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Abstract

Many works have tried to solve the catastrophic forget-
ting (CF) problem in continual learning (lifelong learning).
However, pursuing non-forgetting on old tasks may dam-
age the model’s plasticity for new tasks. Although some
methods have been proposed to achieve stability-plasticity
trade-off, no methods have considered evaluating a model’s
plasticity and improving plasticity adaptively for a new task.
In this work, we propose a new method, called adaptive
plasticity improvement (API), for continual learning. Be-
sides the ability to overcome CF on old tasks, API also tries
to evaluate the model’s plasticity and then adaptively im-
prove the model’s plasticity for learning a new task if nec-
essary. Experiments on several real datasets show that API
can outperform other state-of-the-art baselines in terms of
both accuracy and memory usage.

1. Introduction

Continual learning is a challenging setting in which
agents learn multiple tasks sequentially [21]. However, neu-
ral network models lack the ability to perform continual
learning. Specifically, many studies [15, 21] have shown
that directly training a network on a new task makes the
model forget the old knowledge. This phenomenon is often
called catastrophic forgetting (CF) [10, 21].

Continual learning models need to overcome CF, which
is referred to as stability [21]. Many types of works are pro-
posed for stability. For example, regularization-based meth-
ods [13,35] add a penalty to the loss function and minimize
penalty loss with new task loss together for overcoming CF.
Memory-based methods [5,6,24,29] maintain a memory to
save the information of the old tasks and use saved informa-
tion to keep old task performance. Expansion-based meth-
ods [12, 16] expand the network’s architecture and usually
freeze old tasks’ parameters to overcome CF.

However, having stability alone fails to give the model
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continual learning ability. The model also needs plasticity
to learn new tasks in continual learning. The term plas-
ticity came from neuroscience and was originally used to
describe the brain’s ability to yield physical changes in
the neural structure. Plasticity allows us to learn, remem-
ber, and adapt to dynamic environments [22]. In neu-
ral networks, plasticity is used to describe the ability of
a network to change itself for learning new tasks. How-
ever, existing works [17, 18, 30] show that when overcom-
ing CF for stability, the model’s plasticity will decrease,
which will affect the performance of the model for learning
new tasks. Specifically, regularization-based methods and
memory-based methods use penalty or memory to constrain
the parameters when the model learns a new task. When the
number of old tasks increases, the constraints for the model
parameters should become stronger and stronger to ensure
stability. As a result, the model’s plasticity for learning new
tasks decreases. Expansion-based methods [28,32] increase
the model’s plasticity by expanding additional parameters.
However, most of these methods freeze the old part of the
network, making the old part of the network underutilized.
Furthermore, all these methods do not consider how to eval-
uate the model’s plasticity and improve it adaptively.

When overcoming CF, the model should improve its
plasticity if it finds that current plasticity is insufficient to
learn the new task. In this work, we propose a new method,
called adaptive plasticity improvement (API), for continual
learning. The main contributions of API are as follows:

• API overcomes CF through a new memory-based
method called dual gradient projection mem-
ory (DualGPM), which learns a gradient subspace that
can represent the gradients of old tasks.

• Based on DualGPM, API evaluates the model’s plas-
ticity for a new task by average gradient retention ra-
tio (AGRR) and improves the model’s plasticity adap-
tively for a new task if necessary.

• Experiments on several real datasets show that API can
outperform other state-of-the-art baselines in terms of
accuracy and memory usage.
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2. Problem Formulation and Related Work
2.1. Problem Formulation

We consider the supervised continual learning setting
where T tasks are presented to the model sequentially. Each
task has a dataset Dt = {(xt

i, y
t
i)}

Nt
i=1 sampled from a latent

distribution Dt, where xt
i represents the input data point

and yti represents its class label. A neural network model
f(·,Θ) with parameters Θ is trained on these tasks sequen-
tially. The aim is to minimize the average loss of all tasks,
that is

L =
1

T

T∑
t=1

E(xt
i,y

t
i)∼Dt

[
l(f(xt

i;Θ), yti)
]
. (1)

Here, l(·, ·) is the loss function (e.g., cross-entropy). When
learning a new task t, the model has no access to the data of
the previous t−1 tasks and it needs to learn new tasks while
maintaining the performance of old tasks. Like many recent
works [14, 17], we assume the task identity is available in
both training and inference stages.

