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Abstract

In contrast to the natural capabilities of humans to
learn new tasks in a sequential fashion, neural networks
are known to suffer from catastrophic forgetting, where the
model’s performances on old tasks drop dramatically after
being optimized for a new task. Since then, the continual
learning (CL) community has proposed several solutions
aiming to equip the neural network with the ability to learn
the current task (plasticity) while still achieving high accu-
racy on the previous tasks (stability). Despite remarkable
improvements, the plasticity-stability trade-off is still far
from being solved and its underlying mechanism is poorly
understood. In this work, we propose Auxiliary Network
Continual Learning (ANCL), a novel method that applies
an additional auxiliary network which promotes plasticity
to the continually learned model which mainly focuses on
stability. More concretely, the proposed framework mate-
rializes in a regularizer that naturally interpolates between
plasticity and stability, surpassing strong baselines on task
incremental and class incremental scenarios. Through
extensive analyses on ANCL solutions, we identify some
essential principles beneath the stability-plasticity trade-
off. The code implementation of our work is available at
https://github.com/kim-sanghwan/ANCL.

1. Introduction

The continual learning (CL) model aims to learn from
current data while still maintaining the information from
previous training data. The naive approach of continuously
fine-tuning the model on sequential tasks, however, suffers
from catastrophic forgetting [8, 21]. Catastrophic forget-
ting occurs in a gradient-based neural network because the
updates made with the current task are likely to override
the model weights that have been changed by the gradients
from the old tasks.

Catastrophic forgetting can be understood in terms of

stability-plasticity dilemma [22], one of the well-known
challenges in continual learning. Specifically, the model
not only has to generalize well on past data (stability) but
also learn new concepts (plasticity). Focusing on stability
will hinder the neural network from learning the new data,
whereas too much plasticity will induce more forgetting
of the previously learned weights. Therefore, CL model
should strike a balance between stability and plasticity.

There are various ways to define the problem of CL.
Generally speaking, it can be categorized into three sce-
narios [27] : Task Incremental Learning (TIL), Domain In-
cremental Learning (DIL), and Class Incremental Learning
(CIL). In TIL, the model is informed about the task that
needs to be solved; the task identity is given to the model
during the training session and the test time. In DIL, the
model is required to solve only one task at hands without
the task identity. In CIL, the model should solve the task
itself and infer the task identity. Since the model should
discriminate all classes that have been seen so far, it is usu-
ally regarded as the hardest continual learning scenario. Our
study performs extensive evaluations on TIL and CIL set-
ting which will be further explained in Sec. 4.

Recently, several papers [19, 20, 28, 31] proposed the
usage of an auxiliary network or an extra module that is
solely trained on the current dataset, with the purpose of
combining this additional structure with the previous net-
work or module that has been continuously trained on the
old datasets. For example, Active Forgetting with synap-
tic Expansion-Convergence (AFEC) [28] regularizes the
weights relevant to the current task through a new set of
network parameters called the expanded parameters based
on weight regularization methods. The expanded param-
eters are solely optimized on the current task and are al-
lowed to forget the previous ones. As a result, AFEC can
reduce potential negative transfer by selectively merging the
old parameters with the expanded parameters. The stability-
plasticity balance in AFEC is adjusted via hyperparameters
which scale the regularization terms for remembering the
old tasks and learning the new tasks.
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The authors of the above papers propose to mitigate the
stability-plasticity dilemma by infusing plasticity through
the auxiliary network or module (detailed explanation in
Appendix A). However, a precise characterization of the in-
teractive mechanism between the previous model and the
auxiliary model is still missing in the literature. Therefore,
in this paper, we first formalize the framework of CL that
adopts the auxiliary network called Auxiliary Network Con-
tinual Learning (ANCL). Given this environment, we then
investigate the stability-plasticity trade-off through various
analyses from both a theoretical and empirical point of view.

Our main contributions can be summarized as follows:

• We propose the framework of Auxiliary Network Con-
tinual Learning (ANCL) that can naturally incorporate
the auxiliary network into a variety of CL approaches
as a plug-in method (Sec. 3.1).

• We empirically show that ANCL outperforms existing
CL baselines on both CIFAR-100 [16] and Tiny Ima-
geNet [17] (Sec. 4).

• Furthermore, we perform three analyses to investigate
the stability-plasticity trade-off within ANCL (Sec. 5):
Weight Distance, Centered Kernel Alignment, and
Mean Accuracy Landscape.

