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Abstract

Extracting discriminative local features that are invari-

ant to imaging variations is an integral part of establish-

ing correspondences between images. In this work, we

introduce a self-supervised learning framework to extract

discriminative rotation-invariant descriptors using group-

equivariant CNNs. Thanks to employing group-equivariant

CNNs, our method effectively learns to obtain rotation-

equivariant features and their orientations explicitly, with-

out having to perform sophisticated data augmentations.

The resultant features and their orientations are further pro-

cessed by group aligning, a novel invariant mapping tech-

nique that shifts the group-equivariant features by their ori-

entations along the group dimension. Our group align-

ing technique achieves rotation-invariance without any col-

lapse of the group dimension and thus eschews loss of dis-

criminability. The proposed method is trained end-to-end

in a self-supervised manner, where we use an orientation

alignment loss for the orientation estimation and a con-

trastive descriptor loss for robust local descriptors to ge-

ometric/photometric variations. Our method demonstrates

state-of-the-art matching accuracy among existing rotation-

invariant descriptors under varying rotation and also shows

competitive results when transferred to the task of keypoint

matching and camera pose estimation.

1. Introduction

Extracting local descriptors is an essential step for vi-
sual correspondence across images, which is used for a
wide range of computer vision problems such as visual lo-
calization [29, 47, 48], simultaneous localization and map-
ping [7, 8, 39], and 3D reconstruction [1, 16, 17, 49, 66]. To
establish reliable visual correspondences, the properties of
invariance and discriminativeness are required for local de-
scriptors; the descriptors need to be invariant to geomet-
ric/photometric variations of images while being discrimi-
native enough to distinguish true matches from false ones.
Since the remarkable success of deep learning for visual

recognition, deep neural networks have also been adopted
to learn local descriptors, showing enhanced performances
on visual correspondence [44, 45, 64]. Learning rotation-
invariant local descriptors, however, remains challenging;
the classical techiniques [11, 27, 46] for rotation-invariant
descriptors, which are used for shallow gradient-based fea-
ture maps, cannot be applied to feature maps from stan-
dard deep neural networks, in which rotation of input in-
duces unpredictable feature variations. Achieving rotation
invariance without sacrificing disriminativeness is particu-
larly important for local descriptors as rotation is one of the
most frequent imaging variations in reality.

In this work, we propose a self-supervised approach to
obtain rotation-invariant and discriminative local descrip-
tors by leveraging rotation-equivariant CNNs. First, we
use group-equivariant CNNs [60] to jointly extract rotation-
equivariant local features and their orientations from an im-
age. To extract reliable orientations, we use an orientation
alignment loss [21,23,63], which trains the network to pre-
dict the dominant orientation robustly against other imag-
ing variations, including illumination or viewpoint changes.
Using group-equivariant CNNs enables the local features
to be empowered with explicitly encoded rotation equiv-
ariance without having to perform rigorous data augmen-
tations [58, 60]. Second, to obtain discriminative rotation-
invariant descriptors from rotation-equivariant features, we
propose group-aligning that shifts the group-equivariant
features by their dominant orientation along their group
dimension. Conventional methods to yield invariant fea-
tures from group-equivariant features collapse the group di-
mension by group-pooling, e.g., max-pooling or bilinear-
pooling [26], resulting in a drop in feature discriminabil-
ity and quality. In contrast, our group-aligning preserves
the group dimension, achieving rotation-invariance while
eschewing loss of discriminability. Furthermore, by pre-
serving the group dimension, we can obtain multiple de-
scriptors by performing group-aligning using multiple ori-
entation candidates, which improves the matching perfor-
mance by compensating for potential errors in dominant
orientation prediction. Finally, we evaluate our rotation-
invariant descriptors against existing local descriptors, and
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our group-aligning scheme against group-pooling methods
on various image matching benchmarks to demonstrate the
efficacy of our method.

The contribution of our paper is fourfold:

• We propose to extract discriminative rotation-invariant
local descriptors to tackle the task of visual correspon-
dence by utilizing rotation-equivariant CNNs.

• We propose group-aligning, a method to shift a group-
equivariant descriptor in the group dimension by its
dominant orientation to obtain a rotation-invariant de-
scriptor without having to collapse the group informa-
tion to preserve feature discriminability.

• We use self-supervisory losses of orientation align-
ment loss for orientation estimation, and a contrastive
descriptor loss for robust local descriptor extraction.

• We demonstrate state-of-the-art performances under
varying rotations on the Roto-360 dataset and show
competitive transferability on the HPatches dataset [2]
and the MVS dataset [53].

