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Abstract

Object detection at night is a challenging problem due
to the absence of night image annotations. Despite several
domain adaptation methods, achieving high-precision re-
sults remains an issue. False-positive error propagation is
still observed in methods using the well-established student-
teacher framework, particularly for small-scale and low-
light objects. This paper proposes a two-phase consistency
unsupervised domain adaptation network, 2PCNet, to ad-
dress these issues. The network employs high-confidence
bounding-box predictions from the teacher in the first phase
and appends them to the student’s region proposals for the
teacher to re-evaluate in the second phase, resulting in a
combination of high and low confidence pseudo-labels. The
night images and pseudo-labels are scaled-down before be-
ing used as input to the student, providing stronger small-
scale pseudo-labels. To address errors that arise from low-
light regions and other night-related attributes in images,
we propose a night-specific augmentation pipeline called
NightAug. This pipeline involves applying random aug-
mentations, such as glare, blur, and noise, to daytime im-
ages. Experiments on publicly available datasets demon-
strate that our method achieves superior results to state-of-
the-art methods by 20%, and to supervised models trained
directly on the target data. 1

1. Introduction
Nighttime object detection is critical in many applica-

tions. However, the requirement of annotated data by su-
pervised methods is impractical, since night data with anno-
tations is few, and supervised methods are generally prone
to overfitting to the training data. Among other reasons,
this scarcity is due to poor lighting conditions which makes
nighttime images hard to annotate. Hence, methods that

1www.github.com/mecarill/2pcnet

Figure 1. Qualitative results of state-of-the-art DA methods, DA
Faster-RCNN [3], UMT [7], Adaptive Teacher (AT) [15] and our
method 2PCNet on the BDD100K [36] dataset. Unlike the SOTA
methods, our method is able to detect dark and small scale objects
with minimal additional false positive predictions.

do not assume the availability of the annotations are more
advantageous. Domain adaptation (DA) is an efficient solu-
tion to this problem by allowing the use of readily available
annotated source daytime datasets.

A few domain adaptation methods have been proposed,
e.g., adversarial learning which uses image and instance
level classifiers [3] and similar concepts [22, 32]. However,
these methods isolate the domain adaptation task purely to-
wards the feature extractor, and suppress features of the
target data for the sake of domain invariance. Recent un-
supervised domain adaptation methods exploit the student-
teacher framework (e.g. [1,7,11,15]). Since the student ini-
tially learns from the supervised loss, there is a bias towards
the source data. Augmentation [7,11] and adversarial learn-
ing [15] have been proposed to address this problem. Un-
fortunately, particularly for day-to-night unsupervised do-
main adaptation, these methods suffer from a large num-
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ber of inaccurate pseudo-labels produced by the teacher. In
our investigation, the problem is notably due to insufficient
knowledge of small scale features in the nighttime domain,
which are then propagated through the learning process be-
tween the teacher and student, resulting in poor object de-
tection performance.

To address the problem, in this paper, we present 2PC-
Net, a two-phase consistency unsupervised domain adapta-
tion network for nighttime object detection. Our 2PCNet
merges the bounding-boxes of highly-confident pseudo-
labels, which are predicted in phase one, together with re-
gions proposed by the student’s region proposal network
(RPN). The merged proposals are then used by the teacher
to generate a new set of pseudo-labels in phase two. This
provides a combination of high and low confidence pseudo-
labels. These pseudo-labels are then matched with pre-
dictions generated by the student. We can then utilise a
weighted consistency loss to ensure that a higher weightage
of our unsupervised loss is based on stronger pseudo-labels,
yet allow for weaker pseudo-labels to influence the training.

Equipped with this two-phase strategy, we address the
problem of errors from small-scale objects. We devise
a student-scaling technique, where night images and their
pseudo-labels for the student are deliberately scaled down.
In order to generate accurate pseudo-labels, images to the
teacher remain at their full scale. This results in the pseudo-
labels of larger objects, which are easier to predict, to be
scaled down to smaller objects, allowing for an increase in
small scale performance of the student.

