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Abstract

Contrastive loss has been increasingly used in learning
representations from multiple modalities. In the limit, the
nature of the contrastive loss encourages modalities to ex-
actly match each other in the latent space. Yet it remains
an open question how the modality alignment affects the
downstream task performance. In this paper, based on
an information-theoretic argument, we first prove that ex-
act modality alignment is sub-optimal in general for down-
stream prediction tasks. Hence we advocate that the key of
better performance lies in meaningful latent modality struc-
tures instead of perfect modality alignment. To this end,
we propose three general approaches to construct latent
modality structures. Specifically, we design 1) a deep fea-
ture separation loss for intra-modality regularization; 2) a
Brownian-bridge loss for inter-modality regularization; and
3) a geometric consistency loss for both intra- and inter-
modality regularization. Extensive experiments are con-
ducted on two popular multi-modal representation learn-
ing frameworks: the CLIP-based two-tower model and the
ALBEF-based fusion model. We test our model on a va-
riety of tasks including zero/few-shot image classification,
image-text retrieval, visual question answering, visual rea-
soning, and visual entailment. Our method achieves consis-
tent improvements over existing methods, demonstrating the
effectiveness and generalizability of our proposed approach
on latent modality structure regularization.

1. Introduction
Vision-language representation learning aims to learn

generic representations from images and texts that could
benefit multimodal downstream applications. As the two
modalities are essentially from different data sources and
distributions, how to effectively fuse the two modalities has
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modal representation learning.

become an important question. Some work aims to unify
the representations of two modalities in one encoder, where
the image and text are usually tokenized into sequences
[60, 61, 65, 66]. Another line of research represents the im-
age and text modality separately with modality-specific en-
coders and utilizes contrastive learning to align the modal-
ities, achieving state-of-the-art performance on multiple
downstream applications [13, 26, 31, 32, 41, 49, 53, 54, 70].

Despite the successful empirical practice of contrastive
loss in multi-modal representation learning, it remains
an open question whether bridging and aligning the two
modalities always brings benefits to downstream tasks.
One concept closely related to this question is the modal-
ity gap [35, 49, 68, 72], where it is defined as the dis-
tance between the feature distributions of the two modali-
ties. Modality alignment can be considered as reducing the
modality gap. At a first glance, one would conjecture that
contrastive loss would reduce the modality gap by pulling
positive (paired) image and text data together for better rep-
resentation. However, a recent study [35] shows evidence
that contrastive learning does not always reduce the modal-
ity gap. Furthermore, we also show in our empirical anal-
ysis that a reduced modality gap does not always guaran-
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tee better performance in downstream applications. Moti-
vated by these empirical observations, in this paper we first
theoretically study the modality gap problem, by showing
that when the modality gap is zero, i.e., exact alignment be-
tween the two modalities, the learned representations nec-
essarily have to pay a price for the downstream prediction
task, which we term as the information gap between the two
modalities (Theorem 3.1). Intuitively, this is because that
representations with zero modality gap can only preserve
predictive information present in both of the modalities at
the cost of losing the modality-specific information.

Our theory then suggests that instead of exact modality
matching, whether learned representations are meaningful
is an important factor in multi-modal representation learn-
ing. In particular, we propose to improve on top of con-
trastive learning with regularizations to construct better la-
tent structures. We consider intra-modality, inter-modality,
and intra-inter-modality regularizations. These regulariza-
tions are generalizable and can be applied to various vision-
language models with modality-specific encoders. Specif-
ically, for intra-modality regularization, motivated by our
theoretic result, we propose deep feature separation to en-
courage the model to preserve both the modality-shared
and modality-specific information in different components.
For inter-modality regularization, we aim to bridge two
modalities with their augmentations. Consequently, we pro-
posed a Brownian bridge loss between the triplet of (text,
augmented image, image) to regularize the inter-modality
structures. For intra-inter-modality regularization, we in-
troduce the geometric consistency loss that promotes geo-
metric symmetry in the latent space. In summary, the main
contributions of this paper are:

• We conduct empirical and theoretical analysis on un-
derstanding the impact of the modality alignment on
downstream tasks. We show that a reduced modal-
ity gap does not always guarantee better performance,
and can instead hurt the performance when the infor-
mation gap between the two modalities is large (The-
orem 3.1). Combined with the existing theory of con-
trastive learning, our theory suggests preserving both
modality-shared and modality-specific information.