2. Related work
Classical invariant local descriptors. Classical meth-
ods to extract invariant local descriptors first aggregate im-
age gradients to obtain a rotation-equivariant representa-
tion, i.e., histogram, from which the estimated dominant
orientation is subtracted to obtain rotation-invariant fea-
tures [27, 46]. Several studies [4, 11, 59] suggest extracting
local descriptors by invariant mapping of the order-based
gradient histogram of a patch. However, these classical
methods for shallow gradient-based feature maps cannot
be applied to deep feature maps from standard neural net-
works, in which rotation induces unpredictable feature vari-
ations. Therefore, we propose a deep end-to-end pipeline to
obtain orientation-normalized local descriptors by utilizing
rotation-equivariant CNNs [60] with additional losses.
Learning-based invariant local descriptors. A branch of
learning-based methods learns to obtain invariant local de-
scriptors in an explicit manner. GIFT [26] constructs group-
equivariant features by rotating or rescaling the images, and
then collapses the group dimension using bilinear pooling to
obtain invariant local descriptors. However, their groups are
limited to non-cyclic discrete rotations ranging from �90�

to 90�. Furthermore, their reliance on data augmentation
implies a lower sampling efficiency compared to group-
equivariant networks. LISRD [42] jointly learns meta de-
scriptors with different levels of regional variations and se-
lects the most appropriate level of invariance given the con-
text. Another branch of learning methods aims to learn the
invariance implicitly using descriptor similarity losses from
the image pair using camera pose or homography supervi-
sion. These methods are either patch-based [10, 36, 54, 56]

or image-based [8, 9, 22, 24, 28, 37, 40, 44, 50, 57]. While
these methods may be robust to rotation, they cannot be
said to be equivariant or invariant to rotation. We con-
struct group-equivariant local features using the steerable
networks [60], which explicitly encodes cyclic rotational
equivariance to the features without having to rely on data
augmentation. We can then yield rotation-invariant features
by group-aligning that shifts the group-equivariant features
along the group dimension by their dominant orientations,
preserving feature discriminability.
Equivariant representation learning. There has been a
constant pursuit to learn equivariant representations by ex-
plicitly incorporating group equivariance into the model
architecture design [30–32, 51, 60, 65]. For example, G-
CNNs [6] use group equivariant convolutions that reduce
sample complexity by exploiting symmetries on discrete
isometric groups; SFCNNs [61] and H-Nets [62] extract
features from more diverse groups and continuous domains
by using harmonics as filters. There are also studies that fo-
cus on scale-equivariant representation learning [3, 21, 52].
[12, 18, 23, 38, 43] leverage equivariant neural networks to
tackle vision tasks e.g., keypoint detection. In this work, we
also propose to use equivariant neural networks to facilitate
the learning of discriminative rotation-invariant descriptors.
We guide the readers to section 1 of the supplementary ma-
terial for a brief introduction to group equivariance.

3. Rotation-equivariant features, Rotation-
invariant descriptors

In this section, we first draw the line between the
terms feature and descriptor which will be used through-
out this paper. The goal of our work is to learn to ex-
tract rotation-equivariant local features from our rotation-
equivariant backbone network, and then to align them by
their dominant orientation to finally yield rotation-invariant
descriptors. In the subsequent subsections, we elaborate on
the process of rotation-equivariant feature extraction from
steerable CNNs (Sec. 3.1), assignment of equivariant fea-
tures to keypoints (Sec. 3.2), how group-aligning is per-
formed to yield rotation-invariant yet discriminative de-
scriptors (Sec. 3.3), how we formulate our orientation align-
ment loss (Sec.3.4) and contrastive descriptor loss (Sec.3.5)
to train our network to extract descriptors which are robust
to not only rotation but also other imaging transformations,
and finally how we obtain scale-invariant descriptors at test
time using image pyramids (Sec.3.6). Figure 1 shows the
overall architecture of our method.

3.1. Rotation-equivariant feature extraction

As the feature extractor, we use ReResNet18 [12], which
has the same structure as ResNet18 [15] but is constructed
using rotation-equivariant convolutional layers [60]. The
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Figure 1. Overview of the proposed pipeline. An input image is forwarded through the equivariant networks to yield equivariant feature
maps from multiple intermediate layers, encoding both low-level geometry and high-level semantic information. The feature maps are
bilinearly interpolated to have equal spatial dimensions to be concatenated together. We use the first channel of the feature map F as the
orientation histogram map O to predict the dominant orientations, which are used to shift the group-equivariant representation along the
group dimension to yield discriminative rotation-invariant descriptors. To learn to extract accurate dominant orientation ✓̂, we use the
orientation alignment loss Lori. To obtain descriptors robust to illumination and geometric changes, we use a contrastive descriptor loss
L

desc using the ground-truth homography HGT.

layer acts on a cyclic group GN and is equivariant for all
translations and N discrete rotations. At the first layer, the
scalar field of the input image is lifted to the vector field of
the group representation [60]. We leverage feature pyramids
from the intermediate layers of the ReResNet18 backbone
to construct output features as follows:

F =
M

i2l

⌘(fi), fi = [⇧i

j=1Lj ](I), (1)

where fi 2 RCi⇥|G|⇥Hi⇥Wi is an intermediate feature from
Li, Li is the i-th layer of the equivariant network, ⌘ denotes
bilinear interpolation to H ⇥ W , and

L
denotes concate-

nation along the C dimension. We utilize the multi-layer
feature maps to exploit the low-level geometry information
and high-level semantics in the local descriptors [13,19,35].
The output features F 2 RC⇥|G|⇥H⇥W contains rotation-
equivariant features with multiple layers containing differ-
ent semantics and receptive fields. We set H = H1 and
W = W1, which are 1

2 of the input image size.

