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Abstract

Text-to-image person retrieval aims to identify the tar-
get person based on a given textual description query. The
primary challenge is to learn the mapping of visual and tex-
tual modalities into a common latent space. Prior works
have attempted to address this challenge by leveraging sep-
arately pre-trained unimodal models to extract visual and
textual features. However, these approaches lack the nec-
essary underlying alignment capabilities required to match
multimodal data effectively. Besides, these works use prior
information to explore explicit part alignments, which may
lead to the distortion of intra-modality information. To alle-
viate these issues, we present IRRA: a cross-modal Implicit
Relation Reasoning and Aligning framework that learns re-
lations between local visual-textual tokens and enhances
global image-text matching without requiring additional
prior supervision. Specifically, we first design an Implicit
Relation Reasoning module in a masked language model-
ing paradigm. This achieves cross-modal interaction by
integrating the visual cues into the textual tokens with a
cross-modal multimodal interaction encoder. Secondly, to
globally align the visual and textual embeddings, Similar-
ity Distribution Matching is proposed to minimize the KL
divergence between image-text similarity distributions and
the normalized label matching distributions. The proposed
method achieves new state-of-the-art results on all three
public datasets, with a notable margin of about 3%-9% for
Rank-1 accuracy compared to prior methods.

1. Introduction

Text-to-image person retrieval aims to retrieve a person-
of-interest from a large image gallery that best matches the
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Figure 1. Evolution of text-to-image person retrieval paradigms.
(a) Early global-matching method directly align global image and
text embeddings. (b) Recent local-matching method, explicitly ex-
tract and align local image and text embeddings. (c) Our implicit
relation reasoning method, implicitly reasoning the relation among
all local tokens to better align global image and text embeddings.

text description query [30], which is a sub-task of both
image-text retrieval [26,33,42] and image-based person re-
identification (Re-ID) [15,32,45]. Textual descriptions pro-
vide a natural and relatively comprehensive way to describe
a person’s attributes, and are more easily accessible than im-
ages. Text-to-image person retrieval thus received increas-
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ing attention in recent years, benefiting a variety of applica-
tions from personal photo album search to public security.

However, text-to-image person retrieval remains a chal-
lenging task due to significant intra-identity variations and
modality heterogeneity between vision and language. The
former challenge stems from the fact that visual appear-
ances of an identity differ based on pose, viewpoint, illu-
mination, and other factors, while textual description varies
by arbitrary descriptive order and textual ambiguity. The
latter challenge is the primary issue in cross-modal tasks
and is caused by inherent representation discrepancies be-
tween vision and language. To tackle above two challenges,
the core research problem in text-to-image person retrieval
is to explore better ways to extract discriminative feature
representations and to design better cross-modal matching
methods to align images and texts into a joint embedding
space. Early global-matching methods [53, 54] aligned im-
ages and texts into a joint embedding space by designing
cross-modal matching loss functions (Fig. 1 (a)). Typically,
these approaches learned cross-modal alignments by using
matching losses only at the end of the network, failing to
achieve sufficient modality interaction in middle-level lay-
ers, which are crucial to bridge the feature-level modality
gap. Therefore, some later methods [5, 7, 21, 46] intro-
duced the practice of local-matching by building the cor-
respondence between the body parts and the textual entities
(Fig. 1 (b)). Although this local matching strategy benefits
retrieval performance, it introduces unavoidable noise and
uncertainty in the retrieval process. Besides, the strategy
requires extracting and storing multiple local part represen-
tations of images and texts, computing pairwise similarity
between all those representations during inference. These
resource-demanding properties limit their applicability for
practical large-scale scenarios.

In this paper, we present IRRA: a cross-modal Implicit
Relation Reasoning and Aligning framework, which per-
forms global alignment with the aid of cross-modal im-
plicit local relation learning. Unlike previous methods that
heavily rely on explicit fine-grained local alignment, our
approach implicitly utilizes fine-grained information to en-
hance global alignment without requiring any additional su-
pervision and inference costs (Fig. 1 (c)). Specifically, we
design an Implicit Relation Reasoning module that effec-
tively builds relations between visual and textual represen-
tations through self- and cross-attention mechanisms. This
fused representation is then utilized to perform masked lan-
guage modeling (MLM) task to achieve effective implicit
inter-modal and intra-modal fine-grained relation learning.
MLM is generally utilized during the pre-training stage of
vision-language pre-training (VLP) [6, 9, 27, 31, 41]. In this
work, we make the first attempt to demonstrate the effec-
tiveness of MLM in downstream fine-tuning tasks. Our
main innovation is the design of a multimodal interaction

encoder that can efficiently fuse visual and textual represen-
tations, align cross-modal fine-grained features through the
MLM task. This design helps the backbone network to ex-
tract more discriminative global image-text representations
without requiring additional supervision.