• Inspired by our theory, we propose three instrumental
regularizations on top of the contrastive loss, i.e., the
intra-modality, inter-modality, and intra-inter-modality
regularizations to improve latent modality structures.

• We conduct extensive and comprehensive experiments
on various vision-language models to show that the
proposed methods consistently improve over the base-
lines for different model families (e.g., CLIP and AL-
BEF) and for different downstream applications (e.g.,
cross-modality retrieval, VQA, VR and etc).

2. Related work
Most recent works on vision-language representation

learning can be categorized based on how information from
different modalities is used for joint learning. The first
category applies unified models [60, 61, 65, 66] to process
both images and texts, where the inputs are usually tok-
enized into sequences [2, 48]. Unified models feature sim-
pler and more universal designs, but typically underperform
methods with modality-specific encoders (the second cat-
egory). These methods use separate encoders for images
and texts (e.g. CLIP [41, 49, 53], ALIGN [26]), and rely
on contrastive loss [6, 21, 45] to align multiple modalities.
These methods have been shown to achieve state-of-the-
art (SOTA) performance on image-text retrieval; but the
support is lacking for multi-modality tasks requiring inter-
modality interaction, e.g. VQA. To conquer this problem,
most recent approaches use a hybrid fashion where the mod-
els have separate encoders for images and texts along with a
late-fusion multi-modal encoder [13,31,32,54,70]. Specifi-
cally, image-text matching (ITM) loss and masked language
modeling (MLM) loss are usually applied for training the
fusion encoder.

The methods in the later category utilize separate en-
coders for different modalities. However, this can lead to
the phenomenon that image embeddings and text embed-
dings reside in different regions of the joint latent space.
Such a phenomenon, termed modality gap, is observed in
many multi-modal models [49, 68, 72]. A recent study [35]
shows that the modality gap presents from the initializa-
tion and can be preserved during contrastive training. This
naturally brings in another variety in multi-modality mod-
els – the latent modality gap and modality structures. Cy-
CLIP [18] advocates for the benefit of consistency in latent
modality structures. Other works [20,58,69] investigate the
modality-specific and modality-shared information. Yet to
the best of our knowledge, no other prior work has studied
the modality gap from a theoretical view. In this work, we
show that directly reducing the modality gap does not help
in performance gain from both empirical experiments and
theoretical analysis. Consequently, we propose to study the
impact of latent modality structures, and propose three ap-
proaches to obtain more meaningful latent modality struc-
tures that can improve downstream applications.

3. Understanding the Impact of Modality Gap
on Downstream Performance

Despite being used extensively as a heuristic in prac-
tice [35, 68, 70, 72], it remains an open question whether
modality alignment in the feature space through contrastive
learning is optimal for downstream performance [35]. In
this section, we first formally formulate the modality gap
problem, present our empirical evidence on the relationship
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between the modality gap and the performance of down-
stream tasks, and then probe into its theoretical underpin-
ning by providing an information-theoretical analysis.

Notation Throughout the paper, we will use XT and XV

to denote the random variables corresponding to the input
texts and images, respectively. We shall use Y to denote the
target variable in the downstream task of interest. For ex-
ample, in the context of online shopping, XT and XV could
be the textual and visual descriptions of a product, and in
this case Y is the expected sale of this product. When deal-
ing with data with multi-modalities, we often use modality-
specific encoder gT and gV to obtain features in the same
latent space, i.e., ZT = gT (XT ) and ZV = gV (XV ) are
the extracted features from textual and visual inputs. In this
work, we focus on the setting where inputs from different
modalities are paired with each other, meaning that a sam-
ple consists of the tuple (xT , xV , y) from the underlying
joint distribution p. The goal of reducing the modality gap
in the latent space is then to shrink the statistical distance
(e.g., KL-divergence, etc) between ZT and ZV .

