [5,27,44]. (2) Natural trigger: some works propose to
change the style of the images as the trigger, which can keep
the images natural and less suspectable. Such natural trigger
can be crafted with the natural reflection phenomenon [22],
Instagram filter [21], generative adversarial network [3] and
warping-based image transformation [24].

Unfortunately, these solutions bring several limitations
when pursuing the stealthiness. In particular, (1) many at-
tacks require a strong adversary model to have full con-
trol over the training process of the victim model [3, 5, 27,
44]. They cannot be applied to the more practical sce-
nario, where the adversary can only poison the training
data. (2) More importantly, a majority of the above works
[2,17,21,22,24,46] only focus on stealthiness while ignor-
ing the backdoor robustness requirement. They become less
effective if the defender performs some image transforma-
tion operations over the triggered samples (see Section 4.4.1
for evaluation results).

In fact, some attempts have been made to achieve robust
backdoor, which still have some drawbacks. For instance,
some works [19, 40] proposed to apply data augmentation
over the poisoned samples. However, these attacks are not
effective against other unconsidered augmentation opera-
tions, and they require a much higher poisoning rate2. Xu
et al. [37] employed feature consistency training [33] in the
training process to minimize the distance between triggered

2The poisoning rate in [19] and [40] is 25% and 10%, while our work
only needs 5% or less poisoned samples.
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samples and their compressed versions in feature space, so
the triggered samples after compression can still activate the
backdoor. However, it still requires the adversary to manip-
ulate the training process, and does not work for the data
poisoning scenario.

2.2. Backdoor Defenses

Model reconstruction based methods. These approaches
aim to remove the backdoor by reconstructing or fine-tuning
the infected model. For instance, Fine-Pruning [20] prunes
potential backdoored neurons according to their average ac-
tivation values. Zhao et al. [43] proposed to employ the
model connectivity technique [41] to eliminate the hidden
backdoor in the infected model. Li et al. [18] and Yoshida
et al. [38] suggested employing the model distillation tech-
nique [11] to purify backdoored models.
Trigger reconstruction based methods. This type of de-
fense attempts to reconstruct the trigger at first, and then
eliminate the backdoor by suppressing the effect of the re-
constructed trigger. For instance, Neural Cleanse [34] op-
timizes a potential trigger pattern for each class, which can
convert any clean image to that class. The model is identi-
fied as a backdoor model if there is a class that has a signif-
icantly smaller pattern than other classes.
Inference-time detection methods. These methods aim to
distinguish whether an inference sample contains a mali-
cious trigger or not. For example, STRIP [8] is based on the
assumption that the backdoor trigger is robust and still ef-
fective when a triggered image is superimposed by a clean
image. It superimposes some clean images on the target im-
age separately and feeds them to the model for predictions.
If the predictions for those superimposed images are persis-
tent with low entropy, the model is identified as backdoored.
Besides, heatmaps [29] are also employed to detect possible
trigger regions.
Inference-time pre-processing methods. This type of de-
fense adds a pre-processing procedure before the inference
process, which aims to destroy the trigger in the malicious
samples and prevent backdoor activation. For instance, Li
et al. [19] employed flipping and padding after shrinking
to invalidate the trigger in the inference samples. Deep-
Sweep [25] considers a variety of data augmentation meth-
ods to fine-tune the infected model and process the infer-
ence samples. Besides, the commonly used image com-
pression methods [37] are also effective in defeating most
backdoor attacks.

3. Methodology
3.1. Threat Model and Attack Requirements

We consider a malicious data provider, who generates
and injects a small number of poisoned samples (labeled
with the target class) into the original training set, and re-

leases or sells it to the public. A victim developer may ob-
tain this dataset and trains his model, which will uncon-
sciously be infected with a backdoor. The attacker is as-
sumed to have no control of the training process or knowl-
edge of the victim model. Note that this threat model is
different from some backdoor attacks [3, 5, 27, 37, 44] that
require a stronger adversary to manipulate the training pro-
cess of the victim model. These attack approaches cannot
be applied to the data poisoning scenario in our considera-
tion, which is more practical.

A backdoor attack should have the following goals:

• Functionality-preserving. The embedded backdoor
should have minor impact on the test accuracy of the vic-
tim model over clean samples.

• Effectiveness. The triggered sample should be misclassi-
fied into the target class with a high probability.

• Naturalness. The triggered sample should be natural-
looking to evade human inspection during inference.