2. Related Work

Continual learning approaches can be roughly catego-
rized into weight regularization [2, 5, 14, 28], knowledge
distillation [6, 13, 18, 31], memory replay [4, 26], bias cor-
rection [7, 12, 29, 32], and dynamic structure [1, 20, 30].

Weight Regularization Method: A standard way to al-
leviate catastrophic forgetting is to include a regularization
term which binds the dynamics of each network’s parameter
to the corresponding parameter of the old network. For ex-
ample, Elastic Weight Consolidation (EWC) [14] calculates
the regularizer through the approximation of Fisher Infor-
mation Matrix (FIM). Memory Aware Synapses (MAS) [2]
proposes the regularizer which accumulates the changes of
each parameter throughout the update history. Recently,
[28] suggests a biologically inspired argument to propose
Active Forgetting with synaptic Expansion-Convergence
(AFEC) where an additional regularization term associated
with expanded parameters (or auxiliary network) is added
to the loss of EWC.

Knowledge Distillation Method: A separate line of
work adopts knowledge distillation [3, 11] which was orig-
inally designed to train a more compact student network
from a larger teacher network. In this way, the main net-
work can emulate the activation or logit of the previous
(or old) network while learning a new task. For instance,
Learning without Forgetting (LwF) [18] proposes to learn

the soft target generated by the old network while less-
forgetting learning (LFL) [13] regularizes the difference be-
tween the activations of the main network and the old net-
work. Based on LwF, Learning without Memorizing (LwM)
[6] takes advantage of the attention of the previous network
to train the current network. A recent distillation approach
called Deep Model Conolidation (DMC) [31] proposes dou-
ble distillation loss to resolve the asymmetric property of
training between old and new classes using a new network
(or auxiliary network) and an unlabeled auxiliary dataset.

Memory Replay Method: Unlike the previous meth-
ods, replay-based methods keep a part of the previous data
(or exemplars) in a memory buffer. Then, a model is trained
on the current dataset and the previous exemplars to prevent
the forgetting of the previous tasks. Incremental Classifier
and Representation Learning (iCaRL) [26] proposes the us-
age of the memory buffer derived from LwF [18]. Then,
iCaRL calculates the mean feature representations for each
class and selects the exemplars iteratively so that the mean
of the exemplars is closer to the class mean in feature space,
which is called herding sampling strategy. Another replay-
based approach named End-to-End Incremental Learning
(EEIL) [4] introduces an additional stage called balanced
training to fine-tune the model on a balanced dataset. The
balanced dataset consists of the equal number of exemplars
from each class that have been seen so far.

Bias Correction Method: In memory replay meth-
ods, the network is trained on the highly unbalanced dataset
composed of the few exemplars from the previous task and
fresh new samples from the new ones. As a result, the net-
work is biased towards the data of new tasks, and this can
lead to distorted predictions of the model, which is called
task-recency bias. To solve this problem, Bias Correction
(BiC) [29] introduces a two-stage training where they per-
form the main training in the first stage and subsequently
mitigate the bias through a linear transformation. Likewise,
Weight Aligning (WA) [32] proposes two-stage training.
The first stage is equal to that of BiC and they normalize
the weight vectors of the new classes and the old classes to
reduce the bias in the second stage. Another bias correction
method called Learning a Unified Classifier Incrementally
via Rebalancing (LUCIR) [12] alleviates task-recency bias
by including three components into their training: cosine
normalization, less-forget constraint, and inter-class. Built
upon LUCIR, Pooled Outputs Distillation Network (POD-
Net) [7] applies pooled out distillation loss and local simi-
larity classifier.

Dynamic Structure Method: Dynamic structure ap-
proaches use masking for each task or expansion of the
model to prevent forgetting and increase the model capac-
ity to learn a new task. For instance, Conditional Chan-
nel Gated Networks (CCGN) [1] dynamically adds an extra
convolutional layer whenever the model learns a new task
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and it is only optimized for the new data. Adaptive Aggre-
gation Networks (AANets) [20] expands a Residual Net-
work (ResNet) [10] to have the two types of residual block
at each residual level to balance stability and plasticity: a
stable block that is trained on a first task and frozen after-
ward and a plastic block that is freely trained on a current
task. Another dynamic structure method called Dynami-
cally Expandable Representation Learning (DER) [30] sug-
gests to expand a feature extractor. The new feature ex-
tractor is trained solely on the current dataset with channel
level masking and the whole model is fine-tuned on bal-
anced dataset.