2.2. Related Work

Existing continual learning methods can be divided
into three main categories: regularization-based methods,
memory-based methods and expansion-based methods.
Regularization-based Methods These methods use a
penalty loss (regularization) to prevent important parame-
ters of old tasks from changing too much. Elastic weight
consolidation (EWC) [15] evaluates the importance of the
parameters with fisher information. Other parameter impor-
tance evaluation methods have also been tried, like the en-
tire learning trajectory in parameter space [35] or sensitivity
of outputs and inputs [2]. Some methods replace parameter
importance with group importance [1, 13]. One shortcom-
ing of these methods is that model capacity is fixed, and the
penalty loss will make the model’s plasticity decrease with
the increase of old tasks.
Memory-based Methods These methods keep a memory
buffer for saving some information of old tasks. The us-
age of memory varies among different methods. Experi-
ence replay (ER) [7] uses memory to keep old samples and
rehearses old samples to overcome CF when learning a new
task. Some methods improve ER by replaying more dis-
turbed old samples [3] or keeping diverse samples in mem-
ory [5]. Gradient episode memory (GEM) [20] and Average
GEM (A-GEM) [6] also keep samples in memory and use
old samples to estimate the gradients of old tasks. Saving
real samples may raise privacy issues [17]. Gradient pro-
jection memory (GPM) [24] uses memory to maintain or-
thogonal bases and performs orthogonal projection to seek
rectified updating direction. Some methods [19, 31] fol-
low a similar idea to GPM and maintain a projection ma-
trix for each layer. Some method [17] tries to get better

plasticity-stability trade-off when rectifying gradient direc-
tion with projection operation. Trust region gradient pro-
jection (TRGP) [18] defines the trust region and leverages
it to improve model’s performance on new tasks. Flatten-
ing sharpness for dynamic gradient projection memory (FS-
DGPM) [8] uses memory and new data to flatten the loss
landscape and evaluate the importance of bases in GPM.
Like regularization-based methods, all these methods also
keep a fixed model capacity and the model’s plasticity in-
evitably decreases with the increase of old tasks.
Expansion-based Methods These methods dynamically
expand the model’s architecture for each new coming
task. Progressive neural network (PNN) [23] adds new
sub-networks with connections for previous architecture
and expands the parameters super-linearly. Some works,
like calibrating CNNs for lifelong learning (CCLL) [27]
and rectification-based knowledge retention (RKR) [26],
expand an equal number of parameters for each new
task. Some works, like additive parameter decomposi-
tion (APD) [33] and dynamic expand network (DEN) [34],
use regularization terms to constrain the increase of ex-
panded parameters. There are also some works [16, 28]
defining a search space with different expansion strategies.
When adding (expanding) additional parameters, all these
methods do not consider how to evaluate the model’s plas-
ticity quantitatively and improve it adaptively.

3. Methodology

Figure 1 gives an illustration of our API method for a
simple three-layer neural network. Except for the last layer,
each layer can represent either a linear layer or a convolu-
tion layer, where each line represents a weight value in the
linear layer or a kernel in the convolution layer. The blue
part in Figure 1 is the original neural network, and we use
Wl ∈ Rdl

O×dl
I to represent the weight of blue part in the

l-th layer. Note that we omit the kernel dimensions in the
convolution layer for simplicity. dlO and dlI represent the
dimensions (channels) of the output and input, respectively.
Besides the blue part, each layer may expand additional red
part by increasing the input dimension dlI . Here, we use
dl,tI to denote the input dimension in the l-th layer when the
model learns task t and use Wl,t ∈ Rdl

O×dl,t
I to denote the

corresponding weight. Here, dl,tI ≥ dl,t−1
I and dl,1I = dlI .

Wl,t is expandable and includes both the blue part and ex-
panded red part. In other words, Wl,t−1 = Wl,t[:, : d

l,t−1
I ]

and Wl,1 = Wl. We will give the motivation of the API
architecture in Section 3.3.

For each new task t, API first evaluates the model’s plas-
ticity with current parameters Wl,t−1 when overcoming CF.
Then, API adaptively expands Wl,t−1 to Wl,t according to
the evaluation results for improving the model’s plasticity.
Note that Wl,t = Wl,t−1 is possible, which means current
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Figure 1. Illustration of API for a three-layer architecture. The
blue part denotes the original architecture. The red part denotes
the architecture for improving plasticity.

plasticity is enough for the model to learn the new task. Fi-
nally, API learns the new task with Wl,t when overcoming
CF on Wl,t−1.