• Robustness. The attack should be still effective when trig-
gered samples are processed by existing pre-processing
operations. It cannot be defeated by existing mainstream
defenses as well.

3.2. Attack Overview

As illustrated in Figure 2, neural networks can learn
structural information of the images when performing clas-
sification tasks. Therefore, we design a novel color back-
door, which employs a uniform color space shift for all
pixels as the trigger. As formulated in Equation (1), each
pixel pi and the color space shift t are treated as three-
dimensional vectors to represent the values of three com-
ponents3 in the color space. All pixels are applied with a
uniform color space shift for the triggered image.

pi = (pi,1, pi,2, pi,3), t = (t1, t2, t3)

p′i = pi + t = (pi,1 + t1, pi,2 + t2, pi,3 + t3)
(1)

Figure 3 illustrates the workflow of our attack. Specifi-
cally, under the black-box setting1, we employ the gradient-
free PSO algorithm [6] to find the optimal trigger t (i.e.,
color space shift) for color backdoor. PSO is an optimiza-
tion algorithm that optimizes a problem by iteratively up-
dating candidate solutions (or particles) with regard to a
given measure of quality (i.e., the objective function), where
each particle is a candidate trigger for our color backdoor.
Firstly, we use the backdoor loss of a semi-trained surro-
gate model to measure the quality of a candidate trigger.
Besides, to ensure the naturalness of the trigger, we first
utilize three popular metrics, PSNR [42], SSIM [35] and
LPIPS [42] to quantify the visual similarity between clean

3For instance, RGB color space has three components: Red, Green and
Blue; HSV color space has three components: hue, saturation and value.
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Figure 3. The workflow of color backdoor.

and triggered samples, based on which we define a natural-
ness restriction. After that, the optimal trigger can be found
through PSO. Finally, the malicious data provider gener-
ates backdoor-triggered images as the poisoned dataset and
releases it for public download. Models trained with this
dataset will be infected with our color backdoor.

Notably, there are also some adversarial attacks based
on the color phenomena [12, 15, 45]. Our color backdoor
attack is fundamentally different from them in the following
aspects. (1) Technically, these attacks employed gradient-
based methods to generate adversarial color-shifted images
that mislead a normal model. In contrast, our attack follows
the more realistic black-box setting1, and adopts a gradient-
free optimization algorithm to find the optimal color shift
as the backdoor trigger. (2) In terms of scenarios, these
works target a clean model by applying the adversarial color
shift on a given input image (image-specific). Our backdoor
attack aims to embed the backdoor into the victim model,
which can be triggered by the color shift on any input image
(image-agnostic).

Below we describe the details of our methodology.

3.3. Defining the Objective Function of PSO

Since the poisoned data usually account for a small per-
centage and the functionality-preserving requirement can be
easily satisfied, we use the attack effectiveness of the trig-
ger t to measure its quality. The most straightforward way
to measure the attack effectiveness of t is to train the victim
model with the poisoned dataset and evaluate the attack suc-
cess rate on triggered samples. However, training a back-
door model from scratch is an excessively time-consuming
task and the adversary is assumed to have no knowledge of
the victim model.

To address this problem, we leverage the speed-up meth-
ods for model performance estimation in Neural Architec-
ture Search (NAS) [7]. Particularly, it has been observed
that the training results of the first few epochs with a sub-
training dataset can reflect the final training performance
[26, 47]. Inspired by this, we propose to train a surrogate
backdoored model fs with the attacker’s poisoned dataset
Dp for a few epochs. The training loss of the poisoned sam-

ples (which is referred to as the backdoor training loss Lb) is
used to efficiently estimate the effectiveness of the trigger.
Thus, the objective function of PSO is defined as follows:

O(t) = Lb =
∑

x∈Dp

CE(fs(x+ t), yt) (2)

where CE represents the cross-entropy loss and yt denotes
the target label of the attack. A smaller backdoor training
loss indicates the trigger is easier to be learned by the sur-
rogate model, and the attack is more effective.

3.4. Enforcing the Naturalness of a Trigger

A large random color space shift may also achieve high
attack effectiveness, but it may make the triggered sam-
ples less realistic (see Figure 4). In order to ensure the
naturalness requirement, we employ three popular metrics,
PSNR [42], SSIM [35] and LPIPS [42] to quantify the vi-
sual similarity between clean and triggered samples, based
on which we define a naturalness restriction. Then, we de-
fine three penalty functions for the naturalness restriction:

e1(t) = max(0, λ1 − PSNR(t, S))

e2(t) = max(0, λ2 − SSIM(t, S))

e3(t) = max(0,LPIPS(t, S)− λ3)

(3)

where PSNR(t, S), SSIM(t, S) and LPIPS(t, S) represent
the average similarity between clean samples and malicious
samples containing the trigger t from the poisoned dataset.
λ1,2,3 are the similarity thresholds for the three metrics. The
penalty term represents the degree of naturalness restriction.
It is greater than zero if the restriction is violated.