3. Method
In this Section, we propose Auxiliary Network Continual

Learning (ANCL), a framework which combines original
Continual Learning (CL) approaches with an auxiliary net-
work (Sec. 3.1). In addition, we explain the detailed training
steps of ANCL (Sec. 3.2).

3.1. The Formulation of Auxiliary Network Contin-
ual Learning

ANCL applies the auxiliary network trained on the cur-
rent task to the continually learned previous network to
achieve a balance between stability and plasticity. Fig. 1 il-
lustrates the conceptual difference between CL and ANCL,
where CL can be any continual learning method that in-
cludes a regularizer that depends on the old network. Before
training on the dataset Dt of task t, CL freezes and copies
the previous continual model θCL

t−1 that has been trained un-
til task t − 1 as the old network θ∗1:t−1. Then, the old net-
work regularizes the main training through the regulariza-
tion strength λ. We can formally define the loss of CL on
task t as follows:

LCL = Lt(θ) + Ω(θ; θ∗1:t−1, λ), (1)

where the first term denotes a task-specific loss with respect
to main network weights θ ∈ RP and the second term repre-
sents the regularizer that binds the dynamic of the network
parameters θ to the old network parameters θ∗1:t−1 ∈ RP .
λ ∈ R is the regularization strength which is usually se-
lected by a grid search procedure. These two loss terms
can be calculated on the current dataset Dt or on the com-
bined dataset D+

t (current dataset Dt + previous exemplars
P1:t−1) depending on the method to which it is applied.
In classification problems, the task-specific loss becomes
cross-entropy loss. The original CL approaches mainly fo-
cus on retaining the old knowledge obtained from the pre-
vious tasks by preventing large updates that would depart
significantly from the old weights θ∗1:t−1. However, this
might harmfully restrict the model’s ability to learn the new
knowledge, which will hinder the right balance between sta-
bility and plasticity.

Methods Ω(θ; θ∗, λ)

EWC [14] λ
2

∑
i Fi(θi − θ∗i )

2

MAS [2] λ
2

∑
i Mi(θi − θ∗i )

2

LwF [18] λ
∑C1:t

c=1 −yc(x; θ∗) log yc(x; θ)
LFL [13] λ∥f(x; θ)− f(x; θ∗)∥22

iCaRL [26] λ
∑C1:t

c=1 −yc(x; θ∗) log yc(x; θ)

BiC [29] λ
∑C1:t

c=1 −yc(x; θ∗) log yc(x; θ)
LUCIR [12] λ(1− ⟨f̄(x; θ), f̄(x; θ∗)⟩)

PODNet [7] λ[
∑L−1

l=1 LPOD-spatial(fl(x; θ), fl(x; θ
∗))

+LPOD-flat(fL(x; θ), fL(x; θ
∗))]

Table 1. The definition of Ω(θ; θ∗, λ) depends on different meth-
ods. The first four methods (EWC, MAS, LwF, and LFL) are
calculated on the current dataset Dt while the last four methods
(iCaRL, BiC, LUCIR, and PODNet) are measured on the com-
bined dataset D+

t with the memory buffer. Detailed explanation
and loss function of each method can be found in Appendix B.

On the contrary, ANCL keeps two types of network to
maintain this balance: (1) the auxiliary network θ∗t , which
is solely optimized on the current task t allowing for forget-
ting (plasticity) and (2) the old network θ∗1:t−1 that has been
sequentially trained until task t − 1 (stability). Then, both
models are used to construct the regularizers in the follow-
ing objective:

LANCL = Lt(θ) + Ω(θ; θ∗1:t−1, λ) + Ω(θ; θ∗t , λa), (2)

where the first two terms are the same as in Eq. (1) and the
last term promotes the learning of the new task t based on
the parameters of the auxiliary network θ∗t ∈ RP and the
regularization strength λa ∈ R. Note that the new regular-
izer Ω(θ; θ∗t , λa) is obtained in the same way as the original
method, and thus we expect our model to naturally merge
the old feature representation (or weight itself) with the new
one. This is mathematically explained in Appendix E where
we analyze and compare the gradient of CL and ANCL.
Moreover, we initialize the auxiliary network with the old
network parameters so that the auxiliary model is weakly
biased toward the old model, thus facilitating the integra-
tion of the two models in the corresponding regularizers of
Eq. 2.