3.2. Assigning local features to keypoints
During training, we extract K keypoints from the source

image using Harris corner detection [14]. We then use the
ground-truth homography HGT to obtain ground-truth key-
point correspondences. Also, we allocate a local feature
p 2 RC⇥|G|⇥K to each keypoint, using the interpolated lo-
cation of the equivariant feature map F. We experiment our
descriptor with SIFT [27], LF-Net [40], SuperPoint [8], and
KeyNet [20] as the keypoint detector during inference time.

3.3. Group aligning for invariant mapping
To transform the rotation-equivariant feature to a

rotation-invariant descriptor, we propose group aligning, an

operation to shift the group-equivariant feature in the G-
dimension using the dominant orientation ✓̂. Unlike exist-
ing methods that use group pooling, e.g., average pooling or
max pooling, which collapses the group dimension, group
aligning preserves the rich group information. Figure 2 il-
lustrates the difference between group pooling and group
aligning on an equivariant representation.
Estimating the dominant orientation and the shifting
value. We obtain the orientation histogram map O 2

R|G|⇥H⇥W = F0 by selecting the first channel of the
rotation-equivariant tensor F as an orientation histogram
map. Note that the first channels of each group action
are simultaneously used as the channels of the descriptors
and to construct the orientation histogram. The histogram-
based representation of O provides richer information than
directly regressing the dominant orientation, as the orienta-
tion histogram enables predicting multiple (i.e., top-k) can-
didates as the dominant orientation. We first select an ori-
entation vector o 2 R|G| of a keypoint from the orienta-
tion histogram map O using the coordinates of the keypoint.
Next, we estimate the dominant orientation value ✓̂ from the
orientation vector o by selecting the index of the maximum
score, ✓̂ = 360

|G|
argmax

g
o. Using the dominant orientation

value ✓̂, we obtain the shifting value �̂ = |G|

360 ✓̂ in G-dim.
At training time, we use the ground-truth rotation ✓GT in-
stead of the predicted dominant orientation value ✓̂ to gen-
erate the shifting value �GT.
Group aligning. Given a keypoint-allocated feature ten-
sor p 2 RC⇥|G| from the equivariant representation F, we
obtain the rotation-invariant local descriptor d 2 RC|G| by
group aligning using �. After computing the dominant ori-
entation ✓̂ and the shifting value �̂ from o, we obtain the
orientation-normalized descriptor d0

2 RC|G| by shifting p
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Figure 2. Difference between group pooling and group align-
ing. In group pooling, the group dimension is collapsed to yield
an invariant descriptor (RC⇥|G|

! RC ). In group aligning, the
entire feature is cyclically shifted in the group dimension to obtain
an invariant descriptor (RC⇥|G|

! RC|G|) while preserving the
group information and discriminability.

in the G-dimension by ��̂ and flattening the descriptor to a
vector. We use cyclic shifting in consideration of the cyclic
property of rotation. We finally obtain the L2-normalized
descriptor d from the orientation-normalized descriptor d0,
such that ||d||2 = 1. Formally, this process can be defined
as:

p0

:,i = T
0

r
(p:,i, �̂) = p:,(i+�̂) mod |G|

,

d0

|G|i:|G|(i+1) = p0

i
,

d =
d0

||d0
||2

,

(2)

where T
0

r
is shifting operator in vector space, and p0 is a

group-aligned descriptor before flattening. This shifting by
�̂ aligns all the descriptors in the direction of their domi-
nant orientations, creating orientation-normalized descrip-
tors. This process is conceptually similar to subtracting the
dominant orientation value of the orientation histogram in
the classical descriptor SIFT [27], but we apply this con-
cept to the equivariant neural features. The proposed group
aligning preserves the group information, so our invariant
descriptors have more representative power than the exist-
ing group-pooled descriptors which collapse the group di-
mension for invariance.

3.4. Orientation alignment loss
To learn to obtain the dominant orientations from the ori-

entation vectors, we use an orientation alignment loss [21,
23, 63] to supervise the orientation histograms in O to be
rotation equivariant under the photometric/geometric trans-
formations. Figure 3 shows the illustration of orientation

!! ∈ ℝ"×|%|
⁝

ℒ!"#(#$, %′%(#&, ∆'())

$! = !&!

$' = !&'

Cyclic Shift
∆%(=3
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Figure 3. Illustration of orientation alignment loss. Given two
rotation-equivariant tensors pA, pB

2 RC⇥|G| obtained from two
different rotated versions of the same image, we apply cyclic shift
on one of the descriptors in the group dimension using the GT
difference in rotation. The orientation alignment loss supervises
the output orientation vectors of the two descriptors to be the same.

alignment loss. The cyclic shift of an orientation histogram
map at the training time is formulated as follows:

T
0

r
(Oi,�GT) = O(i+�GT) mod |G|, (3)

where �GT = |G|

360✓GT is the shifting value calculated from
the ground-truth rotation ✓GT. We formulate the orientation
alignment loss in the form of a cross-entropy as follows:

L
ori(OA

,OB
,�GT) =

�

X

k2K

X

g2G

�(OA
g,k

) log(�(T 0

r
(OB

g,k
,�GT))),

(4)

where OA is the source orientation histogram map and OB

is the target orientation histogram map obtained from a syn-
thetically warped source image, � is a softmax function ap-
plied to the G-dimension of the orientation histogram map
to represent the orientation vector as a probability distribu-
tion for the cross-entropy loss to be applicable. Using Equa-
tion 4, the network learns to predict the characteristic orien-
tations robustly against different imaging variations, such
as photometric transformations and geometric transforma-
tions beyond rotation, as these transformations cannot be
handled by equivariance to discrete rotations alone. Note
that it is not straightforward to define the characteristic ori-
entation of a keypoint to provide strong supervision. How-
ever, we facilitate the learning of characteristic orientations
by formulating it as a self-supervised learning framework,
leveraging the known relative orientation between two key-
point orientation histogram maps obtained from differently
rotated versions of the same image.
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MMA pred.@1px
Align 97.54 84.90
Avg 33.72 33.72
Max 57.92 57.92
None 23.97 23.97

Bilinear 43.60 26.42
Table 1. Evaluation with GT keypoint pairs on Roto-360 with-
out training. ‘Align’ uses GT rotation difference to apply group-
aligning to demonstrate the upper-bound. ‘None’ does not use
pooling nor aligning, demonstrating the lower-bound. We use an
average of 111 keypoint pairs extracted using SuperPoint [8].

3.5. Contrastive descriptor loss
We propose to use a descriptor similarity loss motivated

by contrastive learning [5] to further empower the descrip-
tors to be robust against variations apart from rotation, e.g.,

illumination or viewpoint. The descriptor loss is formulated
in a contrastive manner as follows:

L
desc(DA

,DB) =

X

(dA
i ,dB

i )2(DA,DB)

� log
exp(sim(dA

i
, dB

i
)/⌧)

P
k2K\i

exp(sim(dA
i
, dB

k
))/⌧)

,

(5)
where sim is cosine similarity and ⌧ is the softmax temper-
ature. Unlike the triplet loss with one hard negative sample,
the contrastive loss can optimize the distance for all nega-
tive pairs. This contrastive loss with InfoNCE [41] maxi-
mizes the mutual information between the encoded features
and effectively reduces the low-level noise. Our overall self-
supervised loss is formulated as L = ↵L

ori + L
desc, where

↵ is a balancing term.

3.6. Scale robustness
While we employ a rotation-equivariant network, it does

not ensure that the descriptors are robust to scale changes.
Thus, at inference time, we construct an image pyramid us-
ing a scale factor of 21/4 from a maximum of 1,024 pixels
to a minimum of 256 pixels as in R2D2 [44]. After con-
structing the scale-wise descriptors 2 RS⇥C|G|⇥K with S

varying scales, we finally generate the scale-invariant local
descriptors 2 RC|G|⇥K by max-pooling in the scale dimen-
sion inspired by scale-space maxima as in SIFT [27,33], for
improved robustness to scale changes.

4. Experiment
Implementation details. We use rotation-equivariant
ResNet-18 (ReResNet-18) [12] implemented using the
rotation-equivariant layers of E(2)-CNN [60] as our back-
bone. We remove the first maxpool layer to preserve the
spatial size, so that the spatial resolution of the rotation-

MMA pred.@10px @5px @3px
Align 93.08 91.35 90.18 688.3
Avg 85.84 82.12 81.05 705.9
Max 82.61 78.00 77.79 686.0
None 19.68 18.81 18.57 349.1

Bilinear 42.69 41.03 40.51 332.5
Table 2. Evaluation with predicted keypoint pairs on Roto-360
with training. ‘Max’ and ‘Avg’ collapses the group dimension of
the features through max pooling or average pooling. ’pred.’ de-
notes the average number of predicted matches. We use an average
of 1161 keypoint pairs extracted using SuperPoint [8].

equivariant feature F is H = H
0

2 and W = W
0

2 , where H
0

and W
0 are the height and width of an input image. We use

16 for the order of cyclic group G. We use a batch size of 8,
a learning rate of 10�4, and a weight decay of 0.1. We train
our model for 12 epochs with 1,000 iterations using a ma-
chine with an Intel i7-8700 CPU and an NVIDIA GeForce
RTX 3090 GPU. We use the temperature ⌧ of Ldesc as 0.07.
The loss balancing factor ↵ is 10. The final output descrip-
tor size is 1,024, with C = 64, |G| = 16. We use Super-
Point [8] as the keypoint detector to evaluate our method
except Table 4. For all descriptors, we use the mutual near-
est neighbour matcher to predict the correspondences.