In order to balance the differences between the three nat-
uralness restrictions, we also normalize the penalty terms
and sum them up to obtain the total penalty term P (t):

P (t) =

3∑
j=1

wjej , wj =

∑M
i=1 ej (ti)∑3

j=1

∑M
i=1 ej (ti)

(4)

where M denotes the total number of candidate triggers.
After that, we add the total penalty term to the objective
function of the PSO:

Ototal(t) = O(t) + P (t) (5)
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Besides, due to the naturalness restrictions, it is neces-
sary to define the rule for PSO to measure the quality of the
triggers, as follows:
• If both triggers ti and tj satisfy the naturalness restriction,

we compare their objective function values Ototal(ti) and
Ototal(tj). The trigger with a smaller objective function
value is superior.

• If both triggers ti and tj do not satisfy the naturalness re-
striction, we compare the penalty terms P (ti) and P (tj).
The trigger with a smaller penalty term is superior,

• If trigger ti satisfies the naturalness restriction while trig-
ger tj does not, then ti is superior.

3.5. Searching Optimal Triggers Through PSO

Algorithm 1 Searching the optimal trigger
Require: acceleration factors c1, c2; random numbers r1, r2; in-

ertia weight ω; number of iteration T ; number of particles in
the swarm M

Ensure: the optimal trigger for color backdoor
1: Initialization process:
2: for each particle i = 1 to M do
3: Randomly initialize the particle position ti and particle ve-

locity vi
4: Calculate Ototal(ti) using Equation 5.
5: Initialize pbesti: pbesti ← ti
6: end for
7: Initialize gbest: gbest← argmin

ti

Ototal(ti)

8: Searching process:
9: for j = 1 to T do

10: for each particle i = 1 to M do
11: vi ← ωvi + c1r1(pbesti − ti) + c2r2(gbest− ti)
12: ti ← ti + vi
13: Calculate Ototal(ti) using Equation 5.
14: pbesti ← ti, if ti is superior to pbesti according to the

defined rule
15: gbest ← ti, if ti is superior to gbest according to the

defined rule
16: end for
17: end for
18: return gbest

The searching process of PSO is described in Algo-
rithms 1. Specifically, we first randomly initialize numerous
particles, including their positions and velocities. The posi-
tion of each particle ti represents a color space shift, which
is a candidate backdoor trigger. Besides, pbesti (the best
position that the i-th particle has experienced) is initialized
as ti and gbest (the best position that the whole group has
experienced) is initialized through measuring the objective
function values of all particles. After initialization, we up-
date the particles iteratively for T rounds. Finally, the final
gbest is returned as the optimal trigger, which is used by the
adversary to generate a poisoned dataset.

4. Evaluation
4.1. Experimental Setup

Our color backdoor attack is general for various com-
puter vision tasks, models and datasets. Without loss of
generality, we perform our evaluations over the CIFAR-10,
GTSRB, CIFAR-100 and ImageNet datasets on ResNet-18,
VGG16, ResNet-34 and ResNet-34 models, respectively.
For the functionality-preserving requirement, we measure
the test accuracy of the infected model on clean samples
(ACC). For the attack effectiveness requirement, we com-
pute the ratio of triggered samples that are misclassified to
the target attack class by the infected model (ASR). The poi-
soning rate is set to 5% and the first class of each dataset is
chosen as the target attack label. Six commonly used color
spaces (RGB, HSV, LAB, YCbCr, XYZ, LUV) are consid-
ered for color backdoor attack and we present the results in
the LUV color space as an example4. More details of attack
configuration are also provided in the appendix. We would
like to emphasize that our color backdoor can also be im-
plemented in the physical world and gray images (e.g., the
MNIST and FashionMNIST datasets). Please check the ap-
pendix for the evaluation results.