In Tab. 1, we show how Ω(θ; θ∗, λ) materializes in se-
lected CL methods, given the current network parameters
θ, the reference network parameters θ∗ (the old or auxiliary
network), and the regularization strength λ. For example,
the original CL loss of EWC can be expressed as follows by
applying Tab. 1 to Eq. (1):

LEWC = Lt(θ) +
λ

2

∑
i

F1:t−1,i(θi − θ∗1:t−1,i)
2 (3)

where Ft is the approximation of the Fisher Information
Matrix of the old network parameters θ∗1:t−1 and the reg-
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Figure 1. Conceptual comparison of Continual Learning (CL) and Auxiliary Network Continual Learning (ANCL) (ours) on task t. (1)
CL: the previous weights θCL

t−1 are frozen in the old network as θ∗1:t−1 and the old network regularizes the main training through λ. (2)
ANCL: the auxiliary network initialized by θANCL

t−1 is trained on the dataset Dt and then frozen as θ∗t . It regularizes the main training via
λa in addition to the regularization of the old network.

ularization term calculates the difference between the net-
work parameter θi (i = 1, . . . , P ) and the corresponding
old network parameter θ∗1:t−1,i. Next, if we apply ANCL
to EWC to build the loss of the so-called Auxiliary Network
EWC (A-EWC), we get:

LA-EWC = LEWC +
λa

2

∑
i

Ft,i(θi − θ∗t,i)
2 (4)

which adds the new regularizer built upon the auxiliary net-
work parameter θ∗t,i. The application of ANCL to other
methods in Tab. 1 can be found in Appendix C.

In ANCL, the auxiliary network accounts for plasticity
while the old network stands for stability. Furthermore,
both networks are equally reflected through the regulariza-
tion term Ω, thus preventing bias toward either network.
Adjusting both regularizers via λ and λa, ANCL is more
likely to achieve a better stability-plasticity balance than
CL, under proper hyperparameter tuning. How ANCL solu-
tions appropriately weigh the old network and the auxiliary
network is further investigated in Sec. 5. Furthermore, we
mathematically analyze and compare the gradient of CL and
ANCL losses in terms of the stability-plasticity trade-off in
Appendix E.

Comparison with AFEC The auxiliary network of
ANCL works similarly to the expanded parameter of AFEC
with respect to adding an additional loss term, but ANCL
uses a method-dependent regularizer compared to the fixed
and independent regularizer of AFEC based on Fisher In-
formation Matrix. In other words, while AFEC plugs in
the same loss term calculated on the expanded parameter
to every method, ANCL generates the loss term from the
auxiliary network in the same way as the original CL where
ANCL is applied. ANCL adopts two regularizers of the
same type to equally represent stability and plasticity which
is explicitly controlled by the scaling hyperparameters (λ
and λa in Eq. (2)). If the two regularizers are of differ-

ent types like in AFEC, each regularizer will change in dif-
ferent magnitude at every epoch. Consequently, it is less
likely that the model will arrive at the best equilibrium. In
Appendix D, we empirically show that ANCL outperforms
AFEC.

3.2. Algorithm

Detailed training steps of our ANCL framework is sum-
marized in Alg. 1. This is applicable to all ANCL methods
if an appropriate ANCL loss is substituted in the algorithm.
Given the training over total N tasks, Lines 3-4 shows the
training of the main network weight θ with task-specific loss
Lt on the dataset of task 1. Then, the optimal weight θ∗ for
task 1 is saved as the old weight θ∗1:1 in Line 5. On task
t(> 1), the auxiliary weight θt is initialized by the previ-
ous old weight θ∗1:t−1 and trained with task-specific loss Lt
(Lines 7-9). In Line 10, the auxiliary weight θ∗t is frozen
and saved. Subsequently, the main network is trained with
ANCL loss explained in Eq. (2) (Lines 11-12). The optimal
main network on task t is frozen and saved as an old weight
θ∗1:t−1 for the next loop (Line 13). If Lines 7-10 are skipped
and ”ANCL Loss (Eq. (2))” in Line 12 is replaced with ”CL
Loss (Eq. (1))”, Alg. 1 becomes the original CL algorithm.