To guide the image-text matching, commonly used loss
functions include ranking loss and cross-modal projection
matching (CMPM) [53] loss. Compared to ranking loss,
the CMPM loss does not require the selection of specific
triplets or margin parameter tuning. It exhibits great stabil-
ity with varying batch sizes, making it widely used in text-
to-image person retrieval [5, 39, 50]. However, we found
that the projection in CMPM can be regarded as a variable
weight that adjusts the distribution of softmax output log-
its, similar to the temperature parameter [17] for knowledge
distillation. Nevertheless, limited by the varying projection
length, CMPM therefore cannot precisely control the pro-
jection probability distribution, making it difficult to focus
on hard-negative samples during model updates. To ex-
plore more effective cross-modal matching objective, we
further propose an image-text similarity distribution match-
ing (SDM) loss. The SDM loss minimizes the KL diver-
gence between the normalized image-text similarity score
distributions and the normalized ground truth label match-
ing distributions. Additionally, we introduce a temperature
hyperparameter to precisely control the similarity distribu-
tion compactness, which enables the model updates focus
on hard-negative samples and effectively enlarges the vari-
ance between non-matching pairs and the correlation be-
tween matching pairs.

To address the limitations of separate pre-trained mod-
els on unimodal datasets, we leverage the Contrastive
Language-Image Pre-training (CLIP) [35] as the initial-
ization of our model. CLIP is pre-trained with abundant
image-text pairs and has powerful underlying cross-modal
alignment capabilities. Some previous approaches [13, 50]
have either frozen some part of parameters or introduced
only CLIP’s image encoder, which resulted in their inability
to fully exploit CLIP’s powerful capabilities in image-text
matching. With the proposed IRRA, we successfully trans-
fer the powerful knowledge directly from the pre-trained
full CLIP model and continue to learn fine-grained cross-
modal implicit local relations on text-to-image person re-
trieval datasets. In addition, compared to many recent meth-
ods [5, 38, 50], IRRA is more efficient as it computes only
one global image-text pair similarity score in the inference
stage. The main contributions can be summarized as fol-
lows:

• We propose IRRA to implicitly utilize fine-grained in-
teraction to enhance the global alignment without re-
quiring any additional supervision and inference cost.

• We introduce a new cross-modal matching loss named
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image-text similarity distribution matching (SDM)
loss. It directly minimizes the KL divergence between
image-text similarity distributions and the normalized
label matching distributions.

• We demonstrate that the full CLIP model can be ap-
plied to text-to-image person retrieval and can outper-
form existing state-of-the-art methods with straightfor-
ward fine-tuning. Moreover, our proposed IRR module
enables fine-grained image-text relation learning, al-
lowing IRRA to learn more discriminative image-text
representations.

• Extensive experiments on three public benchmark
datasets, i.e., CUHK-PEDES [30], ICFG-PEDES [7]
and RSTPReid [55] show that IRRA consistently out-
performs the state-of-the-arts by a large margin.

2. Related work
Text-to-image Person Retrieval was first introduced by

Li et al. [30], who proposed the first benchmark dataset,
CUHK-PEDES [30]. The main challenge is how to effi-
ciently align image and text features into a joint embedding
space for fast retrieval. Early works [2,29,30] utilized VGG
[40] and LSTM [18] to learn representations for visual-
textual modalities and then aligned them using a match-
ing loss. Later works [4, 36, 53] improved the feature ex-
traction backbone with ResNet50/101 [14] and BERT [22],
as well as designed novel cross-modal matching losses to
align global image-text features in a joint embedding space.
More recent works [5, 46, 47, 49, 55] extensively employs
additional local feature learning branches that explicitly ex-
ploit human segmentation, body parts, color information,
and text phrases. There is also some works [7, 10, 38, 51]
that implicitly performs local feature learning through at-
tentional mechanisms. However, while these approaches
have been shown to provide better retrieval results than
using only global features, they also introduce additional
computational complexity during inference when comput-
ing image-text similarity. The aforementioned works all
use backbones pre-trained separately with unimodal data
to extract visual and textual features, and then perform
cross-modal alignment without exploiting the great cross-
modal alignment capabilities of recently promising vision-
language pre-training models. Han et al. [13] first intro-
duced a CLIP model for text-to-image person retrieval us-
ing a momentum contrastive learning framework to trans-
fer the knowledge learned from large-scale generic image-
text pairs. Later, Yan et al. [50] proposed a CLIP-driven
fine-grain information excavation framework to transfer the
knowledge of CLIP. However, they failed in directly trans-
ferring the original aligned CLIP dual-encoder to text-to-
image person retrieval. In this work, we demonstrate that
the CLIP model can be easily transferred to text-to-image

