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Abstract

Despite advances in global image representation, exist-
ing image retrieval approaches rarely consider geometric
structure during the global retrieval stage. In this work,
we revisit the conventional self-similarity descriptor from
a convolutional perspective, to encode both the visual and
structural cues of the image to global image representation.
Our proposed network, named Structural Embedding Net-
work (SENet), captures the internal structure of the images
and gradually compresses them into dense self-similarity
descriptors while learning diverse structures from various
images. These self-similarity descriptors and original im-
age features are fused and then pooled into global embed-
ding, so that global embedding can represent both geomet-
ric and visual cues of the image. Along with this novel
structural embedding, our proposed network sets new state-
of-the-art performances on several image retrieval bench-
marks, convincing its robustness to look-alike distractors.
The code and models are available: https://github.
com/sungonce/SENet.

1. Introduction
Content-based image retrieval is the task of searching

for images with the same content present in the query im-
age in the large-scale database. What across images rep-
resents the same content are two things: the visual prop-
erties and the geometrical structure, so comparing them
well is the key to the image retrieval task. To achieve
this goal, two image representation types have been exten-
sively explored in many image retrieval solutions. The first
one is local features [1–3, 5, 19–22, 24, 47] that comprise
visual descriptors and spatial information about local re-
gions of the image, and the other one is a global descriptor
[3,11–13,18,24–26,28,33,43], also known as global embed-
ding, that summarizes the local features of the entire image.
In a general sense, the global descriptor loses spatial infor-
mation of local features during the summarization process.
Thus, many image retrieval solutions [3, 18, 24, 35, 36, 42]
first retrieve coarse candidates with similar visual proper-

*Corresponding author.

Negative ImageQuery Image

Visual
Property

Self-
Similarity

Positive Image

Figure 1. Images of the same content share both similar image
properties and internal self-similarities. Our proposed networks
leverage both visual features and self-similarity features and en-
code them to global embedding in an end-to-end manner.

ties for the query using global embeddings (typically re-
ferred to as global retrieval) and further verify that coarse
candidates have geometrically similar shapes to the query
using local features (typically referred to as local feature re-
ranking). This separation of tasks may sound reasonable at
first glance. However, in fact, they miss the opportunities to
perform robust retrieval by comparing structural informa-
tion also in the global retrieval stage.

In computer vision, a self-similarity descriptor [31] has
long been used as a regional descriptor for matching images
based on the aggregation of local internal structures. This
work has shown its effectiveness in challenging matching
problems even in situations where the visual properties of
images are not shared at all (e.g. matching between draw-
ing and photo domains). However, their self-similarity en-
coding process is neither learnable nor differentiable. And
it also completely ignores visual properties, making it dif-
ficult to use directly for image retrieval tasks where visual
properties are also valuable cues.

In this paper, we revisit the self-similarity descriptor in
a convolutional manner and propose a novel global em-
bedding network named Structural Embedding Network
(SENet). The proposed network captures the internal struc-
tures of the images and encodes them to self-similarity de-
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scriptors while learning diverse structures from various im-
ages. These self-similarity descriptors and original image
features are fused and then pooled into global embedding,
so that global embedding can represent both valuable geo-
metric and visual cues of the image. All proposed modules
of our networks are comprised of point-wise operations, en-
abling efficient descriptor encoding. Our proposed network
sets state-of-the-art performance on several image retrieval
benchmarks, convincing its robustness to look-alike distrac-
tors.