4. Experiment
Benchmark: CIFAR-100 [16] and Tiny ImageNet [17]

are chosen to evaluate ANCL. CIFAR-100 contains 60,000
colored images from 100 classes with the size of 32 × 32.
For task incremental scenario, CIFAR-100 is divided into
10 tasks of 10 classes each and 20 tasks of 5 classes each
to construct two benchmarks: (1) CIFAR-100/10 and (2)
CIFAR-100/20. In addition, we build two more bench-
marks for class incremental scenario: (5) CIFAR-100/6 and
(6) CIFAR-100/11. In these settings, 50 classes are learned
at an initial phase and the rest classes are learned sequen-
tially with 10 classes or 5 classes per phase after the ini-
tial one. Tiny ImageNet consists of 110,000 colored images
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Algorithm 1: ANCL Algorithm
Input: Main network weight θ, Auxiliary network

weight θ∗t , Old network weight θ∗1:t−1,
Hyperparameters λ, λa

Output: Optimal main network weight θ∗

1 for task t = 1, 2, .., N do
2 if t = 1 then

// Train main network

3 for epoch e = 1, 2, .., E do
4 Train θ with task-specific loss Lt to

obtain θ∗ on task 1
// Save main network weight as old

network weight

5 Freeze and save θ∗ as θ∗1:1
6 else

// Initialize auxiliary network

7 θt = copy(θ∗1:t−1)
// Train auxiliary network

8 for epoch e = 1, 2, .., E do
9 Train θt with task-specific loss Lt to

obtain θ∗t on task t

// Save auxiliary network weight

10 Freeze and save θ∗t
// Train main network

11 for epoch e = 1, 2, .., E do
12 Train θ with ANCL Loss (Eq. (2)) to

obtain θ∗ on task t
// Save main network weight as old

network weight

13 Freeze and save θ∗ as θ∗1:t−1

(size 64×64) from 200 classes which are resized as 32×32
for both training and inference. We equally divide Tiny Im-
ageNet into 10 and 20 tasks to build two benchmarks for
task incremental scenario: (3) TinyImagenet-200/10 and
(4) TinyImagenet-200/20. For class incremental scenario,
the model is trained on 100 classes at an initial phase and
then trained continuously on 10 classes or 5 classes per
phase after the initial one: (7) TinyImagenet-200/11 and
(8) TinyImagenet-200/21.

Architecture: We select Resnet32 [10] for all bench-
marks which is commonly chosen in the literature of contin-
ual learning [7,12,26,29,32]. For task incremental scenario,
multi-head layer is deployed instead of the last layer in
Resnet32 to generate an output with a task identity. In class
incremental scenario, single-head evaluation is adopted due
to the absence of task identity during inference.

Implementation: The model is trained from scratch and
every experiment is carried out 3 times with different seeds
to generate averaged metrics. SGD optimizer with momen-
tum 0.9 and batch size 128 is applied to all experiments.

In task incremental learning, we evaluate our methods on a
strict setting of continual learning where the previous data
is not visited again. In class incremental learning, we relax
the regularization of accessing previous data. 20 exemplars
per class of the old training data are selected by herding
sampling strategy and stored in the memory buffer (more
details in Appendix F.1).

Gridsearch on Parameters: We conduct a comprehen-
sive hyperparameter search for all methods and report the
best scores for a fair comparison. We follow the way AFEC
[28] performs the grid search on λ and λa. First, an exten-
sive grid search is made on λ using the original CL loss and
λ is fixed afterward. Then, we use ANCL loss to conduct
the grid search of λa. Grid search result of λ and λa for all
benchmarks can be found in Appendix F.4

Evaluation Metrics: In task incremental scenario, av-
eraged accuracy (AAC) for T task is calculated after the
training of all tasks. In class incremental scenario, averaged
incremental accuracy (AIAC) is used instead:

AAC =
1

T

T∑
i=1

AT,i, AIAC =
1

N + 1

N∑
i=0

Ai. (5)

In AAC, Aj,k is the test accuracy of task k after the contin-
ual learning of task j. In AIAC, Ai denotes the test accuracy
of the classes seen so far at the ith phase for the benchmark
consisting of N + 1 phases including the initial one.

Baseline: Fine-tuning is the naive approach that a model
is fine-tuned on each task (or each phase), which is regarded
as a lowerbound and joint uses the whole dataset to train
the model, which becomes an upperbound. In task incre-
mental setting, we evaluate EWC [14], MAS [2], LwF [18],
LFL [13], LwM [6], and DMC [31]. For a fair comparison,
DMC is modified to only use the original dataset like other
methods instead of an unlabeled auxiliary dataset. Then, we
apply ANCL to the original CL approaches. In class incre-
mental setting, we test EEIL [4], iCaRL [26], BiC [29], LU-
CIR [12], and PODNet [7] with their applications to ANCL.

Evaluation on Task Incremental Scenario: Tab. 2
shows that applying ANCL consistently gives an extra boost
in accuracy by 1-3 % compared to naive CL and A-LwF
achieves the best accuracy in all benchmarks. ANCL can be
more compatible with specific methods than others. For ex-
ample in benchmark (1), applying ANCL outperforms MAS
baseline by 3.87 % while it improves LFL baseline only by
0.73 %. This is because ANCL is more effective when the
two regularizers in Eq. (2) are well suited to each other and
CL has less plasticity at the beginning. The detail accuracy
for all tasks can be found in Appendix F.2.