4.2. Effectiveness Evaluation

Performance of PSO. We perform extensive experiments
to demonstrate the superiority of PSO in terms of trig-
ger selection effectiveness and efficiency compared with
other optimization algorithms. Specifically, we replace the
PSO with Genetic Algorithm5 (GA) [4], grid-search, and
random-selection, respectively to search the optimal trig-
gers, and measure the corresponding backdoor ASR. The
results are shown in Table 1. We observe that GA, PSO and
grid-search can achieve good attack effectiveness, while the
ASR of the random-selection method is significantly lower.

Additionally, we measure the computation overhead of
these methods. Table 2 shows the searching hours to gen-
erate the poisoning set for each dataset. We can see that
grid-search and GA have larger computation cost compared
with PSO. Based on these two tables, PSO demonstrates su-
periority over other optimization methods, and is adopted in
our color backdoor attack.
Impact of poisoning rates. We evaluate the attack perfor-
mance of color backdoor with different poisoning rates. The
result in Table 3 indicates that the color backdoor attacks
still have high ASR when the poisoning rate is 3%, which
demonstrates the effectiveness of color backdoor. Besides,
we observe that increasing the poisoning rate can achieve a
higher ASR, but a lower ACC, which may undermine the
functionality-preserving requirement. Therefore, we set the

4Experiments in the other color spaces give the same conclusions, and
the results can be found in the appendix.

5The details of the Genetic Algorithm are presented in the appendix.
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Table 1. ASR of the color backdoor attacks with different trigger
search optimization algorithms

Method
Dataset

CIFAR-10 CIFAR-100 GTSRB ImageNet

PSO 97.55 96.27 99.70 98.16
GA 95.90 96.41 98.87 99.27

Grid-search 98.17 98.01 99.24 99.39
Random 92.02 83.54 91.33 87.09

Table 2. Trigger searching hours of different algorithms

Method
Dataset

CIFAR-10 CIFAR-100 GTSRB ImageNet

PSO 1.79 h 3.71 h 1.81 h 3.79 h
GA 3.22 h 6.30 h 3.17 h 6.89 h

Grid-search 5.33 h 10.97 h 5.43 h 11.68 h
Random - - - -

(a) Original images

(b) Triggered images within naturalness restriction

(c) Triggered images without naturalness restriction

Figure 4. Triggered images of color backdoor within and without
naturalness restriction.

poisoning rate to 5% in the following experiments.

4.3. Naturalness Evaluation

Naturalness restriction is added in the searching process
of PSO to ensure the naturalness of the triggered images.
We conduct experiments to show their indispensability in
finding appropriate triggers for color backdoor. Figure 4
compare with the clean images and the generated triggered
images within and without the naturalness restriction. It can
be seen that the identified color space shift without the natu-
ralness awareness makes the triggered images less realistic.
In contrast, with the naturalness restriction, the synthesized
triggered images maintain natural-looking. This indicates
that the naturalness restriction is important to ensure the
naturalness requirement.

We also conduct experiments to illustrate the difference
between the original images and the triggered images gen-
erated by color backdoor and other state-of-the-art invisible
backdoor attacks (see Figure 5). We observe that the dif-
ference between the original images and our triggered im-
age is a global shift in color space, which is imperceptible

(a) Triggered images

(b) The magnified (×1.5) difference between the triggered images and the
original images

Figure 5. Different columns represent different invisible backdoor
methods: (i) Refool [22], (ii) WaNet [24], (iii) Blend [2], (iv) Filter
[21], (v) L2-norm [17], (vi) Color backdoor.

to the defender who has no knowledge of the original im-
age. Our triggered image looks more natural than Refool,
Blend, Filter, and the experimental results in Section 4.4.1
demonstrate that color backdoor is more robust than these
backdoor attacks against preprocessing-based defenses.

4.4. Robustness Evaluation

We evaluate the robustness of color backdoor on CIFAR-
10 and CIFAR-100 datasets as examples. More experimen-
tal results for other datasets are provided in the appendix.

4.4.1 Preprocessing-based Defenses

We first consider the preprocessing-based defenses, which
are particularly effective for mitigating invisible backdoor
attacks. Three state-of-the-art approaches are evaluated in
our experiments: (1) DeepSweep [25]: we employ two data
augmentation methods to fine-tune the victim model for 5
epochs and pre-process the testing samples, respectively.
The concrete data augmentation methods are selected fol-
lowing [25]. (2) ShrinkPad [19]: the testing images are
padded with pixels with a value of zero after shrinking with
2 pixels. (3) Image compression [37]: we use the JPEG
compression [32] to compress all the testing images with
75% compression quality before prediction. Existing poi-
soning backdoor attacks, including BadNet [9], Blend [2],
Input-aware [23], WaNet [24], Refool [22], L0-norm [17],
L2-norm [17] and Filter [21], are included as baselines to
evaluate the robustness6.