Nighttime images suffer from multiple complications not
found in daytime scenes such as dark regions, glare, promi-
nent noise, prominent blur, imbalanced lighting, etc. All
these cause a problem, since the student, which was trained
on daytime images, is much more biased towards the day-
time domain’s characteristics. To mitigate this problem,
we propose NightAug, a set of random nighttime specific
augmentations. NightAug includes adding artificial glare,
noise, blur, etc. that mimic the night conditions to day-
time images. With NightAug we are able to reduce the bias
of the student network towards the source data without re-
sulting to adversarial learning or compute-intensive trans-
lations. Overall, using 2PCNet, we can see the qualitative
improvements of our result in Figure 1. In summary, the
contributions of this paper are as follows:

• We present 2PCNet, a two-phase consistency approach
for student-teacher learning. 2PCNet takes advantage
of highly confident teacher labels augmented with less
confident regions, which are proposed by the scaled
student. This strategy produces a sharp reduction of
the error propagation in the learning process.

• To address the bias of the student towards the source
domain, we propose NightAug, a random night spe-

cific augmentation pipeline to shift the characteristics
of daytime images toward nighttime.

• The effectiveness of our approach has been verified by
comparing it with the state-of-the-art domain adapta-
tion approaches. An improvement of +7.9AP(+20%)
and +10.2AP(26%) over the SOTA on BDD100K and
SHIFT has been achieved, respectively.

2. Related Work
Unsupervised Domain Adaptation (UDA) Unsuper-
vised domain adaptation aims to learn transferable features
to reduce the discrepancy between a labelled source and
unlabelled target domain. Previous works minimised the
distance metric (MMD) [16–18] and considered intra-class
and inter-class discrepancy [12, 13]. Adversarial feature
learning involved adding an adversarial classifier to play
the min-max game between the domain discriminator and
feature extractors to generate a domain invariant feature
map [27, 28, 37]. These methods have been applied to im-
age classification. Our work focuses on object detection,
which is more complex as it involves identifying multiple
bounding boxes and associated classes in each image.

UDA for Object Detection Object detection with UDA
is a recent challenge due to the complexities of identifying
multiple objects in an image. DA-Faster RCNN [3] inte-
grated adversarial learning with image and instance level
classifiers, and several approaches have been proposed to
improve on this method by introducing scale-awareness
[4], class specific discriminators [31], and re-purposing the
task-specific classifier as a discriminator [2]. The Mean
Teacher (MT) framework [26] has been adopted in semi-
supervised methods, such as UMT [7], which incorporates
CycleGAN [39] augmented images; AT [15], which com-
bines the student-teacher framework with adversarial learn-
ing; and TDD [11], which uses dual student-teacher net-
works with style transfer.

Nighttime UDA The majority of research on unsuper-
vised domain adaptation (UDA) in nighttime scenarios has
focused on semantic segmentation [5, 8, 9, 14, 23, 29, 33].
Translation and style transformation techniques are com-
monly used to reduce the domain gap between the source
and target domains in these methods [8,29,33]. Some UDA-
based techniques for nighttime also utilise paired-images to
generate a shared feature space [23], while others use an
intermediate domain such as twilight to reduce the domain
gap during unsupervised learning [5].

Nighttime tracking has also been investigated where ad-
versarial transformers are used to close the domain gap [35].
However, there is a gap in research when it comes to apply-
ing UDA techniques in the object detection task for night-
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Figure 2. Overview of our proposed framework, 2PCNet. 2PCNet consists of: A student network is trained on both the labelled daytime
image, which has been augmented with NightAug, and unlabelled nighttime images. A teacher network which is the exponential moving
average (EMA) of the student and provides matched pseudo-labels for unsupervised loss. The match pseudo-labels are the predictions of
the teacher (phase two) using the RPN proposals of the student, which in turn was guided by the high confidence pseudo-labels of the
teacher (phase one).

time scenarios. Therefore, we explore the application of
UDA techniques in object detection under low-light and
nighttime conditions.

3. Proposed Method

Let Ds be the daytime source data. Ds = {Is, Cs, Bs},
where the variables refer to the image, class label and
bounding-box label, respectively. Index s indicates the day-
time source. The night target data is represented by Dt,
where Dt = {It} as we do not have the target labels avail-
able to us. Index t indicates the nighttime target.