2. Related Work
Image retrieval. Image retrieval aims to search the
database for images that contain the same content as in
the query image. Representative solutions [3, 18, 24–26,
32, 35, 36, 45] in this task are mainly based on a coarse-to-
fine approach: coarse one is the global retrieval with local
feature aggregation that aggregates hand-crafted local fea-
tures [11–13, 25, 26, 33] into a compact global embedding,
and the fine one is re-ranking the coarse retrieval results
with spatial verification [3, 24–26, 32, 36, 45] that verifies
whether putative local feature correspondence constructs
the rigid geometric relationship or not. In this local feature
aggregation process, spatial information of local features is
lost, and global embedding mainly reflects representative
visual properties of images. With the advancement of deep
learning, in recent studies [3, 23, 24, 28, 41, 44–46], local
features have been replaced with intermediate features of
CNNs, and aggregation methods have been replaced with
various spatial pooling operations. DELF and DELG [24]
presented a learning-based local and global feature using
CNN, and [28] proposed a GeM pooling that aggregates lo-
cal features through attentive pooling. SOLAR [23] showed
a method of aggregation of attentive features based on self-
attention inside image features, and DOLG [46] proposed
a method of fusion of local and global features of an im-
age. These changes boost image retrieval performances sig-
nificantly; however, the geometric structure still has been
mainly considered within the re-ranking stage, while the
global embedding hardly reflects the structure of the im-
age. Such discrimination makes global embeddings easy to
fooled by look-alike distractors with similar visual patterns
even if their shapes are quite different, ultimately bring-
ing down the overall retrieval performance. To address this
drawback, we propose a novel global embedding network to
help representative visual properties and internal structures
reflect well simultaneously in global embedding.

Self-similarity. Self-similarity is a structural representa-
tion of an image, indicating how similar a specific part of an
image is to the entire image or its neighborhood region. For
many previous studies, this self-similarity was mainly used
for two purposes. The first is a self-similarity descriptor,
which uses self-similarity as a robust local descriptor, and

the second is self-attention, which enhances the attentive re-
gion with self-similarity as weight. In this work, we focus
entirely on the self-similarity descriptor scheme to prove
that the structural characteristics of images are helpful for
image matching.
Self-similarity descriptor. The self-similarity descriptor
[31], which uses self-similarity itself as a descriptor, is a
classical image descriptor developed to robustly match im-
ages of the same content under different photometric condi-
tions such as lighting changes, color variance, texture differ-
ences, or even domain variances. With the help of this struc-
tural consistency, self-similarity descriptor has been used in
various fields such as image matching [4,30,31], visual cor-
respondence [15,16], few-shot classification [14], and video
action recognition [17]. With the advance of deep learning,
recent approaches [14,15,17] extract self-similarity descrip-
tors from the intermediate feature map of CNN to help the
network learn robust local and global representation. In this
paper, inspired by the previous works, we revisit this self-
similarity descriptor in terms of convolution and propose a
self-similarity encoder that embeds structural properties in
global embeddings while learning diverse structures within
numerous images. Unlike previous studies [4,15,16,30,31]
that used only self-similarity descriptors due to large differ-
ences in photometric conditions, both visual properties and
geometric structures are valuable clues in image retrieval.
Carefully considering this concern, we propose a feature
fusion module capable of harmoniously fusing visual and
structural features. Thanks to these powerful proposal mod-
ules, our proposed network is not easily fooled by distrac-
tors with similar appearances, such as color or texture, and
more accurately finds exact matches that match both visual
properties and geometric structures.

3. Structural Embedding Networks (SENet)
In this section, we revisit the conventional local self-

similarity descriptor for image retrieval and introduce our
proposed global embedding network, named Structural
Embedding Networks (SENet).

3.1. Problem Setup and Overview
Global embedding network for image retrieval task aims

to reflect representative information of an image to global
embedding to match images in an efficient way. In many re-
cent studies, global embedding networks achieve the stated
purpose by extracting the intermediate feature map of Con-
volutional Neural Networks (CNNs) and pooling it into
global embedding. This process is generally formulated as
follows. Given an input image I ∈ R3×HI×WI , the inter-
mediate feature map F ∈ RC×H×W is extracted from the
intermediate layer of the backbone CNN network f . The
extracted feature map F is aggregated into global embed-
ding z through a global pooling operation. These global
pooling operations naturally discard spatial information of
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Figure 2. The overall structure of our proposed Structural Embedding Network (SENet). Our proposed network captures the local structure
patterns inside the image feature map F and fuses it with the original feature map, to extract the global embedding that contains both visual
and structural cues of the input image. To this end, we organize our network into three parts: Self-Similarity Computation (SSC), Self-
Similarity Encoder (SSE), and feature fusion Module (FFM). Since all proposed modules consist of pixel-wise operation. Therefore, for
convenience, we show how single pixel position feature F(x) is encoded as a structural feature Fs(x) in this figure.

the input feature map, so global embedding z hardly reflects
the structural information about the input image, which is
also an invaluable cue for image matching.