person retrieval and propose the IRRA to learn more dis-
criminative image-text embeddings.

Vision-Language Pre-training aims to learn the seman-
tic correspondence between vision and language modalities
by pre-training on large-scale image-text pairs. Inspired by
the success of Transformer-based [44] language model pre-
training (such as BERT) [22] and Vision Transformer (ViT)
[8], Vision-Language Pre-training (VLP) has emerged as
the prevailing paradigm in learning multimodal represen-
tations, demonstrating strong results on downstream tasks
such as image captioning [3], image-text retrieval [25] and
visual question answering [1]. Existing work on VLP can
be categorized into two types: single-stream and dual-
stream, depending on their model structure. In single-
stream models [6, 23, 41], text and visual features are con-
catenated and then fed into a single transformer encoder.
Although this architecture is more parameter-efficient as it
uses the same set of parameters for both modalities, it has
a slow retrieval speed during the inference stage because it
needs to predict the similarity score of all possible image-
text pairs. On the other hand, dual-stream models [9,20,35]
use two separate encoders to extract the text and visual fea-
tures independently. These two transformer encoders do not
share parameters. While achieving remarkable performance
on image-text retrieval tasks, dual-stream modals lack the
ability to model complex interactions between vision and
language for other vision-language understanding tasks.

3. Method
In this section, we present our proposed IRRA frame-

work. The overview of IRRA is illustrated in Fig. 2 and the
details are discussed in the following subsections.

3.1. Feature Extraction Dual-Encoder

Previous works in text-to-image person retrieval typi-
cally utilize image and text encoders that are pre-trained
separately on unimodal datasets. Inspired by the partial
success of transferring knowledge from CLIP to text-image
person retrieval [13], we directly initialize our IRRA with
the full CLIP image and text encoder to enhance its under-
lying cross-modal alignment capabilities.

Image Encoder. Given an input image I ∈ RH×W×C ,
a CLIP pre-trained ViT model is adopted to obtain the
image embedding. We first split I into a sequence of
N = H × W/P 2 fixed-sized non-overlapping patches,
where P denotes the patch size, and then map the patch
sequence to 1D tokens {fv

i }|Ni=1 by a trainable linear pro-
jection. With injection of positional embedding and extra
[CLS] token, the sequence of tokens {fv

cls, f
v
1 , ..., f

v
N} are

input into L-layer transformer blocks to model correlations
of each patch. Finally, a linear projection is adopted to map
fv
cls to the joint image-text embedding space, which serves

as global image representation.
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Figure 2. Overview of the proposed IRRA framework. It consists of a dual-stream feature extraction backbone and three representation
learning branches, i.e. Implicit Relation Reasoning (IRR), Similarity Distribution Matching (SDM) and Identity Identification (ID loss).
IRR aims to implicitly utilize fine-grained information to learn a discriminative global representation. SDM minimizes the KL divergence
between image-text similarity score distributions and true label matching distributions, which can effectively enlarges the variance between
non-matching pairs and the correlation between matching pairs. Additionally, we adopt ID loss to aggregate the feature representations of
the same identity, further improving the retrieval performance. IRRA is trained end-to-end with these three tasks, and it computes only
one global image-text similarity score, making it computationally efficient. Modules connected by dashed lines will be removed during
inference stage.

Text Encoder. For an input text T , we directly use the
CLIP text encoder to extract the text representation, which
is a Transformer [44] modified by Radford et al. [35]. Fol-
lowing CLIP, the lower-cased byte pair encoding (BPE)
with a 49152 vocab size [37] is firstly employed to tokenize
the input text description. The text description is brack-
eted with [SOS] and [EOS] tokens to indicate the start and
end of sequence. Then the tokenized text {f t

sos, f
t
1, ...f

t
eos}

are fed into the transformer and exploit correlations of each
patch by masked self-attention. Finally, the highest layer
of the transformer at the [EOS] token f t

eos is linearly pro-
jected into the image-text joint embedding space to obtain
the global text representation.