The architecture of our 2PCNet is shown in Figure 2.
Our 2PCNet consists of a student and a teacher network.
The student is a multi-domain network trained on both la-
belled daytime images, augmented with NightAug, and un-
labelled nighttime images. The teacher focuses on night
images to produce pseudo-labels for the student and is the
exponential moving average (EMA) of the student. After
an initial pretraining phase, the teacher begins producing
pseudo-labels, which allows the student to initialise the fea-
ture extractor and detector.

During each iteration, in phase one of 2PCNet, the
teacher produces pseudo-labels from the night images.
These pseudo-labels are filtered through a confidence

threshold. This is to ensure only high-confidence pseudo-
labels are given to the student. The bounding-boxes from
the pseudo-labels are then combined with the region pro-
posals generated by the student’s RPN. The merged region
proposals are then used to generate predictions from the stu-
dent’s RoI network. In phase two, the teacher utilises the
same merged region proposals to generate a matched set of
pseudo-labels, where each pseudo-label has its correspond-
ing prediction obtained from the student.

As mentioned earlier, our student network is initialised
by pretraining for a set number of iterations. This is done
with supervised loss on the augmented daytime images:

Lsup = Lrpn(Bs, Is) + Lroi(Bs, Cs, Is), (1)

where Lrpn represents the loss from the RPN, which con-
sists of an objectness and bounding-box regression loss.
Lroi represents the loss from the detector network, consist-
ing of a classification and bounding-box regression loss.

Once the pretraining is completed, the student’s weights
are then transferred over to the teacher. In the succeeding
iterations, the teacher’s weights are the exponential moving
average (EMA) of the student’s. The matched pseudo-labels
generated by the teacher, {C∗

p , B
∗
p}, are then used to guide
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Figure 3. (Left to Right, Top to Bottom) Ground truth bounding
boxes, bounding boxes predicted by the teacher with non-maximal
suppression (NMS) and thresholding (Bp), bounding boxes pre-
dicted by the student (Bstudent) which is guided by Bp, and the
bounding boxes predicted by the teacher (B∗

p ) for the consistency
loss.

the unsupervised loss, defined as:

Lunsup = Lobj
rpn(C

∗
p ; It) + Lcons(C

∗
p ; It), (2)

where Lobj
rpn is the objectness loss of the RPN and Lcons is

the weighted KL-Divergence loss from the predicted out-
puts which we will further explain in the next section.

3.1. Two-Phase Consistency

Due to the large domain gap between daytime source im-
ages and nighttime target images, the teacher is unable to
produce high quality pseudo-labels. This generally occurs
in the whole scene, but particularly for regions with strong
night characteristics, e.g., low-light, glare, uneven lighting,
etc. The teacher produces confident pseudo-labels only for
regions that share more similarities to the daytime, since it
is biased towards the daytime domain. This bias poses a
problem for methods that employ a hard-threshold to filter
pseudo-labels for categorical cross-entropy loss [7, 15, 26].
The remaining pseudo-labels contain only easy samples
with daytime attributes. Consequently, the student does not
learn from harder (e.g. darker) areas.

As a result of minimal knowledge of the hard sam-
ples (i.e., areas with a high level of nighttime attributes),
the teacher begins to predict highly confident yet incor-
rect pseudo-labels. As the teacher provides these incorrect
pseudo-labels to the student, a viscous cycle starts where the
teacher in turn is updated with incorrect knowledge. Con-
sequently, the error continues to propagate through training.
In our case, these errors notably occur in dark/glare regions
and as small scale objects.

To address the problem of error propagation, we de-
sign a two-phase approach that combines high confidence

pseudo-labels together with their less confident counter-
parts. This combination allows for the high accuracy of
confident-labels with the additional knowledge of less con-
fident labels to be distilled onto the student. In phase one,
the unlabelled nighttime image, It, is used as an input for
the teacher to generate pseudo-labels. These pseudo-labels
are filtered with a threshold to retain only high-confidence
pseudo-labels, (Cp, Bp). The bounding-box of the pseudo-
labels, Bp, is then used as an input to the student. Bp is
concatenated to the region proposals generated by the stu-
dent RPN module:

P ∗ = RPNstudent(It) ++Bp, (3)

where P ∗ is the combined region proposals, which are then
used as an input to the student’s RoI module to predict the
classes, Cstudent, and bounding-box, Bstudent, of each re-
gion proposal.