This paper focuses on making the global embedding bet-
ter reflect structural information while preserving the orig-
inal visual information. To this end, we introduce three
modules comprised of Self-Similarity Computation (SSC,
Sec. 3.2), Self-Similarity Encoder (SSE, Sec. 3.3), and
Feature Fusion Module (FFM, Sec. 3.4). Our network
computes self-similarity from the feature map with SSC,
encodes it with pixel-wise self-similarity descriptors with
SSE, and fuses them with the original feature map with
FFM. With these modules, both the visual and structural
information are well reflected in the feature map so that
both visual and structural information is pooled well into
global embedding. Owing to these structural considera-
tions, SENet achieves superior retrieval ability. The overall
architecture of SENet is outlined in Fig. 2.

3.2. Self-Similarity Computation (SSC)
First, we introduce the Self-Similarity Computation

(SSC) module, which computes pixel-wise self-similarity
S to extract this structural information inside the feature
map F. The SSC module takes the intermediate feature

map F and transforms it to its projection F′ ∈ RC′×H×W

through the single linear layer to reduce computation com-
plexity due to larger channel size while adding non-linearity
to the original feature. Inside this projected feature map
F′, we compute channel-wise non-negative self-similarity
S ∈ RC′×H×W×P×P for the every pixel position x and its
surrounding region of size P × P using cosine similarity:

S (c,x,d) = max

(
0,

F′(c,x) · F′(c,x+ d)

∥F′(c,x)∥ ∥F′(c,x+ d)∥

)
, (1)

where c ∈ [1, C ′] is a index of channel dimension and
d ∈ [−dP , dP ] × [−dP , dP ] is relative position in the sur-
rounding region of each pixel x with size of P × P such
that dp = (P − 1) /2.

3.3. Self-Similarity Encoder (SSE)

In this subsection, we introduce a Self-Similarity
Encoder (SSE), which encodes high-dimensional self-
similarity into compact self-similarity descriptors while
learning and analyzing diverse geometric structures from
various images. SSE takes the dense channel-wise local
self-similarity S ∈ RC′×H×W×P×P and gradually encodes
it into dense self-similarity descriptor D ∈ RC×H×W ,
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Figure 3. The detailed structure of the Self-Similarity Encoder (SSE) and Feature Fusion Module (FFM). Our proposed SSE encodes high-
dimensional self-similarity into compact self-similarity descriptors, and FFM fuses self-similarity descriptors and the original feature map,
to make the global embedding reflect both visual and structural information without breaking the original behavior of the base network.

which has the same spatial and channel size as original
feature map F. SSE is constructed with a convolution
block sequence comprising 3×3 convolution along the self-
similarity dimension side, batch normalization layer, and
ReLU function. All operations in the encoder are pixel-wise
(on the original image side), reducing the overall computa-
tional load. Following [14], the self-similarity encoder ag-
gregates the self-similarity side by setting the padding value
of the self-similarity side to zero, which reduces its spatial
dimension from P × P to 1 × 1 while converting the raw
self-similarity S to the self-similarity descriptor D. Finally,
a linear layer is followed to recover the channel size of the
encoded self-similarity descriptor to the channel size of the
original feature map F. The detailed structure of our en-
coder is illustrated in Fig. 3.

3.4. Feature Fusion Module (FFM)
The self-similarity descriptor is a regional descriptor

that reveals local geometric structures in the interest region
while suppressing appearance variation inside it [31]. This
self-similarity descriptor is helpful for image retrieval; how-
ever, it is not enough to use alone. Since the content inside
the image has both visual and structural properties, we need
to reflect both properties well in the global embedding step

to improve search performance. Here, we introduce a Fea-
ture Fusion Module (FFM) that harmoniously fuses the self-
similarity descriptors D, which reflect the structural prop-
erties of the image and the original feature map F, which
reflect the visual properties of the image. First, we sum up
the self-similarity descriptor and image feature map. Here,
we add a batch normalization layer with the affine parame-
ters (scale γ and bias β) initialized to zero before adding the
self-similarity descriptor, following [7,40]. This initializing
helps the self-similarity descriptor can be well fused to the
original feature map without breaking the original behavior
of the base network. Then the summed feature map feeds
to a simple feed-forward layer [39], which comprises two
linear layers and a ReLU function between them:

Fs(x) = max (0, (F(x) +D(x))W1 + b1)W2 + b2, (2)

where Fs is fused structural feature map, x is spatial pixel
position, Wi and bi are the weight and bias of ith linear
layer, respectively. In this module, all pixel positions are
processed separately to reduce the overall computational
load, also like SSE. This fused structural feature map Fs

is finally aggregated into structural embeddings z via GeM
pooling [28], whitening layer and L2 normalization. The
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detailed structure of our fusion module is also illustrated in
Fig. 3.

3.5. Training Objective
We use two loss functions that are widely used in the

image retrieval field: classification loss [3, 18, 34, 43, 46]
and contrastive loss [18, 23, 28].

Classification loss. For classification loss, following [18,
46], we adopt cosine classifier with CurricularFace [10]
margin. Our classification loss Lcls is defined as:

Lcls = − log
exp(M(W⊤

y(z)z, 1)/τ)∑N
c=1exp(M(W⊤

c z,1iy(z))/τ)
, (3)

where y(z) is the ground-truth label of z, Wc is the cth class
weight for the cosine classifier, τ is the temperature param-
eter, and the 1iy(z) is the one-hot indicator whether the label
index i and y(z) is same or not. M is the function that adds
the curricular margin to input logit s

M(s,1) =


cos(arccos(s) +m), if 1 = 1

s, if 1 = 0, s < t

s(t+ s), if 1 = 0, s > t

, (4)

where m is the margin value, and t is the moving average
of query-positive logit.

Contrastive loss. For contrastive loss, following [18], we
adopt MoCo [8]-style contrastive loss with CurricularFace
[10] margin. Our classification loss Lcon is defined as:

Lcon=− E
p∈P (z)

log
exp

(
M

(
dp

⊤z, 1
)
/τ

)
∑

i∈{p,N(z)}
exp

(
M

(
di

⊤z,1
y(di)
y(z)

)
/τ

) ,
(5)

where di is the ith embedding inside the queue, and P and
N are the index sets of samples in positive or negative rela-
tionships with embedding z in the queue, respectively. All
other notations and parameters are the same as classification
loss Lcls, but are updated separately from those of Lcls.

Total loss. The final loss LT of our proposed network is
either using only the classification loss Lcls, which means
LT = Lcls, or using both the classification loss Lcls and
contrastive loss Lcon, which means LT = α · Lcls + (1 −
α) · Lcon, where α is weight to fuse.

4. Experiments
4.1. Implementation Details
Training dataset. We use the Google Landmarks dataset
v2-clean subset (referred to as GLDv2-clean) [42] to our
training. GLDv2-clean consists of 1580470 images from
81313 landmarks with various landmarks.

Model design. We use ResNet-50 (R50) and ResNet-101
(R101) [9] as backbone networks and extract the interme-
diate feature map before the pooling operation (generally
called ‘conv5’ feature map), so the original channel size C
is 2048 and we set the compressed channel size C ′ to 256.
We set the self-similarity region size P is set to 7, so SSM
has three encoder blocks as illustrated in Fig. 3.

Training details. We use random crop, aspect ratio dis-
tortion, and PCA color jittering augmentation to augment
the training images. After augmentation, all training images
are resized to 512 × 512 resolution. All proposed models
are trained for 25 epochs. We use an SGD optimizer and
set the initial learning rate of 5e-2, a batch size of 128, a
momentum of 9e-1, and a weight decay of 1e-4. We adjust
the learning rate for other batch sizes using linear scaling
rules [7] to achieve a similar result. For the learning rate
adjustment, we use a cosine learning rate schedule while
warming up the learning process by setting the learning rate
to 1/10 of the initial learning rate during the first epoch. For
the CurricularFace margin of both classification loss Lcls

and contrastive loss Lcon, we set the margin m to 0.15 and
the temperature τ to 1/30. For contrastive loss Lcon, we use
a momentum network with a momentum of 0.999, a queue
size of 73728, and fusion weight α of 0.5. We set the power
of GeM Pooling as 3.0, which is fixed throughout the over-
all process. Finally, we present four models trained with
two loss functions (Lcls, Lcls + Lcon) each for two back-
bones (R50, R101), respectively, to compare our proposed
network with various previous solutions.