3.2. Implicit Relation Reasoning

To fully exploit fine-grained information, it is crucial to
bridge the significant modality gap between vision and lan-
guage. While most existing methods do so by explicitly
aligning local features between images and text, this paper
introduces a novel approach. Specifically, we use MLM to
implicitly mine fine-grained relations and learn discrimina-
tive global features.

Masked Language Modeling. Masked language mod-
eling (MLM) was initially proposed by Taylor [43] in 1953,

it became widely known when the BERT model adapted it
as a novel pre-training task. In this work, We utilize MLM
to predict masked textual tokens not only by the rest of un-
masked textual tokens but also by the visual tokens. Sim-
ilar to the analysis of Fu et al. [11] in pure language pre-
training, MLM optimizes two properties: (1) the alignment
of image and text contextualized representations with the
static embeddings of masked textual tokens, and (2) the uni-
formity of static embeddings in the joint embedding space.
In the alignment property, sampled embeddings of masked
textual tokens serve as an anchor to align images and text
contextualized representations, as illustrated in Fig. 3. We
find that such a local anchor is essential for modeling local
dependencies and can implicitly utilize fine-grained local
information for global feature alignment.

Multimodal Interaction Encoder. To achieve full in-
teraction between image and text modalities, We design an
efficient multimodal interaction encoder to fuse the image
and text embeddings, compared to two other popular multi-
modal interaction modules [9, 16], our design is more com-
putationally efficient, as illustrated in Fig. 4. The multi-
modal interaction encoder consists of a multi-head cross at-
tention (MCA) layer and 4-layer transformer blocks. Given
an input text description T , we randomly mask out the text
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Figure 3. Illustration of the MLM objective. MLM uses static
embedding of masked textual tokens as local fine-grained keys to
align image and text contextualized representations in the same
context.

tokens with a probability of 15% and replace them with
the special token [MASK]. Following BERT, the replace-
ments are 10% random tokens, 10% unchanged, and 80%
[MASK]. The masked text is defined as T̂ , and fed into the
Text Transformer as described in Sec. 3.1. Then the last hid-
den states {ht̂

i}Li=1 and {hv
i }Ni=1 of the text transformer and

the vision transformer are fed into the multimodal interac-
tion encoder jointly. In order to fuse image and masked text
representations more effectively, the masked text represen-
tation {ht̂

i}Li=1 served as query(Q), and the image represen-
tation {hv

i }Ni=1 are served as key(K) and value(V). The full
interaction between image and masked text representations
can be achieved by:

{hm
i }Li=1 = Tansformer(MCA(LN(Q,K,V))), (1)

where {hm
i }Li=1 is the fused image and masked text con-

textualized representations, L is the length of input textual
tokens, LN(·) denotes Layer Normalization, the MCA(·)
is the multi-head cross attention and can be realized by:

MCA(Q,K,V) = softmax(
QK⊤
√
d

)V, (2)

where d is the embedding dimension of masked tokens.
For each masked position {hm

i : i ∈ M}Li=1, we use a
multi-layer perception (MLP) classifier to predict the prob-
ability of the corresponding original tokens {mi

j}
|V|
j=1 =

MLP (hm
i ). The IRR objective can be formulated as:

Lirr = − 1

|M||V|
∑
i∈M

∑
j∈|V|

yij log
exp(mi

j)∑|V|
k=1 exp(m

i
k)

, (3)

where M denotes the set of masked text tokens and |V| is
the size of vocabulary V . mi is predicted token probabil-
ity distribution and yi is a one-hot vocabulary distribution
where the ground-truth token has a probability of 1.
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Figure 4. Illustration of our multimodal interaction encoder
and two other popular interaction modules. (a) Co-attention,
textual and visual features are fed into separate transformer blocks
with self-attn and cross-attn independently to enable cross-modal
interaction. (b) Merged attention, textual and visual features are
concatenated together and then fed into a single transformer block.
(c) Our multimodal interaction encoder, textual and visual features
are first fused by a cross-attn layer and then fed into a single trans-
former block.

3.3. Similarity Distribution Matching

We introduce a novel cross modal matching loss termed
as Similarity Distribution Matching (SDM), which incorpo-
rates the cosine similarity distributions of the N×N image-
text pairs embeddings into KL divergence to associate the
representations across different modalities.