Phase two begins by using the same combined region
proposals, P ∗, generated in phase one as an input to the
teachers RoI module to generate a matched set of pseudo-
labels:

{C∗
p , B

∗
p} = RoIteacher(P

∗). (4)

The difference between Cp and C∗
p is that C∗

p is derived
from the same region proposals as that of the student pre-
dictions Cstudent. This allows us to compare Cstudent and
C∗

p directly:

{Cstudent(n), Bstudent(n)} = RoIstudent(P
∗(n)),

{C∗
p (n), B

∗
p(n)} = RoIteacher(P

∗(n)),
(5)

where n = {1, 2, .., N} and N is the number of region pro-
posals in P ∗. This operation ensures that the knowledge of
highly confident predictions generated by the teacher is dis-
tilled through to the student. In addition, information from
less confident predictions can also be learnt. However, we
are still required to penalise less confident samples and thus
employ weighed KL-Divergence to be used as our consis-
tency loss:

Lcons = α KL(Cstudent, C
∗
p ), (6)

where α is the highest confidence of C∗
p expressed as α =

max(C∗
p ); KL() is the KL-divergence function. Note that,

pseudo-bounding boxes are not used to generate unsuper-
vised loss, as the confidence score of each pseudo-label rep-
resents the class information rather than the bounding box.
The outputs of each segment of our two-phase approach are
shown in Figure 3.

3.2. Student-Scaling

In our investigation, we have found that scales of objects
have a strong influence on object detection at night. This
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Algorithm 1 Single Augmentation - NightAug

imgClean← img
if randFloat ≥ 0.5 then

randFloat← 0.8 ∗ randFloat + 0.2
img← augmentation(img, randval)
prob← 0.4
while randFloat ≥ prob do

x← randInt(img.shape[1], 2)
y ← randInt(img.shape[2], 2)
img[x, y]← imgClean[x, y]
prob← prob + 0.1

end while
end if

is due to the features of smaller objects being easily over-
whelmed by glare or noise. To allow the student to over-
come this, we apply scaling augmentation to the student’s
inputs which includes both the image and the pseudo-labels
generated by the teacher. As training proceeds, we follow a
schedule to increase the scale of the student augmentation
until it equals to that of the original image. By iteratively
increasing the scale we allow the student to focus on smaller
features earlier in the training process. This process en-
courages the teacher to make more accurate predictions on
smaller scale objects in the later stages of training. In turn,
accurate small scale pseudo-labels allow for the increase in
the scale of the student’s inputs with minimal errors due to
scale.

To ensure the knowledge of the previous scales is not
forgotten, a gaussian function for the scaling factor is ap-
plied. The norm of the Gaussian function is obtained from
the schedule values. To prevent additional noise due to
pseudo-labels being too small, labels that has an area be-
low a threshold are removed.

3.3. NightAug

Night images suffer from a range of complications that
are not present in daytime scenes. This causes a problem in
the student-teacher framework, where the student would be
biased towards the source domain. Previous methods have
attempted to address this, but have either required compute-
intensive translations [7, 11] or adding additional domain
classifiers to the framework [15] which complicates train-
ing. We propose NightAug, a nighttime specific augmen-
tation pipeline that is compute-light and does not require
training. NightAug consists of a series of augmentations
with the aim of steering the characteristics of daytime im-
ages to resemble that of a nighttime image.

The defining features of nighttime images are that they
are darker and have lower contrast than daytime images. In
addition the signal-to-night ratio (SNR) could be higher due
to the properties of digital cameras such as luminance and

Figure 4. NightAug: Original image (top-left) and images with
random augmentations from: gaussian blur, gamma correction,
brightness, contrast, glare, gaussian noise and random cut-outs.

colour noise. Glare and glow from street lamps and head-
lights are also present in nighttime images. Additionally,
images may be out-of-focus due to the cameras inability to
detect reference points to focus on in dark environments.

Keeping in mind the properties of nighttime images, our
NightAug includes random; brightness, contrast, gamma,
gaussian noise, gaussian blur augmentations and random
glare insertion. The augmentations are randomly applied to
the images and are also random in intensity. This random-
ness results in a wider variance of images that are exposed
to the student leading to more robust training [30]. To fur-
ther increase the variance of the images, at each augmen-
tation step, random segments of the image will ignore the
application of that augmentation. This allows for the rep-
resentation where different areas of nighttime images may
be unevenly lighted. This uneven lighting affects the above
characteristics of the local region.