For two random variables XT and XV , we define
I(XT ;XV ) to be the Shannon mutual information between
XT and XV . Similarly, we use H(Y | XT , XV ) to denote
the conditional entropy of Y given the two modalities as
input. Following common practice, for classification tasks,
`CE(ŷ, y) is the cross-entropy loss between the prediction
ŷ and the ground-truth label y. One useful fact about the
conditional entropy H(Y | XT , XV ) and the cross-entropy
loss is the following variational form [14, 73]: H(Y |
XT , XV ) = inff Ep[`CE(f(XT , XV ), Y )], where the infi-
mum is over all the prediction functions that take both XT

and XV as input to predict the target Y and the expectation
is taken over the joint distribution p of (XT , XV , Y ).

3.1. Empirical Analysis on Modality Gap
Given paired multi-modal data, one natural idea explored

in the literature [35, 70, 72] is to use contrastive pretrain-
ing by treating paired multimodal data as the positive pairs
and others as negative pairs. The goal is to align the posi-
tive pairs so that they are closer to each other in the feature
space while at the same time ensuring the negative pairs
to be farther away. More specifically, let (xT , xV , y) and
(x0

T , x
0
V , y

0) be two tuples sampled from the joint distribu-
tion. Then, in order to align the two modalities, (xT , xV ),
(x0

T , x
0
V ) are used as positive pairs while (xT , x

0
V ) and

(x0
T , xV ) are constructed as negative pairs.
Based on the contrastive loss principle [63, Theorem 1],

a better model should come with smaller modality gaps
(better alignment). However, despite being extensively used
as a pretraining strategy in practice, it is unclear how the
modality alignment affects the downstream tasks of inter-
est. To approach this important question, we first conduct

Figure 2. Visualization of the modality gap between text and im-
age features. There is no clear-cut relationship between the gap of
these two modalities and the downstream retrieval performance.

experiments to explore the effect of reducing modality gap
on the task of image/text retrieval.

We plot the alignment between paired image/text data
in the feature space and also compute the average distance
between them as the gap measure in Fig. 2. We per-
form pre-training on COCO [36] dataset and evaluate the
zero-shot retrieval performance on Flick30K [71] test set.
We optimize an additional alignment loss during training,
LAlign = 1/hZT , ZV i2, to reduce the gap between modali-
ties. We control the gap by adjusting the scale of LAlign with
{1, 0.5, 0}. From Fig. 2, we can see that the retrieval per-
formance barely changes when changing the gap between
two modalities. Note that as we normalized the data in the
feature space, the gap difference in the figure is significant.

3.2. An Information-Theoretic Analysis on Modal-
ity Gap

Inspired by the empirical observation, we conjecture that
reducing the modality gap in feature space does not al-
ways lead to better downstream task performance. Nev-
ertheless, it is instructive to theoretically understand when
and in what kind of downstream tasks reducing the modal-
ity gap could help. To do so, we first define the information
gap �p := |I(XT ;Y )� I(XV ;Y )| to characterize the gap
of utility provided by two modalities towards predicting the
target variable Y . Note that by definition, the information
gap �p only depends on the joint distribution p, i.e., the
multimodal prediction problem itself, and is independent
of the modality encoders gT and gV . Hence, it is a con-
stant during the modality learning process. As we shall see
shortly, the information gap will serve as a lower bound of
the downstream prediction error if we seek to find features
that admit a zero modality gap. From this perspective, the
information gap is the price we have to pay for using per-
fectly aligned features among different modalities. Thus, it
well corresponds to the modality gap we are interested in.
We can now state our theorem as follows.

Theorem 3.1. For a pair of modality encoders gT (·)
and gV (·), if the multi-modal features ZT = gT (XT )
and ZV = gV (XV ) are perfectly aligned in the feature
space, i.e., ZT = ZV , then infh Ep[`CE(h(ZT , ZV ), Y )] �
infh0 Ep[`CE(h0(XT , XV ), Y )] � �p.
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Remark We discuss some of the implications of the above
theorem. At a high level, Theorem 3.1 states that if the
information gap �p between the two modalities is large,
then the optimal prediction error we can hope to achieve by
using modality-aligned features is at least �p larger than
that we can achieve from the input modalities. In partic-
ular, when only one of the modalities contains predictive
information w.r.t. the downstream target Y , enforcing per-
fect modality alignment could render the learned modality-
aligned features ZT and ZV uninformative of Y , leading to
a large downstream prediction error. Intuitively, such a phe-
nomenon will happen because modality alignment enforces
the aligned features to only contain predictive information
present in both of the input modalities XT and XV .