Embedding extraction. To match images in a multi-scale
manner, we extract global embedding of three scales as
follows: [0.7071, 1.0, 1.4142]. We get the final global
embedding by L2-normalizing the average of the three
L2-normalized embeddings. This three-scale global em-
bedding extraction is used in most image retrieval stud-
ies [3, 6, 18, 28, 34, 35, 43] conventionally.

4.2. Evaluation Benchmarks
To verify the performance of our proposed network, we

conduct experiments in Revisited Oxford (ROxf) [25, 27]
and Revisited Paris (RPar) [26, 27], which are represen-
tative benchmarks widely used in image retrieval studies.
Both benchmarks have 70 query images and contain 4933
and 6322 database images, respectively. Additionally, we
measure large-scale search performance by adding 1M dis-
tractor images (+1M) given by [27] to the database of both
benchmarks. The retrieval performance on these two bench-
marks is measured using a mean Average Precision (mAP).

4.3. Experimental Results
Comparison with the state-of-the-art models (Tab. 1).
Tab. 1 shows the retrieval performance of our proposed net-
work and the previous state-of-the-art image retrieval mod-
els tested on the ROxford and the RParis benchmarks, also
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Loss Medium Hard
Lcls Lcon ROxf +1M RPar +1M ROxf +1M RPar +1M

(a) Local feature aggregation
R101-HOW-VLAD (GLDv2-clean) [13, 38, 43] ✓ 73.5 60.4 82.3 62.6 51.9 33.2 67.0 41.8
R101-HOW-ASMK (GLDv2-clean) [37, 38, 43] ✓ 80.4 70.2 85.4 68.8 62.5 45.4 70.8 45.4
R50-FIRe-ASMK (SfM-120k) [41] ✓ 81.8 66.5 85.3 67.6 61.2 40.1 70.0 42.9
R50-MDA-ASMK (SfM-120k) [44] ✓ 81.8 68.7 83.3 64.7 62.2 45.3 66.2 38.9
R50-Token (GLDv2-clean) [43] ✓ 80.5 68.3 87.6 73.9 62.1 43.4 73.8 53.3
R101-Token (GLDv2-clean) [43] ✓ 82.3 70.5 89.3 76.7 66.6 47.3 78.6 55.9
(b) Global single-pass
R101-GeM (SfM-120k) [29] ✓ 65.3 46.1 77.3 52.6 39.6 22.2 56.6 24.8
R101-GeM-AP⋆ (GLDv1) [28, 32] ✓ 66.3 - 80.2 - 42.5 - 60.8 -
R101-GeM-ArcFace (GLDv2-clean) [42] ✓ 74.2 - 84.9 - 51.6 - 70.3 -
R101-SOLAR (GLDv1) [23] ✓ 69.9 53.5 81.6 59.2 47.9 29.9 65.5 33.4
R50-DELG (GLDv2-clean) [3] ✓ 73.6 60.6 85.7 68.6 51.0 32.7 71.5 44.4
R101-DELG (GLDv2-clean) [3] ✓ 76.3 63.7 86.6 70.6 55.6 37.5 72.4 46.9
R50-DOLG‡ (GLDv2-clean) [46] ✓ 78.6 68.9 87.5 76.7 58.2 44.1 73.7 56.2
R101-DOLG‡ (GLDv2-clean) [46] ✓ 79.5 72.1 89.7 80.3 59.5 47.8 78.1 61.5
R101-GLAM (GLDv2-clean) [34] ✓ 78.6 68.0 88.5 73.5 60.2 43.5 76.8 53.1
R50-CVNet-Global (GLDv2-clean) [18] ✓ ✓ 81.0 72.6 88.8 79.0 62.1 50.2 76.5 60.2
R101-CVNet-Global (GLDv2-clean) [18] ✓ ✓ 80.2 74.0 90.3 80.6 63.1 53.7 79.1 62.2
(c) Ours
R50-SENet (GLDv2-clean) ✓ 81.4 72.9 90.5 79.0 62.3 48.7 80.3 59.9
R50-SENet (GLDv2-clean) ✓ ✓ 81.9 74.2 90.0 79.1 63.0 52.0 78.1 59.9
R101-SENet (GLDv2-clean) ✓ 80.0 72.5 91.6 82.1 61.7 49.2 82.2 64.6
R101-SENet (GLDv2-clean) ✓ ✓ 82.8 76.1 91.7 83.6 66.0 55.7 82.8 67.8