A single augmentation flow of NightAug is demon-
strated in Algorithm 1. Samples of an image processed with
NightAug are shown in Figure 4. Each augmentation has
a set probability of being applied, with the strength of the
augmentation being random. Random regions of the aug-
mented image may then be replaced with that of the original
image. The probability of this region replacement reduces
with each iteration.

Overall Loss Our total loss can be represented as:

Ltotal = Lsup + λLunsup, (7)

where λ represents a weight factor for the unsupervised
loss, and is set experimentally. Lsup, Lunsup refer to Eq. (1)
and Eq. (2), respectively.
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Method AP Pedes-
trian

Rider Car Truck Bus Motor
cycle

Bicycle Traffic
Light

Traffic
Sign

Lower-Bound 41.1 50.0 28.9 66.6 47.8 47.5 32.8 39.5 41.0 56.5
Upper-Bound 46.2 52.1 35.0 73.6 53.5 54.8 36.0 41.8 52.2 63.3

DA F-RCNN [3] 41.3 50.4 30.3 66.3 46.8 48.3 32.6 41.4 41.0 56.2
TDD [11] 34.6 43.1 20.7 68.4 33.3 35.6 16.5 25.9 43.1 59.5
UMT [7] 36.2 46.5 26.1 46.8 44.0 46.3 28.2 40.2 31.6 52.7
AT [15] 38.5 42.3 30.4 60.8 48.9 52.1 34.5 42.7 29.1 43.9
2PCNet (Ours) 46.4 54.4 30.8 73.1 53.8 55.2 37.5 44.5 49.4 65.2

Table 1. Results of day-to-night domain adaptation on the BDD100K dataset, the Average Precision (AP) of all classes are reported. Faster
RCNN detector with ResNet-50 feature extractor is used for all experiments to ensure a fair comparison. Faster RCNN is used as the
lower-bound and upper-bound and is trained on labelled daytime and nighttime data respectively. The lower-bound provides a baseline
without any domain adaptation while the upper-bound is fully supervised, the case where labelled target night data is available.

Method APcoco Car Bus Truck

Lower-Bound 22.1 37.5 29.8 30.7
Upper-Bound 23.9 42.0 33.8 35.0

FDA [34] 22.6 38.5 37.2 23.2
ForkGAN [38] 22.9 41.2 33.3 32.1
2PCNet (Ours) 23.5 40.7 38.2 35.0

Table 2. Comparison of our framework, 2PCNet, with image-to-
image (I2I) translation methods. Conducted on the BDD100K
dataset. ForkGan and FDA are used for comparison. Reported
APcoco is the averaged AP over IoUs 0.5 to 0.95.

4. Experiments

4.1. Baselines

To evaluate our method, we compare our approach with
SOTA methods in domain adaptation for object detection.
These include DA-Faster RCNN [3], TDD [11], UMT [7],
AT [15] as well as a non-DA baseline Faster-RCNN [21].
Faster-RCNN is used as both our lower and upper-bound,
where it is trained on labelled source and target data re-
spectively. We additionally compare our approach with
image-to-image translation methods, ForkGAN [38] and
FDA [34]. Translation methods are trained on Faster RCNN
with both the daytime and translated images.

4.2. Datasets

The majority of existing nighttime datasets either fo-
cuses on semantic segmentation which do not provide la-
bels for object detection [5, 23, 24], or contains very few
classes [19, 20]. BDD100K [36] was selected as it pro-
vides object detection labels which includes a wide range
of classes (10). It also has a large number of images com-
pared to other DA datasets covering daytime, nighttime and
other adverse conditions.

The SHIFT [25] dataset is a recent simulated driving
dataset that contains scenes in various environments. A con-
tinuous shift of these environments is available. SHIFT con-
tains 6 class labels that share similarities to the BDD100K
classes. For our evaluation, we use images with the ’day’
and ’night’ label as our source and target data respectively.
We further ensure that the weather tag is ’clear’ to isolate
other weather conditions from the evaluation.