In practice, because of the use of contrastive loss, due to
the asymptotic behavior of it [63, Theorem 1], in the limit of
infinity amount of data, the contrastive loss will force pos-
itive pairs to be perfectly aligned. In the context of multi-
modal learning, this means that the assumption ZT = ZV

of Theorem 3.1 will hold. As a last note, we comment that
the requirement of perfect alignment in Theorem 3.1 is not
necessary: the lower bound could be extended when the fea-
tures ZT and ZV are only approximately aligned.1

Due to space limit, we defer the proof of Theorem 3.1
to Appendix A. In fact, it can be readily seen from the
proof in the appendix that we could relax the exact modal-
ity alignment condition in Theorem 3.1 even further. In
other words, as long as there exists a bijection between ZT

and ZV , then the conditional mutual information satisfies
I(ZV ;Y | ZT ) = I(ZT ;Y | ZV ) = 0, so the exact same
lower bound in Theorem 3.1 will hold.

4. Method

Motivated by Theorem 3.1, instead of seeking exact
modality matching, in this section we propose to construct
meaningful latent modality structures. They can play an
important role in learning generalizable multi-modal rep-
resentations by preventing pure modality alignment. In the
following, we propose three designs from different perspec-
tives to construct the latent modality structures, by con-
sidering variations in intra- and inter-modalities. We vi-
sualize these designs in Fig. 3. We first introduce the
basic contrastive learning framework that we develop our
methods on. Following previous work [13, 49], we adopt
the multi-modal training framework with contrastive loss,
which uses both cross-modal and in-modal contrastive loss,

1For example, one could use a relax parameter ✏ to characterize the
degree of modality alignment in the feature space. Then, we only need to
replace the existing lower bound �p with �p � ✏.

i.e.,LCon = 1
4 (LV2T + LT2V + LV2V + LT2T) with:

LV2T =� 1

N

NX

j=1

log
e
hzVj ,zTj i/⌧

PN
k=1 e

hzVj ,zTk
i/⌧

LV2V =� 1

N

NX

j=1

log
e
hzVj ,z

a
Vj

i/⌧

PN
k=1 e

hzVj ,zVk
i/⌧

where N denotes the batch size; zVj denote the feature
of the j-th image in the mini-batch, with its augmenta-
tion z

a
Vj

and corresponding text feature zTj . The remaining
losses (LT2V, LT2T) are defined in the same way by switch-
ing between text modality (T ) and image modality (V ).

4.1. Intra-modality Regularization via Deep Fea-
ture Separation

This subsection aims to construct intra-modality struc-
tures to regularize in-modality representations. Based
on Theorem 3.1, we first define two types of informa-
tion, modality-shared information that is shared by all
modalities, and modality-independent information that is
modality-specific. Our motivation stems from our theoreti-
cal finding that exact modality matching is sub-optimal due
to the loss of modality-independent information. To over-
come this limitation, we propose to explicitly model the
modality-independent information. We achieve this by ap-
plying the idea of feature separation [4] on multi-modal rep-
resentation learning. Our basic construction is shown in
Figure 3a. On top of the contrastive learning framework,
we use additional projection layers to construct new fea-
tures to store such information. We term these independent
features, meaning that they contain modality-specific infor-
mation independent of the other modality. We take extra
constraints to ensure that a) independent features contain
complementary information from the original features; and
b) independent features are meaningful representations.