API adopts the gradient rectification strategy to over-
come CF. Methods based on this strategy rectify new task
gradient so that it will not interfere with the model’s per-
formance on the old task. We will show that a repre-
sentative gradient rectification method, GPM [24], suffers
from constantly increasing memory usage (see Section 3.1).
Thus, API proposes dual GPM (DualGPM) to overcome
CF. DualGPM can achieve similar accuracy as GPM, but
its memory usage does not increase all the time. Fur-
thermore, based on DualGPM, API defines a new metric,
called gradient retention ratio (GRR), to evaluate and im-
prove the model’s plasticity. The following subsections will
describe the detail of the main components in API, includ-
ing DualGPM, plasticity evaluation, and plasticity improve-
ment.

3.1. Dual Gradient Projection Memory

We useMl,t to denote the subspace containing the gra-
dients of the previous t− 1 old tasks for the l-th layer when
the model learns task t (1 ≤ t ≤ T ). We useM⊥

l,t to denote
the orthogonal complement ofMl,t. This means:

M⊥
l,t = {u⊥ ∈ Rdl | ∀ u ∈Ml,t, (u

⊥)Tu = 0}, (2)

Ml,t ⊕M⊥
l,t = Rdl , dim(Ml,t) + dim(M⊥

l,t) = dl.

Here, dl denotes the gradient dimension and ⊕ denotes di-
rect sum in linear algebra [11]. Obviously,Ml,1 = {0} and
M⊥

l,1 = Rdl . According to the existing works [24, 31, 36],
the following proposition holds:

Proposition 1. The gradient update of linear or convolu-
tion layer lies in the span of inputs.

Please refer to existing work [24] or supplementary ma-
terial for the explanation of this proposition. With this
proposition,Ml,t can be computed by finding the subspace
containing the inputs of previous t−1 old tasks. The details
of gettingMl,t are shown in the process of DualGPM (see
Section 3.1.1).

Subspace ℳ",$

Subspace ℳ",$%

Gradient &",$

Residue '&(,)

Projected Gradient *(,)(*(,))-&",$

Orthogonal Bases *",$%

Orthogonal Bases *",$

Figure 2. Illustration of orthogonal projection. Orthogonal projec-
tion projects the gradient into Ml,t. GPM removes the projected
component and makes the residue orthogonal to Ml,t. Note that
Ml,t contains the gradients of all previous tasks.

GPM [24] overcomes CF by orthogonal projec-
tion. Specifically, it maintains orthogonal bases of
Ml,t and projects new task gradient gl,t into Ml,t by
Ml,t(Ml,t)

Tgl,t. Here, Ml,t = [u1, ...,um] denotes or-
thogonal bases ofMl,t and m = dim(Ml,t). Then GPM
removes the projected gradient from gl,t by

ĝl,t = gl,t −Ml,t(Ml,t)
Tgl,t. (3)

Here, ĝl,t is the residue that lies in M⊥
l,t. Figure 2 gives

an illustration of orthogonal projection. Since dim(Ml,t)
increases with the number of tasks, the memory usage of
GPM for storing Ml,t also increases with the number of
tasks. We propose DualGPM, which achieves orthogonal
projection with memory not increasing all the time. In the
following discussion, we first show how DualGPM works
in the layers with non-expandable Wl,t (dl,tI ≡ dlI ). Then,
we extend DualGPM to the layer with expandable Wl,t.

3.1.1 Layers with Non-Expandable Parameters

Different from GPM which maintains orthogonal bases of
Ml,t, DualGPM maintains either orthogonal bases ofMl,t

or orthogonal bases ofM⊥
l,t to perform orthogonal projec-

tion. When keeping orthogonal bases of Ml,t in memory,
DualGPM uses operation (3) like GPM. When keeping or-
thogonal bases ofM⊥

l,t in memory, DualGPM performs or-
thogonal projection through

ĝl,t = M⊥
l,t(M

⊥
l,t)

Tgl,t. (4)

Here, M⊥
l,t = [u⊥

1 , ...,u
⊥
z ] denotes orthogonal bases of

M⊥
l,t and z = dim(M⊥

l,t). Note that operation (3) and op-
eration (4) are equivalent and we call them dual operations.