Evaluation on Class Incremental Scenario: In Tab. 3,
we can clearly see that ANCL surpasses CL baselines in all
methods by 1-3 % including state-of-the-art (SOTA) meth-
ods such as BiC [29], LUCIR [12], and PODNet [7]. Simi-
larly to Tab. 2, ANCL is more compatible with LUCIR and
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CIFAR-100 Tiny ImageNet
Methods (1) (2) (3) (4)

Fine-tuning 38.90±1.59 27.81±0.80 28.51±0.75 20.35±1.70

Joint 89.64±0.37 93.42±0.27 67.98±1.15 70.02±2.63

LwM [6] 78.46±1.11 78.27±0.38 59.04±0.63 59.78±1.08

DMC [31] 51.90±0.91 53.72±1.11 45.65±0.15 44.50±0.73

EWC [14] 58.13±0.87 60.03±1.23 50.10±0.78 52.53±0.91

w/ ANCL (ours) 60.86±1.46 62.47±0.65 52.49±0.71 53.86±0.88

MAS [2] 60.56±0.82 59.35±1.09 49.50±1.18 51.79±0.51

w/ ANCL (ours) 64.43±1.17 60.70±1.11 50.11±1.09 53.58±0.73

LwF [18] 78.87±0.69 76.96±0.83 59.04±0.62 62.09±0.59

w/ ANCL (ours) 79.42±0.57 79.99±0.59 60.96±0.76 63.79±0.41

LFL [13] 74.50±0.57 74.27±0.72 60.20±0.66 58.47±0.95

w/ ANCL (ours) 75.23±0.67 74.68±1.04 61.32±0.68 58.98±0.74

Table 2. The averaged accuracy (%) on the benchmarks (1)-(4). Reported metrics are averaged over 3 runs (averaged accuracy ± standard
error). ANCL methods are colored gray.

CIFAR-100 Tiny ImageNet
Methods (5) (6) (7) (8)

Fine-tuning 45.78±0.90 43.57±1.33 27.44±0.85 24.18±0.98

Joint 67.84±1.35 66.40±0.86 46.85±0.74 46.02±0.55

EEIL [4] 49.81±1.12 48.65±0.94 28.68±0.93 28.00±0.73

iCaRL [26] 58.05±0.94 57.11±0.77 39.04±0.61 37.90±0.98

w/ ANCL (ours) 61.22±0.88 59.13±0.68 41.46±0.85 39.91±1.02

BiC [29] 56.74±1.33 55.73±1.21 40.56±0.44 39.21±0.69

w/ ANCL (ours) 58.32±1.27 58.23±1.44 42.61±0.65 40.56±0.51

LUCIR [12] 56.06±0.45 57.91±0.57 35.17±0.58 30.02±0.13

w/ ANCL (ours) 60.20±0.78 60.04±0.80 37.89±0.74 31.65±0.25

PODNet [7] 61.80±0.77 59.22±0.93 40.28±0.36 38.50±0.49

w/ ANCL (ours) 63.15±0.62 60.44±0.67 41.11±0.23 40.11±0.64

Table 3. The averaged incremental accuracy (%) on the benchmarks (5)-(8). Reported metrics are averaged over 3 runs (averaged accuracy
± standard error). ANCL methods are colored gray.

iCaRL compared to others thereby A-iCaRL being able to
compete with or even outperform the stronger baseline of
PODNet. We also plot how each method’s accuracy at each
phase changes and report the final accuracy in Appendix
F.3.

5. Stability-Plasticity Trade-off Analysis

In this chapter, we perform three analyses on (1) CIFAR-
100/10 to study how the stability-plasticity dilemma is
solved through ANCL: Weight Distance, Centered Kernel
Alignment, and Mean Accuracy Landscape. For simplifi-
cation, λ is first selected by grid search using CL loss on
current task t = 2 and then fixed. Then, ANCL solutions
with different λa are compared in various analyses. A train-
ing regime similar to the one in [23] is adopted for a fair
comparison, which is explained in detail in Appendix G.1.