Table 1. Comparison with the state-of-the-art models. evaluated performances on Revisited Oxford (ROxf) and Revisited Paris (RPar)
with adding 1M distractors experiments (+1M). The best scores for each group and backbone are presented as boldfaced text. ⋆ denotes
using AP-Loss. ‡ denotes reproduced model with the official model and weights.

with their 1 million distractors. In this table, we divided
the previous global embedding models into two groups: (a)
Local feature aggregation and (b) Global single-pass. (a)

Local feature aggregation. Our proposed network shows
better overall performance than solutions using classical ag-
gregators such as VLAD [12] or ASMK [37]. However,
they consume more extract and matching time due to the
aggregator. Recently, a learnable aggregator named To-
ken [43] has been proposed and sets a new state-of-the-art
performance with reasonable extraction latency and match-
ing time. However, due to the limitation that structural
characteristics cannot be considered, it shows a substan-
tial performance decrease when a 1M distractor is added.
Our proposed method leads the performance by up to 8.7%
(RPar-Hard+1M) when adding 1M distractor experiments
in the setting using the same loss function (R101-SENet-
Lcls). (b) Global single-pass. From some point of view, our

proposed networks belong to this group. In this group, our
proposed networks outperform existing solutions in most
experiments regardless of the setting. Among the solutions
using classification loss only, the state-of-the-art solution
is DOLG1 [46]. DOLG is a method that has learned four

1We reproduced the DOLG with the official model and weights due to
the misreported performance of the original paper.

times the average learning time of other solutions, but the
proposed network outperforms it on all measures. The state-
of-the-art solution that uses both classification loss and con-
trast loss is CVNet-Global [18], which is a global backbone
network of CVNet. In the same loss function setting, our
network also outperforms CVNet-Global with a large gap in
all measures by up to 5.6% on RPar-Hard+1M with R101-
SENet-Lcls & Lcon model.

Comparison with reproduced models (Tab. 2). Many
image retrieval models are trained and tested based on their
environment settings (e.g. training dataset, loss function,
multi-scale extraction, pooling method). For a fair com-
parison, we reproduced four representative image retrieval
models (DELG [3], SOLAR [23], DOLG [46], and CVNet
[18]) with the same settings as Sec. 4.1. Our proposed
networks surpass other reproduced models in all measures
for all models and settings. We also check the extraction
time and memory costs for all reproduced models and ours.
DELG and CVNet, which use almost pure ResNet struc-
ture, have the lowest latency and number of parameters,
and SENet has 40% more parameters and 14% more latency
than them. Since all the processes of the contributed mod-
ules of SENet are pixel-wise operations, extraction latency
is in a reasonable time, which is slightly faster than SOLAR,
despite the increased number of parameters.
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model
(R50)

Medium Hard Params Time

ROxf +1M RPar +1M ROxf +1M RPar +1M (M) (ms)

(a) Use only classification loss Lcls

DELG† 78.6 70.7 89.5 77.4 58.8 44.8 77.9 57.7 27.7 8.82
SOLAR† 79.0 70.1 89.8 78.5 59.0 44.9 78.2 59.0 37.2 10.21
DOLG† 78.7 70.9 88.9 76.6 57.9 45.5 75.8 55.9 30.9 9.32
SENet 81.4 72.9 90.5 79.0 62.3 48.7 80.3 59.9 38.9 10.05

(b) Use both classification loss Lcls and contrastive loss Lcon

CVNet† 79.7 72.4 89.5 78.9 60.5 49.6 77.6 59.5 27.7 8.82
SENet 81.9 74.2 90.0 79.1 63.0 52.0 78.1 59.9 38.9 10.05

Table 2. Comparison with reproduced state-of-the-art models.
† denotes reproduced model with the same setting as SENet.