To ensure a), we constrain the features to be orthogonal
to the original features by forcing their inner product to be
small, i.e. hu, vi = 0. We define an orthogonal loss over
minibatch optimization as follows:

LOrtho =
1

N

NX

j=1

(hzVj , z
i
Vj
i2 + hzTj , z

i
Tj
i2)

where z
i
Vi

denote the independent feature of the i
th image

feature in the batch.
To avoid the degenerate case where the independent fea-

tures are learned to be non-informative noises independent
of the other modality, we further constrain that the inde-
pendent features are informative. To this end, we adopt
the contrastive loss and uniformity loss on the independent
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Figure 3. Illustration of our three designed regularizer for constructing latent feature structure.

features, i.e., we first adopt in-modality contrastive loss for
independent text features and independent image features
separately, i.e., Li

Con = Li
V2V + Li

T2T with

Li
V2V =� 1

N

NX

j=1

log
e
hzi

Vj
,zi

Vj
i/⌧

PN
k=1 e

hzi
Vj

,zi
Vk

i/⌧ ,

and Li
T2T is defined similarly. Then we enhance the inde-

pendent features with the uniformity loss [64] that maxi-
mizes the pairwise Gaussian potential [1,11]. Such a unifor-
mity loss encourages the learned features to preserve maxi-
mal information:

Li
Uni = log

1

N

NX

j=1

NX

k=1

Gt(z
i
Vj
, z

i
Vk
) +Gt(z

i
Tj
, z

i
Tk
),

where Gt(u, v) = e
�tku�vk2

is the Gaussian potential ker-
nel with t = 2. In this way, we can preserve both modality-
shared information and modality-independent information.
Finally we obtain the total loss: LSep = LOrtho+Li

Con+Li
Uni.

4.2. Inter-modality Regularization via Brownian
Bridge

Next, we consider regularizing inter-modality structures.
With the existence of modality gap, a natural idea is to con-

strain paired modality features in some subspace so that
they are better separated from other feature pairs. To this
end, we propose to construct a latent structure to explicitly
guide the transition from the image modality to the associ-
ated text modality. Such a modality transition can be seam-
lessly modeled by the so-called Brownian bridge [40, 62],
which is a special type of Brownian motion with constraints
that define stochastic paths (called bridges) between a pair
of fixed starting and ending points (corresponding to the two
modalities in our setting). Our basic construction is illus-
trated in Figure 3b.

To formulate this, given two random variables (ZV , ZT )
of image-text feature pairs, we denote the feature of aug-
mented image as Za

V . We define a stochastic path such that
Z

a
V is constrained to stay on the path between ZV and ZT .

From the property of Brownian bridge, this endows a con-
ditional Gaussian distribution of the form:

p(Za
V |ZV , ZT ) = N (Za

V ;µ(ZV , ZT , t), t(1� t)I) (1)

where t 2 [0, 1] is a hyperparameter, which can be ran-
domly sampled at each time or fixed to a pre-defined
value (we fix it to 0.25 in our experiments for simplicity);
µ(ZV , ZT , t) , tZV +(1�t)ZT

ktZV +(1�t)ZT k , and the normalizer is ap-
plied in order to constrain the mean to lie on the hyper-
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Figure 4. Illustration of two-tower-based models (e.g. CLIP) and fusion-based models (e.g. ALBEF). Our latent modality regularization
can be applied to both type of models at their feature level.

sphere feature space. Based on the maximal likelihood prin-
ciple, to fit the model, we can simply align the Z

a
V with

the mean of the Brownian bridge in (1). When applying
stochastic optimization, this ends up with optimizing the
following objective at each time over a mini-batch:

LBr =
1

N

NX

j=1

kza
Vj

� µ(zVj , zTj , t)k2

=
1

N

NX

j=1

thzVj , z
a
Vj
i+ (1� t)hzTj , z

a
Vj
i

t2 + (1� t)2 + 2t(1� t)hzVj , zTj i

4.3. Intra-Inter Regularization via Geometric Con-
sistency

In the previous subsections, we consider either intra- or
inter-modality structures between the two modalities. Is it
possible to relate these two types of relationships together?
In this subsection, we aim to design a general regularizer
that considers both intra- and inter-modality structures. We
achieve this goal by enforcing geometric symmetry within
and between modality representations and their augmenta-
tions. Specifically, we generalize the idea in CyCLIP [18]
so that it also includes geometric consistency for the aug-
mented features, which is demonstrated in the experiments
to achieve significant improvement.