DualGPM decides whether to keep Ml,t or M⊥
l,t in

memory according to dim(Ml,t) and dim(M⊥
l,t). Specif-

ically, during the learning of the first several tasks,
dim(Ml,t) ≤ dim(M⊥

l,t). At this time, DualGPM main-
tains Ml,t, and expands Ml,t to Ml,t+1 after each task.
When dim(Ml,t) increases and exceeds dim(M⊥

l,t), Dual-
GPM obtains M⊥

l,t through some transformations on Ml,t.
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After that, DualGPM only maintains M⊥
l,t in memory,

and reduces M⊥
l,t to M⊥

l,t+1 after each task. Through
this way, the number of bases kept for each layer is
min{dim(Ml,t),dim(M⊥

l,t)}.
To make DualGPM work, we have to solve the following

three key problems: expanding the bases ofMl,t, obtaining
the bases ofM⊥

l,t through the bases ofMl,t, and reducing
the bases ofM⊥

l,t.
Expanding the Bases of Ml,t The expansion of Ml,t is
the same as that in GPM. Specifically, according to Propo-
sition 1, expanding the bases of Ml,t is equivalent to ex-
panding the bases of input space. DualGPM computes the
inputs matrix Rl,t such that each column of Rl,t represents
an input of this layer. Getting the input matrix for convo-
lution layer requires reshaping operation. Please refer to
GPM [24] or supplementary material for details. Then, the
part of Rl,t that has already inMl,t is removed by

R̂l,t = Rl,t −Ml,t(Ml,t)
TRl,t = Rl,t −Rl,t,proj . (5)

Please note that when t = 1, dim(Ml,t) = 0 and hence
Rl,t,proj is a zero matrix. After that, singular value decom-
position (SVD) is performed on R̂l,t = ÛΣ̂V̂ T . Then, u
new orthogonal bases are chosen from the columns of Û for
a minimum of u satisfying the following criteria for given
threshold ϵlth:

||(R̂l,t)u||2F + ||Rl,t,proj ||2F ≥ ϵlth||Rl,t||2F . (6)

Here, (R̂l,t)u = [u1, ...,uu] denotes the components
of R̂l,t that correspond to top-u singular values. Then,
subspace Ml,t+1 is obtained with the bases Ml,t+1 =
[Ml,t,u1, ...,uu].
Transforming Ml,t to M⊥

l,t DualGPM transforms Ml,t

to M⊥
l,t by performing SVD to the matrix Ml,t. Specifi-

cally, let Ml,t = UΣV T , we can prove that the column
vectors of U which correspond to the zero singular values
form a set of orthogonal bases ofM⊥

l,t. We give the proof
in supplementary material.
Reducing the Bases of M⊥

l,t DualGPM reduces space
M⊥

l,t by removing the part ofM⊥
l,t which contains the gra-

dient of the t-th task. Specifically, DualGPM first computes
the input matrix Rl,t. Then, the part of Rl,t which lies in
M⊥

l,t can be computed through

R̂⊥
l,t = M⊥

l,t(M
⊥
l,t)

TRl,t = R⊥
l,t,proj . (7)

After that, SVD is performed on R̂⊥
l,t = Û⊥Σ̂⊥(V̂ ⊥)T .

Then, k new orthogonal bases are chosen from the columns
of Û⊥ for a maximum of k satisfying the following criteria
for the given threshold ϵlth (the same as ϵlth in (6)):

||(R̂⊥
l,t)k||2F ≤ (1− ϵlth)||Rl,t||2F . (8)

Let Z = (R̂⊥
l,t)k = [u⊥

1 , ...,u
⊥
k ], Z = span{u⊥

1 , ...,u
⊥
k }.

Here, Z is the subspace of M⊥
l,t that contains the gra-

dient of the t-th task. DualGPM removes Z from
M⊥

l,t to get M⊥
l,t+1. Specifically, let M̂⊥

l,t = M⊥
l,t −

Z(ZT )M⊥
l,t. DualGPM performs the second SVD on

M̂⊥
l,t = Ũ⊥Σ̃⊥(Ṽ ⊥)T . We can prove that the columns

of Ũ⊥ which correspond to the non-zero singular values
form the bases M⊥

l,t+1. We give the proof in supplementary
material.
Comparing DualGPM with GPM DualGPM consid-
ers both Ml,t and M⊥

l,t. Therefore, DualGPM keeps
min{dim(Ml,t),dim(M⊥

l,t)} bases in memory for each
layer. Different from DualGPM, GPM only considers the
space Ml,t and keeps dim(Ml,t) bases in memory for
each layer. Since dim(Ml,t) increases and dim(M⊥

l,t) de-
creases with the increase of t, DualGPM keeps much fewer
bases than GPM when t is large. Note that updating bases
in memory only happens after each task, and hence Dual-
GPM does not cause too much computation for SVD oper-
ations. Section 4 will show that DualGPM gets similar per-
formance to GPM and uses much less memory than GPM.