SSE
FFM Medium Hard

BNinit FFL ROxf +1M RPar +1M ROxf +1M RPar +1M

78.6 70.7 89.5 77.4 58.8 44.8 77.9 57.7
✓ 79.2 71.2 89.2 76.7 59.3 45.2 76.8 56.3
✓ ✓ 79.8 71.9 90.0 78.0 60.7 47.2 78.5 58.3
✓ ✓ ✓ 81.4 72.9 90.5 79.0 62.3 48.7 80.3 59.9

Table 3. Effect of the proposed modules.

4.4. Ablation Studies
We conduct extensive ablation studies to analyze our

proposed network. All ablation studies are performed with
ResNet-50 backbone with classification loss only setting.

Effect of the proposed modules (Tab. 3). We conduct
ablation studies on the proposed modules to demonstrate
their efficacy. When using the self-similarity encoder (SSE)
solely, the proposed method showed slightly better perfor-
mance than the baseline but showed instability in the ini-
tial convergence. For smooth initial convergence, we added
a batch normalization layer with scale and bias initialized
to zero (BNinit) before summing two features. Hence, the
module trained stably and showed slightly higher perfor-
mance than before. Finally, when adding a simple pixel-
wise feed-forward layer (FFL), two different characteristic
features were fused harmoniously and showed the best per-
formance.

Analysis on input feature layer (Tab. 4). We conduct
ablation studies on which layers it is effective to extract
structural information from. As shown in Tab. 4, extract-
ing structural information from the conv5 layer showed
higher performance than the conv4 layer. Even though
conv5’s output feature has a lower resolution than conv4’s
output feature, it enables the network to embed meaningful
self-similarity by exploiting high-level semantic features.
Therefore, we use the intermediate feature map from conv5
layer to extract internal self-similarities.

Analysis on self-similarity region size (Tab. 5). We fur-
ther analyze the effect of self-similarity region size P . In
this experiment, SENet performs better than the baseline
with all kernel size settings. Interestingly, the performance
in the RParis benchmark is better in the high region size

model
(R50, Lcls)

Medium Hard

ROxf +1M RPar +1M ROxf +1M RPar +1M

baseline 78.6 70.7 89.5 77.4 58.8 44.8 77.9 57.7

SENet (conv4) 79.2 71.1 89.9 77.5 59.5 46.0 78.2 57.2
SENet (conv5) 81.4 72.9 90.5 79.0 62.3 48.7 80.3 59.9

Table 4. Ablation experiments on the input feature layer.

model
(R50, Lcls)

Medium Hard

ROxf +1M RPar +1M ROxf +1M RPar +1M

baseline 78.6 70.7 89.5 77.4 58.8 44.8 77.9 57.7

SENet (P = 5) 80.6 71.7 90.6 78.4 61.5 46.6 79.9 58.5
SENet (P = 7) 81.4 72.9 90.5 79.0 62.3 48.7 80.3 59.9
SENet (P = 9) 80.1 71.0 90.7 79.1 60.0 44.8 80.3 59.9

Table 5. Ablation experiments on self-similarity region size P .

setting, and the performance in the ROxford benchmark is
better in a relatively small region size setting. This is pre-
sumed to be due to a scale difference in benchmark images.
Finally, we choose P = 7, which shows fine performance
with moderate memory and latency burden.

Visualize the effect of proposed modules (Fig. 4). To
verify that our proposed module is producing the intended
effect properly, we conduct a visualization using the out-
put of each module. We selected the positive image and the
hard-negative image of the existing solutions for the query
image, calculated the query-positive and query-negative
feature similarity, and visualized it for a single spatial point
x of the query image. Since the similar visual property of
target point x exists in both positive image Ip and negative
image In, both query-positive similarity Sc(Fq(x),Fp)
and similarity Sc(Fq(x),Fn) between their original fea-
ture map F show high values in some region. However,
since the similar geometrical structure of the target point
x exists in positive image Ip but does not exist in nega-
tive image In, the query-positive similarity Sc(Dq(x),Dp)
between self-similarity descriptors D shows high values
in the corresponding region, while there are few high val-
ues in the query-negative similarity Sc(Dq(x),Dn). Fi-
nally, the original features F and self-similarity descriptor
D are fused to structural feature Fs, raising the similari-
ties where both visual and structural cues form a consensus
and diminishing the similarities that do not, as shown in
Sc(F

s
q(x),F

s
p) and Sc(F

s
q(x),F

s
n).