5.1. Weight Distance

If the parameters change less, it is reasonable to expect
that less forgetting will occur. According to [24], forgetting
F1 on task 1 is bounded using Taylor expansion of the loss
as follows:

F1 = L1(θ̂2)− L1(θ̂1) (6)

≈ 1

2
(θ̂2 − θ̂1)

T∇2L1(θ̂1)(θ̂2 − θ̂1) (7)

≤ 1

2
λmax
1 ∥θ̂2 − θ̂1∥22 (8)

where L1 is the empirical loss on task 1 and ∇2L1(θ̂1) is
the Hessian for L1 at θ̂1. λmax

1 is the maximum eigenvalue
of ∇2L1(θ̂1). Above inequality implies that the bound of
forgetting F1 is determined by the norm of the difference
between two weights near the minima of task 1 loss.

On task t, we measure the weight distance (WD) from
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Figure 2. Anaylsis figures on (1) CIFAR-100/10: weight distance (top row), centered kernel alignment (middle row), and mean accuracy
landscape (bottom row). The set of λa for each ANCL is as follows (λ is fixed): (a) A-EWC (λ = 10000) - λa ∈ [10, 100, 1000, 10000,
20000, 40000], (b) A-MAS (λ = 50) - λa ∈ [1, 5, 10, 50, 100, 200], (c) A-LwF (λ = 10) - λa ∈ [0.05, 0.1, 0.5, 1, 5, 10] and (d) A-LFL
(λ = 400) - λa ∈ [10, 50, 100, 200, 400, 800].

the weights of the ANCL models θANCL
t to the weights of

the old model θoldt−1 and the auxiliary model θauxt respec-
tively:

WDold = ∥θANCL
t − θoldt−1∥2, (9)

WDaux = ∥θANCL
t − θauxt ∥2. (10)

WD analysis is shown in the top row of Fig. 2. We calculate
WD with different λa which directly adjusts the stability-
plasticity trade-off while λ is fixed. The model parameters
remain close to the old parameters when λa is small, which
can be seen on the left side of all WD figures. For A-EWC
and A-MAS, WDaux decreases and WDold increases as
λa becomes larger. This result implies a direct interpolation
between the old and auxiliary networks, which is consis-
tent with the analysis of the ANCL gradient in Appendix E.
For A-LwF and A-LFL, WDaux becomes relatively smaller
than WDold with increasing λa but WDold and WDaux are
both growing. Unlike EWC and MAS which directly regu-
larize the weights itself, LwF and LFL have more flexibility
to remember the previous knowledge by utilizing loss terms
based on activations or logits. Therefore, for the distilla-
tion approaches, the model weights tends to move relatively
closer to the auxiliary weights with increasing λa but not di-
rectly toward it like EWC or MAS. The difference between
the regularization and distillation CL methods and the effect
of λa on the stability-plasticity trade-off is studied further in
the following analyses.

5.2. Centered Kernel Alignment

Centered Kernel Alignment (CKA) [15] measures the
similarity of two-layer representations on the same set of
data. Given N data and p neurons, the layer activation ma-
trices R1 ∈ RN×p and R2 ∈ RN×p are generated by two
layers from two independent networks. Then, CKA is de-
fined as:

CKA(R1, R2) =
HSIC(R1, R2)√

HSIC(R1, R1)
√

HSIC(R2, R2)
(11)

where HSIC stands for Hilbert-Schmidt Independence
Criterion [9]. We use linear HSIC to implement CKA. It
is well known that lower layers have relatively higher CKA
scores than deeper layers and deeper layers generally con-
tribute to forgetting [25]. In this analysis, we measure three
CKA similarity:

CKAold =
1

L

L∑
l=1

CKA(RANCL
t,l , Rold

t−1,l), (12)

CKAaux =
1

L

L∑
l=1

CKA(RANCL
t,l , Raux

t,l ), (13)

CKAmulti =
1

L

L∑
l=1

CKA(RANCL
t,l , Rmulti

t,l ). (14)
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where CKA is calculated and averaged over the set of layers
{1, . . . , L} in Resnet32. Resnet32 consists of 1 initial con-
volution layer and 3 residual blocks. In order to measure
the output similarity of two networks, we select 10 convo-
lution layers in the last residual block of Resnet32 as our set.
RANCL

t , Rold
t−1 and Raux

t are the activation matrices of the
ANCL network, the old network, and the auxiliary network,
respectively. Rmulti

t is the activation output of the multitask
model trained on the entire dataset D1:t until the task t. If
CKAmulti is high, the model generates layer activations
similar to those of the multitask model. Then, the model is
highly likely to perform well on all tasks like the multitask
model, which is the main goal of continual learning.