Specifically, we apply two types of geometric consis-
tency losses that achieve symmetry in the following set-
tings. First, we enforce geometric consistency among the
original modality features, by optimizing the similarity be-
tween the mismatched image and text pairs, and the simi-
larity between image pairs and text pairs. As shown in Fig-
ure 3c, we achieve this by encouraging the geometric con-
sistency such that hzV1 , zT2i ⇠ hzV2 , zT1i and hzV1 , zV2i ⇠
hzT1 , zT2i, where a ⇠ b means a is close to b in some sense
(defined below). We define the following geometric consis-
tency objective over mini-batch:

LGC =
1

N

NX

j=1

NX

k=1

[(hzVj , zTki � hzVk , zTj i)2

+(hzVj , zVki � hzTj , zTki)2]
Second, we optimize the geometric consistency of aug-
mented features. As shown in Fig. 3c we optimize geomet-
ric symmetry between feature pairs and augmented feature

pairs in the text and image space. The following objective
is used to enforce this goal:

La
GC =

1

N

NX

j=1

NX

k=1

[(hzVj , zVki � hza
Vj
, z

a
Vk
i)2

+(hzTj , zTki � hza
Tj
, z

a
Tk
i)2] + 1

N

NX

j=1

(hzVj , zTj i � hza
Vj
, z

a
Tj
i)2

Overall, the total combination of geometric consistency loss
can be written as: LGC + La

GC.

Final Loss We can now define a final loss by combin-
ing the standard contrastive loss with one or several of
our proposed modality regularization losses. The effect
of each regularization could be task-dependent, i.e. certain
task could benefit more from certain regularization, which
we will show comprehensively in the next section.

5. Experiments
Our proposed methods are general purposed. Thus, we

choose to evaluate them with two popular multi-modal rep-
resentation frameworks: the two-tower based models (e.g,
CLIP) and the fusion based models (e.g., ALBEF), as il-
lustrated in Fig. 4. Note that in CLIP, text inputs are aug-
mented with EDA [67], and image inputs are augmented
with random augmentation such as flipping and cropping.
In ALBEF, augmented features are obtained with additional
momentum encoders.

5.1. Two-Tower-based Models
For this set of experiments, we adopt the CLIP-based

models, where two separate encoders are trained to align
features from the image and text modalities. To regularize
latent modality structures, our regularization losses are sep-
arately applied along with the standard contrastive loss for
pre-training2. We then evaluate on standard benchmarks.

Setup: Our CLIP model adopts ResNet-50 [22] as the im-
age encoder and BERT [12] as the text encoder. We adopt

2We will combine all the proposed regularizers for evaluation in exper-
iments with the fusion-based models.
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Table 1. Zero-shot TopK classification accuracy (%) on CIFAR10, CIFAR100 and ImageNet1K.

Method CIFAR10 CIFAR100 ImageNet1K
Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

CLIP [49] 44.95 72.58 88.3 15.05 29.51 37.53 16.72 28.61 34.38
CyCLIP [18] 43.22 71.43 83.22 15.09 27.39 34.35 17.77 30.06 36.20

OURSSep 46.61 81.21 92.44 19.37 36.66 46.26 20.21 33.25 39.60
OURSBr 43.15 72.77 86.72 14.22 26.46 33.28 20.45 33.56 39.28
OURSGC 56.36 80.47 90.27 22.70 41.66 51.78 20.25 33.50 39.91

Table 2. Zero-shot TopK classification accuracy (%) on Natural Distribution Shifts.

Method ImageNetV2 ImageNetSketch ImageNet-A ImageNet-R
Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

CLIP [49] 14.11 25.76 31.80 8.61 16.47 21.13 2.81 7.31 11.32 19.07 31.99 39.03
CyCLIP [18] 15.25 26.59 32.15 8.30 16.18 20.77 3.27 8.45 13.07 19.85 33.35 40.35

OURSSep 16.78 28.97 35.68 9.22 17.86 23.00 3.45 9.88 15.81 22.06 35.65 43.01
OURSBr 17.02 29.39 35.53 10.34 18.39 23.05 3.01 7.50 11.45 20.40 32.43 38.45
OURSGC 17.37 29.84 36.65 10.90 20.77 26.11 3.87 11.36 16.76 23.85 37.90 45.03