4.1. Datasets and metrics
We use a synthetic training dataset to train our model in

a self-supervised manner. We evaluate our model on the
Roto-360 dataset and show the transferability on real image
benchmarks, i.e., HPatches [2] and MVS [53] datasets.
Training dataset. We generate a synthetic dataset for self-
supervised training from the MS-COCO dataset [25]. We
warp images with random homographies for geometric ro-
bustness and transform the colors by jitter, noise, and blur
for photometric robustness. As we need the ground-truth
rotation ✓GT for our orientation alignment loss, we de-
compose the synthetic homography H as follows: ✓GT =
arctan(H21

H11
), where we assume that a 3 ⇥ 3 homography

matrix H with no significant tilt can be approximated to an
affine matrix. We sample K = 512 keypoints for an im-
age using Harris corner detector [14], obtaining 512 corre-
sponding keypoint pairs for each image pair using homogra-
phy and rotation. Note that this dataset generation protocol
is the same as that of GIFT [26] for a fair comparison.
Roto-360 is an evaluation dataset that consists of 360 image
pairs with in-plane rotation ranging from 0� to 350� at 10�
intervals, created using ten randomly sampled images from
HPatches [2]. Roto-360 is more suitable to evaluate the ro-
tation invariance of our descriptors, as the extreme rotation
(ER) dataset [26] only covers 180�, and includes photomet-
ric variations. We use mean matching accuracy (MMA) as
the evaluation metric with pixel thresholds of 3/5/10 pixels
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Method MMA pred. total.@10px @5px @3px
SIFT [27] 78.86 78.59 78.23 774.1 1500.0
ORB [46] 86.78 85.29 78.73 607.6 1005.2

SuperPoint [8] 22.85 22.10 21.83 462.6 1161.0
LF-Net [40] 75.05 74.30 72.61 386.7 1024.0
RF-Net [50] 15.64 15.18 14.58 1602.5 5000.0
D2-Net [9] 15.56 9.30 5.21 386.9 1474.5
R2D2 [44] 15.80 14.97 13.50 197.9 1500.0
GIFT [26] 42.35 42.05 41.59 589.2 1161.0

LISRD [42] 16.96 16.04 15.64 323.6 1781.1
ASLFeat [28] 19.34 16.38 13.13 1366.9 6764.2

DISK [57] 13.22 12.43 12.04 359.1 2048.0
PosFeat [24] 13.76 11.79 9.82 717.2 7623.5

ours 93.08 91.35 90.18 688.3 1161.0
ours* 94.35 92.82 91.69 1333.0 2340.4

Table 3. Comparison to existing local descriptors on Roto-
360. We use mutual nearest matching for all methods to establish
matches between images. ‘total.’ and ‘pred.’ denotes the average
number of detected keypoints and predicted matches, respectively.
‘ours*’ denotes selecting multiple candidate descriptors based on
the ratio of max value in the orientation histogram. We use Super-
Point keypoint detector [8] same to the GIFT descriptor [26].

and the number of predicted matches following [9, 34].
HPatches [2] has 57 scenes with illumination variations and
59 scenes with viewpoint variations. Each scene contains
five image pairs with ground-truth planar homography. We
use the same evaluation metrics to Roto-360 to show the
transferability of our local descriptors.
MVS dataset [53] has six image sequences of outdoor
scenes with GT camera poses. We evaluate the relative
pose estimation accuracy at 5�/10�/20� angular difference
thresholds.

4.2. Comparison to other invariant mappings
Table 1 compares group aligning to various group pool-

ing methods on the Roto-360 dataset using ground-truth
keypoint pairs, i.e., no keypoint deviation, without train-
ing. The purpose is to compare the invariant mapping
operations only while keeping the backbone network and
the number of keypoints fixed. We use �GT to shift the
equivariant features, and group aligning shows almost per-
fect keypoint correspondences with 97.54% matching ac-
curacy. Group pooling, such as max pooling or average
pooling, significantly reduces discriminative power com-
pared to group aligning. The results show that group align-
ing shows the best results, proving that leveraging the full
group-equivariant features instead of collapsing the groups
shows higher discriminability. Note that the bilinear pool-
ing [26] does not guarantee the rotation-invariant matching.

Table 2 compares the proposed group aligning to the ex-
isting group pooling methods on the Roto-360 dataset, this
time with predicted keypoint pairs and with training. Note

Det. Desc. MMA pred. total.@10px @5px @3px

SIFT [27]

SIFT [27] 78.86 78.59 78.23 774.1 1500
GIFT [26] 37.97 36.82 36.09 531.2 1500

ours 84.67 79.85 77.96 558.3 1500
ours* 84.91 80.09 78.18 759.8 2219

LF-Net [40]

LF-Net [40] 75.05 74.30 72.61 386.7 1024
GIFT [26] 35.56 33.82 32.29 426.3 1024

ours 79.90 71.63 67.39 431.8 1024
ours* 80.32 71.99 67.62 591.4 1503

SuperPoint [8]

SuperPoint [8] 22.85 22.10 21.83 462.6 1161
GIFT [26] 42.35 42.05 41.59 589.2 1161

ours 93.08 91.35 90.18 688.3 1161
ours* 94.35 92.82 91.69 1333 234

KeyNet [20]

HyNet [55] 24.43 22.82 20.64 288.7 995
GIFT [26] 34.08 32.31 29.17 275.7 995

ours 72.95 61.36 41.33 257.2 995
ours* 72.48 60.69 40.95 356.6 1484

Table 4. Comparison to existing local descriptors when using
the same keypoint detector on Roto-360. Results in bold indi-
cate the best result, and underlined results indicate the second best.

that while other methods are trained only with L
desc, our

method is trained also with L
ori to facilitate group align-

ing. While the number of predicted matches is the high-
est for average pooling, the MMA results are significantly
higher for group aligning, which shows group-aligned de-
scriptors have a higher precision. Overall, incorporating
group aligning demonstrates the best results in terms of
MMA compared to average pooling, max pooling or bilin-
ear pooling [26]. Note that pooling or aligning the group-
equivariant features to obtain invariant descriptors shows
consistent improvements over not pooling nor aligning the
group-equivariant features.