3.1.2 Layers with Expandable Parameters

In the layers with expandable Wl,t, updating memory
bases (see (5) and (7)) cannot be performed directly
since the dimension of the inputs in Rl,t may be higher
than that of the bases in Ml,t. Based on the fact
that any d-dimensional vector g = [g1, ..., gd]

T can
be embedded into a higher dimensional space by g ←
[g1, g2, ..., gd, 0, ..., 0]

T , we can embed Ml,t into the space
which the gradient of the new task lies in. M⊥

l,t can also be
obtained through (2). Mathematically, new Ml,t and M⊥

l,t

are got by

Ml,t ←
[
Ml,t

O

]
, M⊥

l,t ←
[
M⊥

l,t O

O I

]
, (9)

where O denotes zero matrix and I denotes identity matrix.
After the operation in (9), we can update memory according
to the description in Section 3.1.1.

Algorithm 1 shows the process of DualGPM, including
the case of non-expandable parameters and the case of ex-
pandable parameters.

3.2. Plasticity Evaluation

DualGPM constrains the new task gradient gl,t in the
subspaceM⊥

l,t (see (3) and (4)). We define a metric called
gradient retention ratio (GRR) for evaluating the constraint.
The GRR of the l-th neural network layer for task t can be
computed as

GRR(l, t) = Ex∼Dt

[
||(ĝl,t)x||2
||(gl,t)x||2

]
, (10)
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Algorithm 1 DualGPM

1: Input: Current task data Dt, a neural network model f(·,Θ)
with L layers, Θ = {Wl,t}Ll=1, orthogonal bases memory
{M∗

l,t−1}Ll=1.
2: Output: Updated orthogonal bases memory {M∗

l,t}Ll=1.
3: Get input matrix {Rl,t}Ll=1 through Dt and f(·,Θ);
4: for l in 1 : L do
5: if M∗

l,t−1 is Ml,t−1 then
6: Embed Ml,t−1 into higher dimensional space by (9);

// Only for the layers with expandable parameters
7: Expand Ml,t−1 to Ml,t by (5) and (6);
8: if dim(Ml,t) > dim(M⊥

l,t) then
9: Transform matrix Ml,t to matrix M⊥

l,t through SVD;
10: end if
11: else if M∗

l,t−1 is M⊥
l,t−1 then

12: Embed M⊥
l,t−1 into higher dimensional space by (9);

// Only for the layers with expandable parameters
13: Reduce M⊥

l,t−1 to Ml,t by (7) and (8);
14: if dim(Ml,t) < dim(M⊥

l,t) then
15: Transform matrix M⊥

l,t to matrix Ml,t through SVD;
16: end if
17: end if
18: end for

where (gl,t)x represents the gradient in this layer with input
sample x. ĝl,t is obtained by (3) or (4). In Equation (10), ra-
tio ||ĝl,t||2

||gl,t||2 is smaller than 1 due to the orthogonal projection.

The smaller the value of ||ĝl,t||2
||gl,t||2 is, the larger the part of

gradient is removed by (3) or (4). In an extreme case where
dim(Ml,t) = dl and dim(M⊥

l,t) = 0, ĝl,t is always 0.
This means the parameters of this layer can not be updated
for learning new task t. In other words, this layer has no
plasticity. We further use AGRR(t)= 1

L

∑L
l=1 GRR(l, t) to

denote the average GRR of all layers, where L denotes the
number of layers. AGRR evaluates the average constraint
caused by DualGPM.

Then, we show the relation between AGRR and the
model’s performance. We perform DualGPM on Split CI-
FAR100, which is a popular continual learning dataset we
use for experiments in Section 4. We vary the threshold
ϵlth in (6) and (8). Obviously, larger ϵlth makes dim(Ml,t)
larger, and thus makes AGRR smaller. Figure 3 (a) shows
the relation between AGRR and the average gradient norm
1
S

∑S
i=1 ||ĝi,2||2 for learning task 2. Here, S denotes the

number of times the model updates the parameters when
learning task 2. From Figure 3 (a), we can find that aver-
age gradient norm decreases with the decrease of AGRR.
This means the model changes less and less for learning the
new task. Since plasticity describes the model’s ability to
change itself [21], the model’s plasticity decreases with the
decrease of AGRR. Figure 3 (b) shows the relation between
AGRR and accuracy on task 2 when the learning of task 2
is over. From this figure, we can find that model’s accuracy
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Figure 3. DualGPM with non-expandable parameters learns on
Split CIFAR100. (a) shows the correlation between AGRR and av-
erage gradient norm for learning task 2. (b) shows the correlation
between AGRR and accuracy on task 2.

also decreases with the decrease of AGRR. From these re-
sults, we can find that AGRR has a high correlation with
the model’s performance and the model’s ability to change.
Therefore, API uses AGRR to evaluate the plasticity of the
model.