Table 3. Linear probing Top1 classification accuracy (%) on visual benchmarks.
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CLIP [49] 78.57 57.07 87.22 79.74 56.36 59.84 37.17 59.66 53.98 58.11 74.21 23.96 76.66 52.10 61.05
CyCLIP [18] 77.86 54.29 87.61 77.53 54.23 58.19 33.00 62.63 54.81 60.82 72.95 23.36 72.89 52.83 60.14

OURSSep 84.45 69.82 90.96 81.51 61.19 67.50 41.70 67.16 54.26 63.08 82.35 31.76 81.69 56.73 66.73
OURSBr 82.18 57.46 90.69 79.42 57.72 64.84 34.74 65.71 54.04 60.52 73.61 26.50 78.44 53.87 62.84
OURSGC 83.23 63.58 91.31 80.92 58.89 65.43 34.83 64.51 55.19 60.80 76.84 26.95 78.76 54.96 64.01

the official code from CyCLIP to incorporate our regulariza-
tions, as well as to reproduce the baselines. Our reproduced
CLIP results are consistent with the recent works [17, 42],
although they are slightly lower than reported in the original
CLIP paper. The reason could be that the number of GPUs
we use is different and we provide details in Appendix C.1.
For both baselines, we can reproduce better performance
on linear probing but slightly under-perform on zero-shot
transfer, which we consider reasonable. Note that all meth-
ods are under the same codebase and same hyper-parameter
setting, thus the comparisons are fair.

Pre-training: We follow the protocol of previous works
to pre-train the model with the CC3M [52] dataset, which
contains 3M unique images and 4M image-text pairs.

5.1.1 Zero-Shot Transfer Learning Evaluation

We perform zero-shot transfer on standard image classifi-
cation tasks, with the CIFAR10, CIFAR100 [30] and Im-
ageNet1K [51] datasets. We use the standard evaluation
strategy of prompt engineering. For each dataset, we con-
struct the text prompts using the name of the class, e.g. ”a
photo of the [class name]”. For each class, we obtain
the normalized class text embedding. During the evalua-
tion, the class with the highest similarity score to the im-

age embedding is predicted to be the label. Following pre-
vious works, we report Top-K classification accuracy with
K = 1, 3, 5.

As shown in Tab. 1, our method significantly outper-
forms CLIP and CyCLIP on all three datasets, demonstrat-
ing the importance of latent modality structures. It is also
interesting to see the differences our three regularizers per-
form in different datasets, i.e., the feature-separation regu-
larizer performs best in CIFAR10, while Brownian bridge
regularizer performs best on ImageNet1K, and geometry
consistency regularizer performs the best on CIFAR100.

5.1.2 Natural Distribution Shift Evaluation

We further evaluate variants [23,24,50,59] of ImageNet1K
dataset with shifted distributions. These datasets contain
sketches, cartoons and adversarial generated images. As
shown in Tab. 2, all methods suffer from performance
degradation on natural distribution shift benchmarks com-
pared to the performance on original ImageNet1K in Tab. 1.
Nevertheless, our method consistently outperforms the
baselines on all benchmarks. In contrast to the other exper-
iments, our geometric consistency regularization performs
the best on all the benchmarks.
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Table 4. Downstream tasks performance on fusion-based models.

Method VQA NLVR2 SNLI-VE
test-dev test-std dev test-P val test

ImageBERT [33] 70.80 71.00 67.40 67.00 - -
LXMERT [57] 72.42 72.54 74.90 74.50 - -
12-in-1 [38] 73.15 - - 78.87 - 76.95
UNITER [7] 72.70 72.91 77.81 77.85 78.59 78.28
OSCAR [34] 73.16 73.44 78.07 78.36 - -
VILLA [16] 73.59 73.67 78.39 79.30 79.47 79.03
ViLT [27] 70.94 - 75.24 76.21 - -
ViCHA [54] 73.55 - 78.14 77.00 79.20 78.65
ALBEF [32] 73.38 73.52 78.36 79.54 79.69 79.91
CODIS [13] 73.15 73.29 78.58 79.92 79.45 80.13

OURSSep 73.52 73.59 79.05 79.76 79.95 79.61
OURSBr 74.26 74.36 78.70 79.36 79.86 79.95
OURSGC 73.90 73.87 78.96 79.53 79.82 80.16