4.3. Implementation

Following previous SOTA methods, we employ Faster-
RCNN [21] as our base detection model and ResNet-50 [10]
pretrained on ImageNet [6] as our feature extractor. All
images are scaled by resizing its shorter side to 600 pix-
els. For student-scaling we set a schedule for (0.57, 0.64,
0.71, 0.78, 0.85, 0.92) of the maximum iterations at scales
(0.5, 0.6, 0.7, 0.8, 0.9, 1.0). Loss hyperparameters are set
at λ = 0.3 and the rate smooth coefficient parameter of the
EMA is 0.9996. A confidence threshold of 0.8 for phase one
of Two-Phase Consistency. For the initial pretraining of the
student model, we train the student for 50k and 20k itera-
tions on the source images, for BDD100K and SHIFT re-
spectively. Supervised inputs are daytime images with and
without NightAug. We then copy the weights to the teacher
and continue training with the addition of unsupervised loss
for an additional 50k iterations. The learning rate is kept
at 0.04 throughout training. Our network is trained on 3
RTX3090 GPUs with a batch-size of 6 source and 6 target
images.

4.4. Comparison to SOTA

Comparison on BDD100K We compare our method
against the SOTA on real driving scenes and evaluating their
domain adaptation performance on nighttime images, the
results of this experiment can be seen on Table 1. The
results show that our method achieves the highest perfor-
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Figure 5. Qualitative results of Faster RCNN, Adaptive Teacher (AT) and our method on the SHIFT dataset with the ground-truth on the
far right. We can observe that Faster RCNN is not able to detect objects due to absence of domain adaptation, while AT has a large number
of small false positive bounding boxes compared to our method which closely resembles that of the ground-truth.

Method AP Per. Car Truck Bus Mcy. Bcy.

Lower-Bound 41.6 40.4 44.5 49.9 53.7 14.3 46.7
Upper-Bound 47.0 49.7 51.5 56.0 53.6 19.2 52.4

DA FR [3] 43.7 43.0 48.8 47.8 52.1 19.9 55.8
UMT [7] 31.1 7.7 47.5 18.4 46.8 16.6 49.2
AT [15] 38.9 25.8 33.0 54.7 49.5 20.7 52.3
2PCNet (Ours) 49.1 51.4 54.6 54.8 56.6 23.9 54.2

Table 3. Results of Day-to-Night domain adaptation on the SHIFT
dataset. The Average Precision (AP) of all classes. Faster RCNN
is used as the lower-bound and upper-bound and is trained on la-
belled daytime and nighttime data respectively.

mance with an AP of 46.4. 20.5% higher than that of the
SOTA student-teacher methods and above that of the upper-
bound. We have observed in experiments that student-
teacher methods underperforms with an AP below that of
the lower-bound due to the error-propagation from noisy
pseudo-labels. The result of the error is small false posi-
tive detections as seen in Figure 1. Our method does not
suffer from the same allowing for higher performance. We
can also observe that our method performs well across all
classes. Even when compared with the upper-bound, 2PC-
Net achieves higher AP on the majority of classes. This
indicates that our method is able to generalise well across
large and small classes.

The comparison with image-to-image translation meth-
ods is shown in Table 2. Translation methods do not suf-
fer from the error propagation problem as it is trained on
Faster RCNN without a teacher. Even so, we can see that
our method outperforms SOTA adverse vision translation

methods.

Comparison on SHIFT To further compare our method
with SOTA we evaluate on the SHIFT simulation dataset.
Due to the nature of the simulated data, many nighttime im-
age characteristics that we have previously mention is not
exhibited in this data such as blurriness, noise and glare.

The results of this experiments are shown in Table 3.
We can observe that previous SOTA methods that use the
student-teacher framework perform worse than the lower-
bound. The sub-par performance is again due to the error-
propagation problem. AT performs better than UMT due to
ATs inclusion of adversarial learning. However, adversarial
learning is not enough to mitigate this problem. We can see
that the performance of DA FRCNN outperforms both the
SOTA student-teacher methods as it would not be affected
by error-propagation. It is however, still largely below the
upper-bound performance. 2PCNet outperforms these pre-
vious methods as well as the upperbound. We achieve an
improvement of +10.2 AP over previous SOTA student-
teacher methods and +2.1 AP over that of the upper-bound.