3.3. Plasticity Improvement

In Section 3.2, we have shown that metric AGRR can
evaluate the constraint caused by DualGPM. We also show
that AGRR has a high correlation with the model’s per-
formance and the model’s ability to change. Therefore,
API tries to increase AGRR to improve the model’s plas-
ticity. According to Proposition 1, increasing GRR of the
l-th layer can be achieved by increasing the input dimen-
sion dlI . Hence, API improves plasticity by increasing the
input dimension

With GRR, the input dimension dl,tI is decided as

dl,tI = dl,t−1
I +max (⌊K(ρ−GRR(l, t)) + 0.5⌋ , 0) ,

(11)

where ⌊·⌋ denotes round down. K and ρ are hyperparame-
ters. For all the experiments, we set K and ρ as 10 and 0.5,
unless otherwise stated. Note that when GRR(l, t) ≥ ρ,
dl,tI = dl,t−1

I and no new parameters are added. With Equa-
tion (11), we try to give larger expansion to the layer with
smaller GRR so that AGRR does not decrease too much
with the increase of tasks.

After expanding Wl,t−1 to Wl,t through (11), API in-
creases the dimension of the input hl through a transfor-
mation Φl,t, where Φl,t(hl) = Bl,t • hl, and h̃l,t =

Concat(hl,Φl,t(hl)). Here Bl,t ∈ Rdl
I×n is trainable pa-

rameters and n = dl,tI − dlI . Operation • denotes channel-
wise combination in the convolution layer and dimension-
wise combination in the linear layer. ‘Concat’ denotes the
concatenation of the input dimension. Then, the forward
propagation for the new task t in this layer can be computed
as hl+1 = σ(Wl,t ∗ h̃l,t + b), where σ is the activation
function.

During the learning of task t, the part of Bl,t correspond-
ing to the previous t − 1 task is frozen to overcome CF.
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Algorithm 2 The Whole Process of API

1: Input: The data of different tasks {Dt}Tt=1, a neural network
model f(·,Θ) with L layers, Θ = {Wl,1}Ll=1.

2: Output: Learned network f(·,Θ) with Θ = {Wl,T }Ll=1.
3: Initialize orthogonal bases memory {M∗

l,1}Ll=1: M∗
l,1 =

Ml,1 = [ ];
4: Learn the neural network with the first dataset D1;
5: Update the memory {M∗

l,1}Ll=1 and get {M∗
l,2}Ll=1; // Refer

to Algorithm 1
6: for t in 2 : T do
7: Compute {GRR(l, t)}Ll=1 by (10) for plasticity evalua-

tion;
8: Compute {dl,tI }Ll=1 by (11) and expand Wl,t−1 to Wl,t for

plasticity improvement;
9: for ep = 1, 2, ..., numepochs do

10: for Bt sampled from Dt do
11: Compute the loss L(Bt;Θ) over Bt and get gradient

gt = [g1,t, g2,t, ..., gL,t];
12: Using M∗

l,t to project gradient gl,t by (3) or (4) and
get ĝl,t; // Orthogonal projection

13: Update the parameters with projected gradient ĝt =
[ĝ1,t, ĝ2,t, ..., ĝL,t];

14: end for
15: end for
16: Update the memory {M∗

l,t}Ll=1 and get {M∗
l,t+1}Ll=1;

// Refer to Algorithm 1
17: end for

The part of Bl,t corresponding to only new task t is trained
with Wl,t together. In the inference phase, for any task
t (t < T ), only Wl,t is used to perform prediction. The
experiments in Section 4 will show that the expansion of
Wl,t is limited.

In Algorithm 2, we give the whole process of API to
show how the different components of API work together.