The middle row of Fig. 2 shows three CKA similarities
with different λa. In all methods, increasing λa results in
higher CKAaux and lower CKAold, which can be inter-
preted to mean that the representations of the ANCL net-
work become more similar to that of the auxiliary network
and less similar to that of the old network. We can clearly
see that the stability-plasticity trade-off is controlled by λa

through the interaction between the old and auxiliary net-
works. On the other hand, if CKAmulti reaches the highest
score at specific λa, that model is highly likely to have the
best trade-off. For example, (b) A-MAS and (d) A-LFL
achieve the highest CKAmulti at λa = 10 and λa = 400
respectively. In general, CKAmulti of the distillation meth-
ods is higher than that of the regularization methods, which
corresponds to the results in Tab. 2 where the distillation
methods achieved a higher averaged accuracy compared to
the regularization methods.

5.3. Mean Accuracy Landscape

Lastly, we visualize mean accuracy landscape of task 1
and 2 in weight vector space following [23] (details in Ap-
pendix G.3). θold1 , θaux2 , and θmulti

2 are used to build two-
dimensional subspace denoting the weights of the old net-
work, the auxiliary network and the multitask network, re-
spectively. Multitask network is trained on whole dataset
D1:2 until task 2 and thus θmulti

2 is located in the highest
contour indicating the highest mean accuracy. We project
CL (blue) and ANCL (red) weight vectors on the subspace
to see how ANCL parameters are shifted on the accuracy
landscape with different λa. ANCL weights with the lowest
λa are denoted as a brown circle and λa increases follow-
ing the red dot line. Finally, the red dot line reaches a brown
star which indicates ANCL weights with the highest λa.

In A-EWC and A-MAS, it is clearly observed that λa

adjusts the interpolation between the CL weights θCL and
the auxiliary weights θaux2 . The large λa drifts the ANCL
weights θANCL directly toward θaux2 and the ANCL with
sufficiently small λa converges to CL methods. At the in-
terpolation of the old weights θold1 and the auxiliary weights
θaux2 , the ANCL weight achieves higher mean accuracy lo-

cated in the higher contour. Similarly in A-LwF and A-
LFL, θANCL with the lowest λa starts near θCL and tends
to move toward the region between θold1 and θaux2 . As the
distillation methods have more flexibility to retain the pre-
vious knowledge, the weights of A-LwF and A-LFL do
not directly move toward θaux2 like those of A-EWC and
A-MAS. Because of its flexibility, ANCL with distillation
methods can deviate from the interpolation line and climb
to the higher contour of mean accuracy. As a result, the
best trade-off is made at somewhere between θold1 and θaux2 .
Again, the mean accuracy landscape figures show the pro-
jection of weight in the two-dimensional subspace built by
three weights (θold1 , θaux2 , and θmulti

2 ). Therefore, it approx-
imates the relative positions of CL and ANCL weights but
does not reflect the exact positions of them in the weight
space.

As a result, three analyses strongly support the notion
that ANCL is able to achieve a better stability-plasticity
trade-off where CKAmulti and mean accuracy are the high-
est. The trade-off is mainly adjusted by the ratio between λ
and λa. ANCL with high λa infuses more plasticity into
the model, while ANCL with low λa seeks more stability.
These results coincides with the analysis of ANCL in Ap-
pendix E where the solutions of A-EWC and A-MAS indi-
cate the explicit interpolation between the old and auxiliary
weights and the gradients of A-LwF and A-LFL derive the
activation (or logit) of the main network toward the inter-
polated activation (or logit) between the old and auxiliary
networks.

6. Conclusion

In our paper, we propose a novel framework called
ANCL to pursue the proper balance between stability and
plasticity inspired by the recent works [19,20,28,31] adopt-
ing an auxiliary network. Our method outperforms the
original baselines, including SOTA methods on CIFAR-100
[16] and Tiny ImageNet [17]. To investigate the underlying
mechanism of ANCL, we extensively conduct analyses and
confirm that the balance is resolved via the interpolation be-
tween the old and auxiliary weights. In summary, our work
provides a deeper understanding of the interaction between
the old network and the auxiliary network, which is the key
to recent research on continual learning.

Although ANCL can achieve better stability-plasticity
trade-off compare to CL, it should be supported by enough
hyperparameter search of λ and λa. Therefore, extra com-
putational burdens are required to search appropriate hyper-
parameters for each method, and results can be variant de-
pending on the scope of grid search. In the future, we will
investigate a better way to find these hyperparameters such
as in data-driven fashion or inside the optimization process.
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