Given a mini-batch of N image-text pairs, for each im-
age global representation fv

i , we construct a set of image-
text representation pairs as {(fv

i , f
t
j ), yi,j}Nj=1, where yi,j

is a true matching label, yi,j = 1 means that (fv
i , f

t
j ) is a

matched pair from the same identity, while yi,j = 0 indi-
cates the unmatched pair. Let sim(u,v) = u⊤v/∥u∥∥v∥
denotes the dot product between L2 normalized u and v
(i.e. cosine similarity). Then the probability of matching
pairs can be simply calculated with the following softmax
function:

pi,j =
exp(sim(fv

i , f
t
j )/τ)∑N

k=1 exp(sim(fv
i , f

t
k)/τ)

, (4)

where τ is a temperature hyperparameter which controls
the probability distribution peaks. The matching probability
pi,j can be viewed as the proportion of the cosine similar-
ity score between fv

i and f t
j to the sum of cosine similarity

score between fv
i and {f t

j}Nj=1 in a mini-batch. Then the
SDM loss from image to text in a mini-batch is computed
by :

Li2t = KL(pi∥qi) =
1

N

N∑
i=1

N∑
j=1

pi,j log(
pi,j

qi,j + ϵ
), (5)

where ϵ is a small number to avoid numerical problems, and
qi,j = yi,j/

∑N
k=1 yi,k is the true matching probability.

Symmetrically, the SDM loss from text to image Lt2i

can be formulated by exchanging fv and f t in Eq.(4) (5),
and the bi-directional SDM loss is calculated by:

Lsdm = Li2t + Lt2i. (6)
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Method Type Ref Image Enc. Text Enc. Rank-1 Rank-5 Rank-10 mAP mINP

CMPM/C [53] L ECCV18 RN50 LSTM 49.37 - 79.27 - -
TIMAM [36] G ICCV19 RN101 BERT 54.51 77.56 79.27 - -
ViTAA [46] L ECCV20 RN50 LSTM 54.92 75.18 82.90 51.60 -
NAFS [12] L arXiv21 RN50 BERT 59.36 79.13 86.00 54.07 -
DSSL [55] L MM21 RN50 BERT 59.98 80.41 87.56 - -
SSAN [7] L arXiv21 RN50 LSTM 61.37 80.15 86.73 - -
LapsCore [49] L ICCV21 RN50 BERT 63.40 - 87.80 - -
ISANet [51] L arXiv22 RN50 LSTM 63.92 82.15 87.69 - -
LBUL [48] L MM22 RN50 BERT 64.04 82.66 87.22 - -
Han et al. [13] G BMVC21 CLIP-RN101 CLIP-Xformer 64.08 81.73 88.19 60.08 -
SAF [28] L ICASSP22 ViT-Base BERT 64.13 82.62 88.40 - -
TIPCB [5] L Neuro22 RN50 BERT 64.26 83.19 89.10 -
CAIBC [47] L MM22 RN50 BERT 64.43 82.87 88.37 - -
AXM-Net [10] L MM22 RN50 BERT 64.44 80.52 86.77 58.73 -
LGUR [38] L MM22 DeiT-Small BERT 65.25 83.12 89.00 - -
IVT [39] G ECCVW22 ViT-Base BERT 65.59 83.11 89.21 - -
CFine [50] L arXiv22 CLIP-ViT BERT 69.57 85.93 91.15 - -
Baseline (CLIP-RN50) G - CLIP-RN50 CLIP-Xformer 57.26 78.57 85.58 50.88 34.44
Baseline (CLIP-RN101) G - CLIP-RN101 CLIP-Xformer 60.27 80.88 87.88 53.93 37.54
Baseline (CLIP-ViT-B/16) G - CLIP-ViT CLIP-Xformer 68.19 86.47 91.47 61.12 44.86
IRRA (Ours) G - CLIP-ViT CLIP-Xformer 73.38 89.93 93.71 66.13 50.24

Table 1. Performance comparisons with state-of-the-art methods on CUHK-PEDES dataset. Results are ordered based on the Rank-1
accuracy. “G” and “L” in “Type” column stand for global-matching/local-matching method.

Optimization. As mentioned previously, the main ob-
jective of IRRA is to improve the learning of global image-
text representations in joint embedding space. To achieve
this goal, the commonly utilized ID loss [54] is also adopted
along with SDM loss and IRR loss to optimize IRRA. The
ID loss is a softmax loss which classifies an image or text
into distinct groups based on their identities. It explicitly
considers the intra-modal distance and ensures that feature
representations of the same image/text group are closely
clustered together in the joint embedding space.