4. Experiment

4.1. Experimental Setup

Datasets We evaluate continual learning methods
on four widely used datasets, including Split CI-
FAR100 [20], CIFAR100-sup [24], Split Mini-Imagenet,
and 5-Datasets [9]. Split CIFAR100 is constructed by split-
ting 100 classes of CIFAR100 into 20 tasks, and each task
consists of 5 exclusive classes. CIFAR100-sup has 20 tasks,
each with 5 classes. The classes in each task of CIFAR100-
sup come from the same superclass of CIFAR100. Split
Mini-Imagenet is constructed by splitting 100 classes of
Mini-Imagenet into 20 tasks, and each task consists of 5
classes. 5-Datasets is a continual learning benchmark with
5 different datasets, including CIFAR10, MNIST, SVHN,
notMNIST, and Fashion-MNIST.
Baselines and Metrics For regularization-based methods,
we compare with elastic weight consolidation (EWC) [15],

adaptive group sparsity based continual learning (AGS-
CL) [13] and active forgetting with synaptic expansion-
convergence (AFEC) [30]. For memory-based methods,
we compare with experience replay with reservoir sam-
pling (ER-Res) [7], gradient episode memory (GEM) [20],
gradient projection memory (GPM) [24], flattening sharp-
ness dynamic gradient projection memory (FS-DGPM) [8],
trust region gradient projection (TRGP) [18] and Con-
nector [17]. For expansion-based methods, we com-
pare with dynamic expansion network (DEN) [34], rein-
forcement continual learning (RCL) [32], additive param-
eter decomposition (APD) [33], calibrating CNNs for life-
long learning (CCLL) [27], and rectification-based reten-
tion (RKR) [26].

Following existing works [8,24], we use average final ac-
curacy (ACC) and backward transfer (BWT) as evaluation
metrics. ACC is the average accuracy of all tasks. BWT
measures forgetting. The formulas of these two metrics are
as follows

ACC =
1

T

T∑
i=1

ACCT,i,

BWT =
1

T − 1

T−1∑
i=1

(ACCT,i −ACCi,i). (12)

Here, T is the total number of tasks and ACCj,i is the
model’s accuracy on the i-th task after learning the j-th task.
We also evaluate the memory usage for different methods.
Architectures and Training Details Following the ex-
isting works [24, 25], we use a 5-layer AlexNet for Split
CIFAR100 and use a modified LeNet for CIFAR100-sup.
For Split Mini-Imagenet and 5-Datasets, we use a reduced
ResNet18 architecture like that in [4, 24].

Following GPM [24], we use stochastic gradient de-
scent (SGD) to train all the architectures in all the exper-
iments. Each task is trained for 200 epochs on Split CI-
FAR100, 50 epochs on CIFAR100-sup, 10 epochs on Split
Mini-Imagenet, and 100 epochs on 5-Datasets to keep con-
sistent with experimental settings in existing works [24].
For Split CIFAR100, CIFAR100-sup, and 5-Datasets, an
early stopping strategy is applied. The batch size is set to be
64 for all the datasets to follow the existing work [24]. Since
our DualGPM is an improvement of GPM, we set the value
of threshold ϵlth (see Equations (6) and (8)) for each layer
to be consistent with GPM. We perform all experiments on
four NVIDIA TITAN Xp GPUs.

4.2. Results

4.2.1 Accuracy

We repeat all the experiments five times with different ran-
dom seeds. Table 1 shows the comparison of our API with
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Table 1. Results of different continual learning methods on four datasets.

CIFAR100-sup Split CIFAR100 Split Mini-Imagenet 5-Datasets

Methods ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

EWC [15] 46.7 ± 0.6 -13.5 ± 1.1 75.3 ± 0.7 -6.3 ± 0.6 52.1 ± 1.1 -9.3 ± 1.4 84.3 ± 0.2 -2.1 ± 0.2
AGS-CL [13] 56.3 ± 2.9 -2.3 ± 2.0 76.2 ± 0.4 -3.0 ± 0.3 55.1 ± 0.9 -1.5 ± 0.4 86.2 ± 0.4 -3.5 ± 0.3
AFEC [30] 56.2 ± 1.4 -6.2 ± 1.4 78.7 ± 0.5 -2.5 ± 0.4 57.6 ± 0.6 -2.0 ± 1.2 88.6 ± 0.3 -1.8 ± 0.3
ER-Res [7] 53.3 ± 0.7 -3.4 ± 0.8 79.2 ± 0.4 -4.9 ± 0.5 55.2 ± 2.9 -5.7 ± 0.8 83.4 ± 0.7 -8.6 ± 0.9
GEM [20] 50.4 ± 0.9 -7.4 ± 0.7 77.9 ± 0.2 -6.4 ± 0.5 - - - -
FS-DGPM [8] 58.5 ± 0.6 -4.0 ± 0.6 80.5 ± 0.4 -3.3 ± 0.4 - - - -
Connector [17] 56.2 ± 0.3 -0.4 ± 0.3 78.1 ± 0.2 -0.3 ± 0.2 57.8 ± 0.8 2.1 ± 0.1 85.5 ± 0.3 -2.9 ± 0.5
GPM [24] 57.7 ± 0.7 -1.2 ± 0.4 78.9 ± 0.2 -0.1 ± 0.2 61.2 ± 0.6 0.3 ± 0.3 88.8 ± 0.6 -2.0 ± 0.3
TRGP [18] 58.2 ± 0.2 -1.7 ± 0.5 80.5 ± 0.3 -0.3 ± 0.2 62.5 ± 0.7 -0.2 ± 0.4 90.9 ± 0.1 -0.1 ± 0.0