4.3. Comparison to existing local descriptors

Table 3 shows the matching accuracy compared to ex-
isting local descriptors on the Roto-360 dataset. We evalu-
ate the descriptors using their own keypoint detectors [8,
9, 27, 39, 40, 44, 50], or combined with off-the-shelf de-
tectors [24, 26, 42]. While the classical methods [27, 46]
achieve better matching accuracy than the existing learning-
based methods, our method achieves the best results over-
all. This is because the learning-based methods learn only a
limited degree of invariance in a data-driven manner with-
out guaranteeing full invariance to rotation by design.

Table 4 shows the performance of our method in com-
parison to existing local descriptors when using the same
keypoint detector, where our method shows consistent per-
formance improvement. In particular, our rotation-invariant
descriptor shows consistently higher matching accuracy
than GIFT [26], which is a representative learning-based
group-invariant descriptor. While our model shows a lower
MMA than the LF-Net [40] descriptor when using the LF-
Net detector at 5px and 3px thresholds, we conjecture that
this is due to the better integrity of the detector and descrip-
tor of LF-Net due to their joint training scheme.
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Figure 4. An example of multiple descriptor extraction. The
distribution is an orientation histogram o 2 R16, and the scores are
confidence values for each bin from group-equivariant features.
Arrows indicate the orientation candidates for multiple descrip-
tor extraction. The example shows selecting three orientations to
obtain three candidate descriptors for a feature point, which is pos-
sible as we predict a score for each orientation.

These results show that our descriptors obtained using
the proposed group aligning show the highest matching ac-
curacy under rotation changes compared to existing meth-
ods. The improvement of our method is also attributed to
the usage of rotation-equivariant networks, which have a
higher sampling efficiency, i.e., do not require intensive ro-
tation augmentations to learn rotation invariance.
Multiple descriptor extraction using orientation candi-
dates. Group aligning can extract multiple descriptors with
different alignments by using multiple orientation candi-
dates, denoted by ’ours*’, whose scores are at least 60%
of the maximum score in the orientation histogram. When
there is a single keypoint position with k descriptors that are
differently aligned, we treat it as if there are k detected key-
points. Multiple descriptor extraction compensates for in-
correct orientation predictions and further enhances match-
ing accuracy. Figure 4 illustrates an example of multiple
descriptor extraction with a score ratio threshold of 0.6.
Consistency of matching accuracy with respect to rota-
tion changes. Figure 5 illustrates how the matching ac-
curacy changes with respect to varying degrees of rota-
tion. Our method shows the highest consistency, prov-
ing the enhanced invariance of descriptors obtained using
group aligning against different rotations. While MMA
of SIFT [27] and ORB [46] are high at the upright rota-
tions, they tend to fluctuate significantly with varying rota-
tions. The existing learning-based group-invariant descrip-
tor, GIFT [26], fails to find correspondences beyond 60�.

4.4. Transferability to real image benchmarks
Table 5 shows the matching performance of local de-

scriptors on HPatches illumination/viewpoint [2] and pose
estimation [53]. Our model shows the highest perfor-
mance overall on the HPatches dataset. The performance
gain of ours becomes smaller compared to the Roto-360
dataset due to the absence of extreme rotations in HPatches.
While GIFT shows a higher performance under illumina-
tion changes that only contain identity mappings, ours†,
which uses a larger backbone network (ReWRN), improves
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Figure 5. Matching accuracies according to varying degree of
rotations on Roto-360.

Method HP-all HP-illu HP-view Pose
@5px @3px @5px @3px @5px @3px 20� 10� 5�

SIFT [27] 51.36 46.32 49.08 44.62 53.57 47.96 0.02 0.00 0.00
ORB [46] 52.22 47.40 50.85 46.29 53.55 48.47 0.06 0.00 0.00

SuperPoint [8] 69.71 61.75 74.63 67.53 64.96 56.17 0.20 0.07 0.01
LF-Net [40] 56.45 52.22 62.21 57.63 50.88 47.00 0.06 0.03 0.01
RF-Net [50] 59.08 54.42 61.63 57.46 56.62 51.49 0.10 0.04 0.01
D2-Net [9] 50.18 32.54 63.80 44.09 37.02 21.38 0.11 0.05 0.01
GIFT [26] 76.03 67.31 79.71 71.89 72.48 62.88 0.60 0.28 0.09

LISRD [42] 62.16 56.12 70.09 63.64 54.50 48.85 0.05 0.02 0.00
oursavgpool 64.10 57.94 62.28 56.27 65.85 59.55 0.27 0.10 0.05
oursmaxpool 61.57 55.81 59.66 53.91 63.42 57.64 0.27 0.11 0.03

oursbilinearpool [26] 45.59 41.90 45.13 41.57 46.03 42.22 0.35 0.17 0.09
oursbilinearpool† [26] 58.72 53.77 57.32 52.67 60.06 54.83 0.24 0.11 0.03

oursgroupalign 70.69 63.42 70.39 62.88 70.97 63.95 0.58 0.26 0.12
oursgroupalign* 73.92 66.37 73.13 65.33 74.69 67.38 0.56 0.30 0.12
oursgroupalign† 78.00 69.70 77.94 69.35 78.06 70.03 0.56 0.33 0.14