IRRA is trained in an end-to-end manner and the overall
optimization objective for training is defined as:

L = Lirr + Lsdm + Lid. (7)

4. Experiments
We extensively evaluate our method on three challenging

text-to-image person retrieval datasets.
CUHK-PEDES [30] is the first dataset dedicated to text-

to-image person retrieval, which contains 40,206 images
and 80,412 textual descriptions for 13,003 identities. Fol-
lowing the official data split, the training set consists of
11,003 identities, 34,054 images and 68,108 textual de-
scriptions. The validation set and test set contain 3,078 and
3,074 images, 6158 and 6156 textual descriptions, respec-
tively, and both of them have 1,000 identities.

ICFG-PEDES [7] contains a total of 54,522 images for
4,102 identities. Each image has only one corresponding
textual description. The dataset is divided into a training set
and a test set, the former comprises 34,674 image-text pairs
of 3,102 identities, while the latter contains 19,848 image-
text pairs for the remaining 1,000 identities.

RSTPReid [55] contains 20505 images of 4,101 iden-
tities from 15 cameras. Each identity has 5 corresponding
images taken by different cameras and each image is anno-
tated with 2 textual descriptions. Following the official data
split, the training, validation and test set contain 3701, 200
and 200 identities respectively.

Evaluation Metrics. We adopt the popular Rank-k met-
rics (k=1,5,10) as the primary evaluation metrics. Rank-k
reports the probability of finding at least one matching per-
son image within the top-k candidate list when given a tex-
tual description as a query. In addition, for a comprehen-
sive evaluation, we also adopt the mean Average Precision
(mAP) and mean Inverse Negative Penalty(mINP) [52] as
another retrieval criterion. The higher Rank-k, mAP and
mINP indicates better performance.

Implementation Details. IRRA consists of a pre-trained
image encoder, i.e., CLIP-ViT-B/16, a pre-trained text en-
coder, i.e., CLIP text Transformer, and a random-initialized
multimodal interaction encoder. For each layer of the mul-
timodal interaction encoder, the hidden size and number of
heads are set to 512 and 8. During training, random hor-
izontally flipping, random crop with padding, and random
erasing are employed for image data augmentation. All in-
put images are resized to 384× 128. The maximum length
of the textual token sequence L is set to 77. Our model
is trained with Adam optimizer [24] for 60 epochs with a
learning rate initialized to 1×10−5 and cosine learning rate
decay. At the beginning, we spend 5 warm-up epochs lin-
early increasing the learning rate from 1×10−6 to 1×10−5.
For random-initialized modules, we set the initial learning
rate to 5 × 10−5. The temperature parameter τ in SDM
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loss is set to 0.02. This work is supported by Huawei
MindSpore [19]. We perform our experiments on a single
RTX3090 24GB GPU.

4.1. Comparison with State-of-the-Art Methods

In this section, we present comparison results with state-
of-the-art methods on three public benchmark datasets.
Note that the Baseline models in Tab. 1 2 and 3 denotes dif-
ferent CLIP models fine-tuned with the original CLIP loss
(InfoNCE [34]).

Performance Comparisons on CUHK-PEDES We
first evaluate the proposed method on the most common
benchmark, CUHK-PEDES. As shown in Tab. 1, IRRA
outperforms all state-of-the-art methods, achieving 73.38%
Rank-1 accuracy and 66.13% mAP respectively. It is worth
noting that our directly fine-tuned CLIP Baseline has al-
ready achieved the recent state-of-the-art method CFine
[50], with Rank-1 accuracy and mAP reaching 68.19% and
86.47% respectively. In Tab. 1, we annotate the feature ex-
traction backbones (”Image Enc.” and ”Text Enc.” column)
employed by each method, and it is evident that there is a
growing demand of powerful feature extraction backbone
for text-to-image person retrieval, with transformer-based
backbone becoming progressively dominant.

Performance Comparisons on ICFG-PEDES The ex-
perimental results on the ICFG-PEDES dataset are reported
in Tab. 2. The Baseline can achieve comparable results
to recent state-of-the-art methods, with 56.74%, 75.72%
and 82.26% on Rank-1, Rank-5 and Rank-10, respectively.
Moreover, our proposed IRRA achieves 63.46%, 80.24%
and 85.82% on these metrics, which exceed the recent state-
of-the-art local-matching method Cfine [50] by a large mar-
gin, i.e., +2.63%, +3.69% and +3.4%. It is worth noting that
the mINP [52] metric on ICFG-PEDES is relatively low,
which indicates the inferior capability of IRRA to find the
hardest matching samples.