5. Discussion
Qualitative results. Example qualitative results are
shown in Fig. 5. Despite advanced feature representation,
previous solutions that do not consider the internal struc-
tures of images are easily fooled by look-alike distractors.
Our proposed network captures structural information and
reflects them in global embeddings, thereby finding the cor-
rect answer more precisely considering the structure of the
image even in the global search stage.
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Query Image 𝐈𝐈𝐪𝐪

Positive Image 𝐈𝐈𝐏𝐏

Target Point 𝐱𝐱

Negative Image 𝐈𝐈𝐧𝐧

𝐒𝐒𝐜𝐜(𝐅𝐅𝐪𝐪 𝐱𝐱 ,𝐅𝐅𝐩𝐩)

Cosine Similarity with
Self-Similarity Descriptor 𝐃𝐃𝐩𝐩

Cosine Similarity with
Original Feature Map 𝐅𝐅𝐩𝐩

Cosine Similarity with
Structural Feature Map 𝐅𝐅𝐩𝐩𝒔𝒔

𝐒𝐒𝐜𝐜(𝐃𝐃𝐪𝐪 𝐱𝐱 ,𝐃𝐃𝐩𝐩) 𝐒𝐒𝐜𝐜(𝐅𝐅𝐪𝐪𝑺𝑺 𝐱𝐱 ,𝐅𝐅𝐩𝐩𝑺𝑺)

Cosine Similarity with
Self-Similarity Descriptor 𝐃𝐃𝐧𝐧

Cosine Similarity with
Original Feature Map 𝐅𝐅𝐧𝐧

Cosine Similarity with
Structural Feature Map 𝐅𝐅𝐧𝐧𝒔𝒔

𝐒𝐒𝐜𝐜(𝐅𝐅𝐪𝐪 𝐱𝐱 ,𝐅𝐅𝐧𝐧) 𝐒𝐒𝐜𝐜(𝐃𝐃𝐪𝐪 𝐱𝐱 ,𝐃𝐃𝐧𝐧) 𝐒𝐒𝐜𝐜(𝐅𝐅𝐪𝐪𝑺𝑺 𝐱𝐱 ,𝐅𝐅𝐧𝐧𝑺𝑺)

High
Similarity

Low
Similarity

Figure 4. Example visualization of the intermediate feature similarity between query-positive and query-hard negative images. Our network
enhances the similarity where the visual and structural cues form a consensus and diminishes other parts. Sc(·, ·) denotes cosine similarity
between two inputs. All features are extracted using R50-SENet-Lcls model.

8th

SENet
(Ours)

DELG†

(Baseline)Query Image

9th 10th 11th 12th

8th 9th 10th 11th 12th

Figure 5. Example qualitative results with R50-DELG† and R50-SENet-Lcls. The upper line results from R50-DELG†, and the lower line
results from R50-SENet. Correct and incorrect answers are marked with green / red borders around the image, respectively. The yellow
dotted line indicates the area of the positive image that overlaps the query.

Limitations and future work. Although our proposed
network shows promising performance improvements, our
proposed network still has weaknesses against the scale
and the structural changes caused by image resolution and
viewpoints. To solve this problem, we design an end-to-
end learnable self-similarity encoder, which learns various
structures from various images, but there is still room for
performance improvement. Our future work aims to design
a model that can enhance the consensus between the same
content images with large scale/viewpoint differences.

6. Conclusion
In this paper, we present a novel framework that lever-

ages the internal structures of images to reflect structural
information well in global embeddings. To this end, we
propose two modules. First, we propose the self-similarity
encoding module, which analyzes the internal structures of

images and encodes them to self-similarity descriptors in
an end-to-end manner. We also propose the feature fusion
module, to fuse visual and structural information harmo-
niously without breaking the original behavior of the base
structure. The significant performance improvements on
several representative benchmarks and intensive ablation
studies demonstrate that the internal structures of images
are also invaluable cues for image retrieval.
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