Table 5. Evaluation with predicted keypoint pairs on real im-
age benchmarks. The first group of methods includes existing
local feature extraction methods. The second group of methods
includes comparisons to other group pooling methods by replac-
ing our group aligning with them. ‘ours*’ denotes the extraction of
multiple descriptors using the orientation candidates, whose scores
are at least 60% of the maximum score in the orientation his-
togram. ‘ours†’ denotes our method using the rotation-equivariant
WideResNet16-8 (ReWRN) backbone for feature extraction. We
use SuperPoint [8] keypoint detector to evaluate ours.

matching accuracy by 7.15%p at 3px and 5.58%p at 5px,
and ours* improves by 4.5%p at 3px, 2.21%p at 5px un-
der viewpoint changes compared to GIFT [26]. It should
be noted that the core difference between oursbilinearpool
and GIFT is the usage of explicit rotation-equivariant
CNNs [60], which clearly shows that bilinear pooling is
not well-compatible with the equivariant CNNs in compar-
ison to group aligning. Using the same network with bilin-
ear pooling (oursbilinearpool†) proposed in [26] shows signifi-
cantly lower results compared to oursgroupalign†.

In the MVS dataset [53] to evaluate relative camera pose
estimation, our model shows a higher performance than
GIFT at finer error thresholds of 10� and 5�. This shows
that our model can find more precise correspondences un-
der 3D viewpoint changes. Overall, these results show that
our descriptors using rotation-equivariant representation ex-
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HP-all Roto-360 params.
@5px @3px @5px @3px (millions)

ours (proposed |G| = 16) 70.69 63.42 91.35 90.18 0.62M
w/o orientation loss 66.41 58.61 85.29 83.26 0.62M
w/o descriptor loss 27.49 24.83 25.64 24.98 0.62M

w/o image scale pyramid 68.77 62.25 91.47 90.43 0.62M
w/o equivariant backbone 47.25 42.52 8.65 8.51 11.18M

|G| = 64 63.96 57.35 85.12 83.32 0.16M
|G| = 36 68.17 60.95 87.78 85.89 0.26M
|G| = 32 69.44 62.08 89.10 87.31 0.31M
|G| = 24 69.72 62.21 90.27 88.34 0.39M
|G| = 8 65.74 58.92 87.16 85.57 1.24M

Table 6. Ablation test on HPatches and Roto-360. ‘params.’
denotes the number of model parameters.

hibit strong transferability to the real-world examples.

4.5. Ablation study and design choice
Table 6 shows the results of ablation studies on the

HPatches and Roto-360 datasets. The matching accuracy
drops when either the orientation alignment loss or the con-
trastive descriptor loss is not used. Specifically, even when
using the ground truth rotation difference for group align-
ment, not using the descriptor loss results in lower perfor-
mance, highlighting the importance of robustness to other
sorts of variations, e.g., illumination or viewpoint. Not us-
ing the image pyramid at inference time results in a slight
drop in HPatches, but the performance on Roto-360 remains
nearly unchanged. When training without equivariant lay-
ers, ResNet-18 with conventional convolutional layers was
used - this results in a drastic drop in performance espe-
cially on Roto-360, with a rapid increase in the number of
model parameters. This demonstrates the significance of
high sample efficiency of group-equivariant layers.

We also demonstrate the effect of the order of cyclic
group G on the performance of our method in the second
group of Table 6. We fix the computational cost C ⇥ |G| =
1, 024, and vary the order of group to show the parameter
efficiency of the group equivariant networks. Our design
choice |G| = 16 yields the best results, and the perfor-
mance drops gracefully as G increases. This is because with
a higher order of groups, the precision of dominant orienta-
tion estimation is likely to decrease, leading to lower results.
Reducing the order of group to |G| = 8 reduces the MMA
in both benchmarks as well, which we suspect is because
the range of rotation covered by one group action becomes
too wide, leading to increased approximation errors.

4.6. Qualitative results
Figure 6 visualizes the consistency of dominant orienta-

tion estimation. From the source (left) and target (middle)
images, we estimate the dominant orientation for the same
set of predicted keypoints. We use the ground truth rotation
to align the estimated orientation and the target image for
better visibility (right). The green and red arrows (middle,

(b) LF-Net
(62/114)

(0/89)
(c) RF-Net

(a) Ours
(89/106)

Source Target Aligned view

Figure 6. Visualization of consistency of dominant orientation
estimation. Best viewed in electronics and colour.

right) represent the consistent and inconsistent orientation
predictions with respect to the initial estimations (left) at a
30� threshold. The numbers on the left represent the num-
ber of consistent estimations/number of detected keypoints.
Compared to LF-Net [40] and RF-Net [50], our method pre-
dicts more consistent dominant orientations of keypoints.