Table 4 shows the robustness evaluation results for CI-
FAR10. It is obvious that prior state-of-the-art backdoor
attacks are vulnerable to most preprocessing-based de-
fenses: the ASR of backdoor attacks with traditional ad-
ditive triggers (such as BadNet and L2-norm) drops signif-
icantly when image transformation operations are applied
to the inference images. Some backdoor attacks with nat-
ural triggers (such as Filter) remain robust against most

6Backdoor attacks [3, 5, 27, 44] that require the adversarial control of
the training process cannot be achieved in our data poisoning setting, and
are not compared in our experiments.
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Table 3. ACC and ASR of the color backdoor attack with different poisoning rates

Poisoning rate
Dataset CIFAR-10 CIFAR-100 GTSRB ImageNet

ACC ASR ACC ASR ACC ASR ACC ASR
No attack 90.05 - 66.86 - 93.33 - 71.67 -

3% 89.93 93.77 66.45 93.25 93.21 95.04 70.28 96.44
5% 89.77 97.55 65.86 96.27 93.36 99.70 69.11 98.16
8% 89.45 98.45 65.77 98.51 91.55 99.43 68.75 99.01

10% 87.61 99.03 64.03 98.84 87.60 99.89 66.53 99.17

Table 4. Robustness against preprocessing-based defenses (CIFAR-10).

Attack
Defense No defense DeepSweep ShrinkPad Compression Average

ASRACC ASR ACC ASR ACC ASR ACC ASR
BadNet 89.20 99.98 84.57 54.64 85.74 75.20 81.15 41.56 67.85
Blend 90.16 96.03 85.98 53.20 86.96 17.25 81.36 16.72 45.80

Input-aware 94.39 98.79 91.59 42.04 88.07 32.69 81.71 49.72 55.81
WaNet 91.92 96.14 90.21 45.66 87.81 57.13 84.15 13.05 53.00
Refool 88.66 92.47 82.65 86.37 85.53 93.51 81.60 44.57 79.23
L0-norm 87.35 77.63 84.38 19.89 83.18 43.30 80.09 35.06 43.97
L2-norm 90.19 99.86 85.93 15.73 86.71 12.21 84.15 9.23 34.26

Filter 89.91 99.14 83.64 85.56 85.90 92.57 82.95 23.16 75.11
color backdoor 89.77 97.55 85.50 87.64 86.15 93.61 81.78 96.89 93.92

Input-aware and WaNet are trained on PreActResNet-18/34, following the default settings in [23, 24].

preprocessing-based defenses, but are vulnerable to image
compression. On the contrary, color backdoor remains
its robustness and has the highest ASR against all these
preprocessing-based defenses. This is because Filter back-
door adopts fixed filter features as the backdoor trigger,
while our attack searches for the optimal trigger by esti-
mating its effectiveness (and robustness). The robustness-
guided searching process (within a pre-defined naturalness
restriction) makes it more robust and natural.

4.4.2 Other Mainstream Defenses

Neural Cleanse [34] quantifies the suspicion of a model
by calculating an anomaly score and the model with an
anomaly score greater than 2 will be identified as a back-
doored model. As shown in Figure 6a, the anomaly score
of the color backdoored model is very close to that of the
clean model and less than 2, indicating the ineffectiveness
of Neural Cleanse in identifying color backdoor. This is be-
cause the trigger reconstruction process of Neural Cleanse
is to discover the potential adversarial patch. However, the
trigger of color backdoor is more like a transformation func-
tion, rather than a static feature. This makes Neural Cleanse
fail to reconstruct the trigger of color backdoor.

Grad-Cam [29] visualizes the network behavior on an
inference image and detects potential trigger regions. Fig-
ure 6b (from left to right) shows the clean images and trig-
gered images of BadNet, L0-norm and color backdoor in the
first row, as well as the corresponding heatmaps in the sec-
ond row. We observe that Grad-Cam is able to distinguish
trigger regions of small additive backdoor triggers. How-
ever, the heatmaps of the triggered image generated by color

(a) Neural Cleanse (b) Grad-Cam

Figure 6. Neural Cleanse and Grad-Cam.