4.5. Ablation Studies

To demonstrate the effectiveness of each of our compo-
nents, we train several models for 100K iterations and eval-
uate them on the BDD100K dataset. We present our find-
ings in Table 4.

Two-Phase Consistency We can observe in Table 4 that
the addition of Two-Phase Consistency (C) demonstrated a
wide performance gap when compared to the Mean-Teacher
baseline, +13.5 AP (43%). This improvement in AP ex-
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Figure 6. Training curve on BDD100K dataset ablation study. We show the overall AP training curve as well as the AP of large, medium
and small objects. MT represents the base Mean Teacher framework. It can be seen that at all scales, the absence of Two-Phase Consistency
(C) results in a sharp drop during training. We can also see that with the inclusion of NightAug (NA) and student-scaling (SS) the gradient
of the curve increases. We note that the inclusion of a domain classifier (DC) reduces the performance at all scales.

ists across large, medium and small objects. While the per-
formance of MT is initially strong, it rapidly begins to de-
cline; which can be observed in Figure 6. This drop in per-
formance is due to the error propagation of noisy pseudo-
labels. The experimental results show that Two-Phase Con-
sistency is able to provide a solution. This ensures that
highly confident pseudo-labels are bounded by less confi-
dent pseudo-label enabling a balance of knowledge into the
student.

NightAug We benched marked the effectiveness of Nigh-
tAug in our framework as shown in Table 4. The inclusion
of NightAug increases the detection performance of small
objects with an increase of 5%. Additionally, the gradient
of the training performance remains steep as seen in Figure
6. The positive gradient is displayed most strongly for APm
and APs where objects are more prone to nighttime specific
complications.

Student-Scaling Our final component, student-scaling, is
included into the framework and the results can be seen in
Table 4. We can observe that student-scaling is able to boost
the performance of small object detection by 6%. This
boost in performance is due to the student network focus-
ing on smaller object earlier in the training process. We
note that the performance of large objects have dropped by
1-2%; however when referring to the training curves in Fig-
ure 6, APl remains steep. As the initial focus is on smaller
objects, less time is allocated to larger objects during train-
ing. This can be mitigated by lengthening training resulting
in more iterations for larger objects.

Domain Classifier To conclude our study, we included
a domain classifier into our network. Adversarial learning
is a widely used DA technique; however when added into
2PCNet, a performance drop across all scales can be seen.
This drop is shown in Table 4. The suppression of night-
time features is suspected to be the cause. Suppression is
present as the adversarial loss guides the feature extractor to
maintain domain invariancy. By suppressing nighttime fea-

Methods
C NA SS DC AP APl APm APs

✓ ✓ ✓ 46.4 41.7 25.8 9.1
✓ ✓ ✓ ✓ 44.5 41.6 25.0 8.3
✓ ✓ 45.8 42.2 25.7 8.6
✓ 45.2 42.9 25.7 8.2

31.7 30.4 16.5 4.8

Table 4. Ablation studies on the BDD100K dataset. The last row
represents the base Mean-Teacher network. Methods are referred
to as, C: Two-Phase Consistency, NA: NightAug, SS: Student-
Scaling, DC: Domain Classifier. APl, APm, and APs represent
the AP of large, medium and small objects respectively.

tures, the teacher has less information to distil to the student.
This is demonstrated in Figure 6 where the domain classi-
fier (dotted purple) initially performs well. But as training
continues, our method (solid red) is able to surpass its per-
formance.

5. Conclusion

Our proposed framework, 2PCNet, presents a novel so-
lution to the challenges of day-to-night domain adaptive ob-
ject detection. With our Two-Phase Consistency approach,
we are able to effectively leverage high and low confidence
knowledge for the student, while mitigating error propaga-
tion commonly present in previous student-teacher meth-
ods. We further address issues arising from small scale and
dark objects through the use of student-scaling and Nigh-
tAug, respectively. Experimental results on the e BDD100K
[36] and SHIFT [25] datasets demonstrate that 2PCNet out-
performs existing state-of-the-art methods. Overall, our
proposed framework provides an effective and efficient so-
lution for day-to-night domain adaptive object detection.
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