5. Conclusion

We have proposed a self-supervised rotation-equivariant
network for visual correspondence to improve the discrim-
inability of local descriptors. Our invariant mapping called
group-aligning shifts the rotation-equivariant features along
the group dimension based on the orientation value to pro-
duce rotation-invariant descriptors while preserving the fea-
ture discriminability, without collapsing the group dimen-
sion. Our method achieves state-of-the-art performance in
obtaining rotation-invariant descriptors, which are transfer-
able to tasks such as keypoint matching and camera pose
estimation. We believe that our approach can be further ex-
tended to other geometric transformation groups, and will
motivate group-equivariant learning for practical applica-
tions of computer vision.
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[45] Jérome Revaud, Vincent Leroy, Philippe Weinzaepfel, and

Boris Chidlovskii. Pump: Pyramidal and uniqueness match-
ing priors for unsupervised learning of local descriptors. In
Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 3926–3936, 2022. 1
[46] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary

Bradski. Orb: An efficient alternative to sift or surf. In 2011

International conference on computer vision, pages 2564–
2571. Ieee, 2011. 1, 2, 6, 7

[47] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Improving
image-based localization by active correspondence search.
In European conference on computer vision, pages 752–765.
Springer, 2012. 1

[48] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii,
Lars Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi
Okutomi, Marc Pollefeys, Josef Sivic, et al. Benchmark-
ing 6dof outdoor visual localization in changing conditions.
In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8601–8610, 2018. 1
[49] Johannes L Schonberger and Jan-Michael Frahm. Structure-

from-motion revisited. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages
4104–4113, 2016. 1

[50] Xuelun Shen, Cheng Wang, Xin Li, Zenglei Yu, Jonathan
Li, Chenglu Wen, Ming Cheng, and Zijian He. Rf-net: An
end-to-end image matching network based on receptive field.
In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8132–8140, 2019. 2, 6, 7, 8
[51] Kihyuk Sohn and Honglak Lee. Learning invariant represen-

tations with local transformations. In ICML, 2012. 2
[52] Ivan Sosnovik, Artem Moskalev, and Arnold Smeulders.

How to transform kernels for scale-convolutions. In Pro-

ceedings of the IEEE/CVF International Conference on

Computer Vision, pages 1092–1097, 2021. 2
[53] Christoph Strecha, Wolfgang Von Hansen, Luc Van Gool,

Pascal Fua, and Ulrich Thoennessen. On benchmarking cam-
era calibration and multi-view stereo for high resolution im-
agery. In 2008 IEEE conference on computer vision and pat-

tern recognition, pages 1–8. Ieee, 2008. 2, 5, 6, 7
[54] Yurun Tian, Axel Barroso Laguna, Tony Ng, Vassileios Bal-

ntas, and Krystian Mikolajczyk. Hynet: Learning local de-
scriptor with hybrid similarity measure and triplet loss. Ad-

21896



vances in Neural Information Processing Systems, 33:7401–
7412, 2020. 2

[55] Yurun Tian, Axel Barroso Laguna, Tony Ng, Vassileios Bal-
ntas, and Krystian Mikolajczyk. Hynet: Learning local de-
scriptor with hybrid similarity measure and triplet loss. In
NeurIPS, 2020. 6

[56] Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen,
and Vassileios Balntas. Sosnet: Second order similarity reg-
ularization for local descriptor learning. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 11016–11025, 2019. 2
[57] Michal Jan Tyszkiewicz, Pascal Fua, and Eduard Trulls.

Disk: learning local features with policy gradient. Advances

in Neural Information Processing Systems, 33, 2020. 2, 6
[58] Rui Wang, Robin Walters, and Rose Yu. Data augmentation

vs. equivariant networks: A theory of generalization on dy-
namics forecasting. arXiv preprint arXiv:2206.09450, 2022.
1

[59] Zhenhua Wang, Bin Fan, Gang Wang, and Fuchao Wu. Ex-
ploring local and overall ordinal information for robust fea-
ture description. IEEE transactions on pattern analysis and

machine intelligence, 38(11):2198–2211, 2015. 2
[60] Maurice Weiler and Gabriele Cesa. General e (2)-equivariant

steerable cnns. Advances in Neural Information Processing

Systems, 32:14334–14345, 2019. 1, 2, 3, 5, 7
[61] Maurice Weiler, Fred A Hamprecht, and Martin Storath.

Learning steerable filters for rotation equivariant cnns. In
Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 849–858, 2018. 2
[62] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukham-

betov, and Gabriel J Brostow. Harmonic networks: Deep
translation and rotation equivariance. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5028–5037, 2017. 2
[63] Pei Yan, Yihua Tan, Shengzhou Xiong, Yuan Tai, and Yan-

sheng Li. Learning soft estimator of keypoint scale and ori-
entation with probabilistic covariant loss. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 19406–19415, 2022. 1, 4
[64] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal

Fua. Lift: Learned invariant feature transform. In European

conference on computer vision, pages 467–483. Springer,
2016. 1

[65] Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao.
Oriented response networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,
pages 519–528, 2017. 2

[66] Siyu Zhu, Runze Zhang, Lei Zhou, Tianwei Shen, Tian
Fang, Ping Tan, and Long Quan. Very large-scale global
sfm by distributed motion averaging. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4568–4577, 2018. 1

21897