Figure 7. Fine-pruning.

backdoor are similar to that of the original image: both are
focused in the center of the image. The reason is that color
backdoor is based on the global color space transformation
on the entire image, which breaks the underlying assump-
tion of Grad-Cam that relies on identifying a small, unusual
region that significantly determines the prediction results.

Fine-Pruning [20] prunes neurons according to their av-
erage activation values to mitigate backdoor behaviors. Fig-
ure 7 plots the ACC of clean samples and ASR of triggered
samples with different numbers of pruned neurons, where
the last convolutional layer is selected for pruning and the
pruning stops when the ACC drops more than 8%. We
observe that the ASR is always higher than ACC, making
backdoor mitigation impossible.

STRIP [8] identifies a backdoored model if the predic-
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Figure 8. STRIP for CIFAR-10 (left) and CIFAR-100 (right).

Figure 9. Spectral Signature for CIFAR-10 (left) and CIFAR-100
(right).

tions of superimposed images are persistent with low en-
tropy. Figure 8 shows the results of STRIP, where we com-
pare the entropy distributions of a clean sample and a trig-
gered sample. We observe that these two samples have
very similar distributions so STRIP is not able to distin-
guish which inference sample is malicious. This is because
the operation of superimposing destroys the trigger of color
backdoor, thus the prediction of the superimposing of a trig-
gered sample and a clean sample will also change signifi-
cantly, which is the same as the clean case.

Spectral Signature [31] is a defense method that dis-
tinguishes the backdoor-triggered samples using the latent
space features. Following the same experimental settings
in [31], we randomly select 5,000 clean samples and 500
triggered samples for each dataset and plot the histograms
of the correlation scores for both sets of samples. As il-
lustrated in Figure 9, there is no clear separation between
the scores of the triggered samples and clean samples, mak-
ing Spectral Signature ineffective in detecting our color-
triggered samples. According to [24], it is mainly because
the traditional backdoor attacks have local additive triggers,
which affect a small number of neurons, leading to a dif-
ference from the correlation distribution of normal samples.
However, our color backdoor has a global effect on the fea-
tures of the sample, and hence a global impact on most neu-
rons, making the distribution difference indistinguishable.

4.4.3 Adaptive Defenses

We consider an adaptive defense against our color backdoor
attack, where the defender performs a random color space
shift over each inference sample7 (since he does not know
the shift searched by the attacker) before sending it to the
infected model. Figure 10 shows the ACC and ASR of 50
repeated experiments. Due to the randomness of this color
space pre-processing method, the defense effect is very un-
stable: the ASR drops significantly in some cases while re-

7Range of the shift for each component is set to (-0.1,0.1).

Figure 10. The defense effect of the random color space shift.

Table 5. Attack performance of our color backdoor with color
space augmentation.

Color CIFAR10 CIFAR100
space ACC ASR ACC ASR

No attack 90.05 - 66.86 -
RGB 87.15 86.01 63.79 84.75
HSV 87.43 81.62 65.04 80.43
LAB 89.01 93.10 64.41 85.26

YCbCr 89.81 87.89 65.44 85.94
XYZ 89.53 96.80 64.87 90.17
LUV 88.17 91.09 64.59 88.32

maining high in other cases. The ACC is also affected to
varied extents. We find that this defense is effective only
when the directions of the random shift and the trigger are
opposite, thus causing the color space shift to cancel each
other out. Otherwise, the defense effect is not obvious or
even has an opposite effect (i.e., ASR increases and ACC
drops). Therefore, preprocessing of random color space
shift is far from an effective defense against our attack.

Color space augmentation is another adaptive defense
against color backdoor. We perform the data augmentation
with hue and saturation during the training process, where
the change ranges of both hue and saturation are set to 30%.
The results in Table 5 indicates that color backdoor attack
can still achieve high ASR under this color space augmen-
tation. This is because the triggered image and the original
image have two extremely different color styles. They fall
into two different color style distributions after a random
color augmentation. Thus, the model still connects the tar-
get label with the color style distribution of the triggered
images, and they can still activate the backdoor.

5. Conclusion
In this work, we propose a robust backdoor, which em-

ploys a uniform color space shift for all pixels as the trigger.
The triggered images maintain natural-looking and can by-
pass the inspection of the defender. The PSO algorithm is
employed to optimize the trigger to achieve a robust back-
door attack. Extensive experiments demonstrate the supe-
riority of PSO and the robustness of our color backdoor at-
tack against preprocessing-based defenses as well as other
mainstream backdoor defenses.
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