5.1.3 Linear Probing Evaluation

We demonstrate better latent structure can also benefit
downstream tasks with in-domain supervision. We eval-
uate this on linear probing tasks by fitting a linear clas-
sifier with in-domain supervision using the learned visual
encoder. In total, we evaluate on 14 standard bench-
marks [3,9,10,15,25,28,30,39,43,44,47,51,55]. As shown
in Tab. 3, all our methods outperform the baselines on all
benchmarks by large margins. Remarkably, our deep fea-
ture separation regularization performs particularly well on
this task. We believe this is partially because such regular-
ization can learn to preserve more information that could be
useful with extra in-domain supervision.

5.2. Fusion-based Models
We next test our methods on fusion-based models. We

adopt the ALBEF [32] framework, where a fusion en-
coder is applied to fuse the modality as shown in Fig. 8b.
Such fusion-based models are known to be more power-
ful in learning inter-model interaction compared to sim-
ple two-tower-based models. Thus, we evaluate our meth-
ods on various vision-language downstream tasks including
VQA [19], NLVR2 [56], SNLI-VE [5]. Here we incorpo-
rate all three regularizations for these tasks. We additionally
provide ablation study on smaller scale experiments.

Setup We use ViT-B/16 as our vision encoder and 12-
layer BERTbase as the text encoder. Note the first 6 layers
of BERTbase are used purely as the text encoder and the re-
maining are used as fusion encoder. We reproduced ALBEF
and CODIS results for fair comparisons. All experiments
we run are under the same codebase and hyper-parameter
settings. The details are included in Appendix C.2.

Pre-training: We follow the previous experiments proto-
cols [13, 32] using a union of four datasets for pre-training,
which include Conceptual Captions (CC3M) [52], Visual

Genome (VG) [29], SBU Captions [46] and COCO [36],
constituting 4M unique images and 5M image-text pairs.

5.2.1 Vision-Language Tasks Evaluation

Visual Question Answering (VQA): We fine-tune and
evaluate our pre-trained model on VQA v2.0. Follow-
ing [8, 13, 32], we consider VQA as a generation task. Dur-
ing fine-tuning, we apply 6-layer transformer-based decoder
to generate the answer. We fine-tune on the training set and
evaluate on the test-dev and test-std set. The results are pre-
sented in Table 4. Consistently, our method performs the
best and achieves a 1% improvement on both the test-dev
and test-std sets.

Natural Language for Visual Reasoning (NLVR2): We
use the NLVR2 dataset, which contains 100K texts paired
with web images. To enable our model to reason over two
images, we follow [32] to extend the fusion encoder with an
MLP prediction head and perform additional pre-training of
one epoch to prepare the fusion encoder on text-assignment
task. As shown in Table 4, our method achieves an improve-
ment of 2% on the dev set and matches the performance of
SOTA on the test-P set.

Visual Entailment (VE): We follow [7, 32] and consider
this as a classification problem with three classes (entail-
ment, neutral, contradictory). Thus, we adopt an MLP
prediction head on top of the fusion encoder. Again, our
method is comparable to the baselines on the val set and
outperforms all baselines on the test set.

We provide additional results including analysis and vi-
sualization of constructing latent structures, suggestions to
choose regularizer, visualization of experimental results, as
well as ablation studies in Appendix B.

6. Conclusion
In this paper, we investigate the latent modality struc-

tures in multi-modal representation learning. We analyze
and examine the modality gap in the latent feature space
and reveal that reducing modality gap to zero does not al-
ways lead to better performance. Instead we advocate that
more meaningful latent features structures will benefit the
downstream applications. Thus we design three regulariza-
tion methods to construct meaningful latent structures. We
propose to use 1) deep feature separation loss 2) brownian
bridge loss 3) geometric consistency loss to improve the la-
tent features from different perspectives. Extensive exper-
iments on multiple vision-language tasks including image
classification, linear probing, visual question answering, vi-
sual reasoning, visual entailment confirm the effectiveness
and the generalizability of our proposed approach on popu-
lar contrastive representation learning frameworks.
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