Performance Comparisons on RSTPReid We also re-
port our experimental results on the newly released RST-
PReid dataset in Tab. 3. Our proposed IRRA dramatically
surpass the recent global-matching method IVT [39] by
+13.5%, +11.3% and +9.4% on Rank-1, Rank-5 and Rank-
10, respectively. Compared with the recent local-matching
method Cfine [50], IRRA also achieves considerable per-
formance gains, with the rise of +9.65%, +8.8% and +6.6%
on Rank-1, Rank-5 and Rank-10, respectively.

In summary, our IRRA consistently achieves the best
performance for all metrics on all three benchmark datasets.
This demonstrates the generalization and robustness of our
proposed method.

4.2. Ablation Study

In this subsection, we analyze the effectiveness of each
component in the IRRA framework. Here, we adopt the

Method Type Rank-1 Rank-5 Rank-10 mAP mINP
Dual Path [54] G 38.99 59.44 68.41 - -
CMPM/C [53] L 43.51 65.44 74.26 - -
ViTAA [46] L 50.98 68.79 75.78 - -
SSAN [7] L 54.23 72.63 79.53 - -
IVT [39] G 56.04 73.60 80.22 - -
ISANet [51] L 57.73 75.42 81.72 - -
CFine [50] L 60.83 76.55 82.42 - -
Baseline (CLIP-RN50) G 41.46 63.68 73.04 21.00 2.46
Baseline (CLIP-RN101) G 44.09 66.27 74.75 22.59 2.84
Baseline (CLIP-ViT-B/16) G 56.74 75.72 82.26 31.84 5.03
IRRA (Ours) G 63.46 80.25 85.82 38.06 7.93

Table 2. Performance comparisons with state-of-the-art methods
on ICFG-PEDES dataset.

Method Type Rank-1 Rank-5 Rank-10 mAP mINP
DSSL [55] G 39.05 62.60 73.95 - -
SSAN [7] L 43.50 67.80 77.15 - -
LBUL [48] L 45.55 68.20 77.85 - -
IVT [39] G 46.70 70.00 78.80 - -
CFine [50] L 50.55 72.50 81.60 - -
Baseline (CLIP-RN50) G 41.40 68.55 77.95 31.51 12.71
Baseline (CLIP-RN101) G 43.45 67.75 78.40 29.91 11.18
Baseline (CLIP-ViT-B/16) G 54.05 80.70 88.00 43.41 22.31
IRRA (Ours) G 60.20 81.30 88.20 47.17 25.28

Table 3. Performance comparisons with state-of-the-art methods
on RSTPReid dataset.

CLIP-ViT-B/16 model fine-tuned with InfoNCE loss as the
Baseline to facilitate the ablation study.

Ablations on proposed components To fully demon-
strate the impact of different components in IRRA, we con-
duct a comprehensive empirical analysis on three public
datasets (i.e., CUHK-PEDES [30], ICFG-PEDES [7] and
RSTPReid [55]). The Rank-1, Rank-5, Rank-10 accuracies
(%) are reported in Tab. 4.

IRR learns local relations through MLM task which can
be easily integrated with other transformer-based methods
to facilitate fine-grained cross-modal alignment. The ef-
ficacy of IRR is revealed via the experimental results of
No.0 vs. No.4, No.2 vs. No.6 and No.5 vs. No.7. Merely
adding the IRR to Baseline improves the Rank-1 accuracy
by 3.04%, 4.22% and 3.85% on the three datasets, respec-
tively. The above results clearly show that IRR module are
beneficial for cross-modal matching.

To demonstrate the effectiveness of our proposed sim-
ilarity distribution matching (SDM) loss, we compare it
with the commonly used cross-modal projection match-
ing (CMPM) loss [53] (No.1 vs. No.2) on the three public
datasets, the SDM loss promotes the Rank-1 accuracy of
the CMPM loss by 11.11%, 6.62%, and 2.2%, respectively.
Besides, replace the original InfoNCE loss with the com-
monly used CMPM loss (No.0 vs. No.1) does not improve
the performance on text-to-image person retrieval, yet it
leads to performance degradation. In contrast, the SDM loss
promotes the Rank-1 accuracy of the Baseline by 2.23%,
3.71%, and 3.15% on three datasets, respectively. These re-
sults demonstrate that the proposed SDM loss well aligns
the features representations between the two modalities. In
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No. Methods Components CUHK-PEDES ICFG-PEDES RSTPReid
SDM Lid IRR Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

0 Baseline 68.19 86.47 91.47 56.74 75.72 82.26 54.05 80.70 88.00
1 +Lcmpm [53] 59.31 79.66 86.11 53.83 72.20 79.02 55.40 77.70 85.25
2 +SDM ✓ 70.42 86.73 92.04 60.45 77.88 83.86 57.20 79.90 88.10
3 +Lid ✓ 65.33 84.05 90.33 53.38 72.70 79.70 54.15 76.65 85.00
4 +IRR ✓ 71.23 88.89 93.24 60.96 79.02 84.90 57.90 80.85 88.50
5 +SDM+Lid ✓ ✓ 70.52 87.59 92.12 61.03 78.26 83.89 58.65 80.70 87.05
6 +SDM +IRR ✓ ✓ 72.81 89.31 93.39 63.27 80.10 85.77 59.25 79.70 88.00
7 IRRA ✓ ✓ ✓ 73.38 89.83 93.71 63.46 80.25 85.82 60.20 81.30 88.20

Table 4. Ablation study on each component of IRRA on CUHK-PEDES, ICFG-PEDES and RSTPReid.

Method Param(M) Time(ms) Rank-1 Rank-5 Rank-10
Co-attn 33.62 24.30 73.28 89.04 93.44
Merged attn 12.61 19.20 73.21 89.18 93.70
Ours 13.66 6.42 73.38 89.83 93.71

Table 5. Comparisons between different Multimodal Interaction
Module of IRRA on CUHK-PEDES.

addition, the experimental results of No.2 vs. No.5 and No.6
vs. No.7 demonstrate the effectiveness of the ID loss.

Analysis of the Multimodal Interaction Encoder To
demonstrate the advantages of our proposed Multimodal In-
teraction Module, we compare it with two other popular
multimodal interaction modules in Tab. 5. The Multimodal
Interaction Module in IRR is a computationally efficient op-
eration to fuse multimodal features, building the connection
between the two modalities. We extensively compare it with
Co-attn and Merged attn under our proposed IRRA setting,
and observe slight but consistent performance gain on all
Rank-k metrics. Notably, our major advantage is the com-
putational efficiency.

A man wearing a 

white and gray stripe 

shirt, a pair of green 

pants and a pair of 

shoes.

The man is crossing 

the street wearing a 

white shirt, black 

pants and carrying a 

black book bag. 

The woman wears a

teal t-shirt, black 

pants, and blue tennis 

shoes. She wears 

glasses and carries a 

red backpack.

Figure 5. Comparison of top-10 retrieved results on CUHK-
PEDES between Baseline (the first row) and IRRA (the second
row) for each text query. The image corresponding to query text.,
matched and mismatched images are marked with black, green and
red rectangles, respectively.

4.3. Qualitative Results

Fig. 5 compares the top-10 retrieval results from the
Baseline and our proposed IRRA. As the figure shows,
IRRA achieves much more accurate retrieval results and
obtains accurate retrieval results when Baseline fails to re-
trieve them. This is mainly due to the Implicit Relation
Reasoning (IRR) modules we designed, which fully ex-
ploit fine-grained discriminative clues to distinguish differ-
ent pedestrians. This is illustrated in the orange highlighted
text and image regions box in Fig. 5. Moreover, We found
that our model only learns the semantic information of the
word-level but unable to understand the semantics of the
phrase-level in the description text, which leads to the dis-
tortion of semantic information. This is because we only
masked random single tokens in MLM, and did not perform
phrase-level masking. We plan to address this issue in the
future.

5. Conclusion
In this paper, we introduce a cross modal implicit rela-

tion reasoning and aligning framework(IRRA) to learn dis-
criminative global image-text representations. To achieve
full cross-modal interaction, we propose an Implicit Rela-
tion Reasoning module that exploits MLM to mine fine-
grained relations between visual and textual tokens. We fur-
ther propose a Similarity Distribution Matching loss to ef-
fectively enlarge the variance between non-matching pairs
and the correlation between matching pairs. These mod-
ules collaborate to align images and text into a joint embed-
ding space. Significant performance gains on three popu-
lar benchmarks datasets prove the superiority and effective-
ness of our proposed IRRA framework. We believe that the
CLIP-based approach will be the future trend for text-to-
image person retrieval.
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