DualGPM 57.6 ± 0.7 -1.0 ± 0.2 78.5 ± 0.4 -0.0 ± 0.3 61.2 ± 0.6 0.3 ± 0.4 88.7 ± 0.5 -1.9 ± 0.2
API 60.2 ± 0.2 -0.2 ± 0.1 81.4 ± 0.4 -0.8 ± 0.2 65.9 ± 0.6 -0.3 ± 0.2 91.1 ± 0.3 -0.5 ± 0.1

Table 2. The performance of different expansion-based methods on CIFAR100-sup dataset.

Methods DEN [34] RCL [32] APD [33] CCLL [27] RKR [26] GPM [24] API

Accuracy (%) 51.10 51.99 56.81 55.2 58.3 57.7 60.2
Capacity (%) 191 184 130 106 116 100 105

memory-based and regularization-based methods. Dual-
GPM denotes a variant of our method with fixed model ca-
pacity and without adaptive improvement component. We
can find that DualGPM achieves similar accuracy as GPM.
Please note that DualGPM uses much less memory than
GPM, which will be verified in the following subsection.
API achieves the best results on all datasets. EWC, AGS-
CL, AFEC, ER-Res, GEM, and FS-DGPM suffer from CF.
For example, GEM achieves 77.9% in accuracy and 6.4%
in forgetting on Split CIFAR100. This means if GEM has
no forgetting, its accuracy is 84.3%.

TRGP, GPM, and our API show better performance in
overcoming CF than other methods. Among these, GPM
achieves 78.9% in accuracy and 0.1% in forgetting on Split
CIFAR100. This means that even if there is no forgetting in
GPM, the accuracy of GPM can only reach 79.0%, which
is still lower than our API method. Similar phenomena also
happen on other datasets. Figure 4 shows relative accuracy
improvement on Split CIFAR100 and Split Mini-Imagenet,
where relative accuracy improvement is the accuracy of API
or TRGP minus the accuracy of GPM. We can find that
both API and TRGP improve over GPM on most tasks, and
our API shows a larger improvement than TRGP. Further-
more, the improvement of our API has an increasing trend
with the increase of tasks. This is because as the number
of tasks increases, the plasticity of the GPM gradually de-
creases. Our method API keeps improving the plasticity of
the model. Therefore, as the task increases, our method API
shows larger and larger improvement over GPM.

We also follow existing works [18, 24] and compare our
API with many expansion-based methods on CIFAR100-
sup. The results are shown in Table 2. Here, capacity [33]
denotes |Θ0|

|ΘT | , where |Θ0| is the number of parameters be-
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Figure 4. Relative accuracy improvement for different methods.
Relative accuracy improvement is the accuracy of API or TRGP
minus the accuracy of GPM.

fore the first task and |ΘT | is the number of parameters af-
ter the last task. GPM uses a fixed-size network and its
capacity is always 100%. API and expansion-based meth-
ods require additional parameters during the training, and
their capacities are larger than GPM. However, API gets a
smaller capacity and better accuracy than expansion-based
methods.

4.2.2 Memory Usage

We compare memory usage for different methods. We focus
on the methods that do not save real samples in memory
since these methods do not raise privacy concerns.

Figure 5 (a) shows the variation of the saved bases in
the third layer of AlexNet on the experiment of Split CI-
FAR100. We can find that the number of bases stored by
GPM increases all the time since GPM only considersMl,t.
Our methods API and DualGPM consider both Ml,t and
M⊥

l,t. Therefore, the bases stored by our methods increase
first and then decrease. Furthermore, the bases stored by
API are more than the bases stored by DualGPM. This is
because API expands parameters, which may increase the
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Figure 5. (a) Variation of saved bases in the third layer of AlexNet
when the model learns on Split CIFAR100. (b) Variation of whole
memory usage for different methods on Split CIFAR100.

Table 3. The performance for different methods on Split CI-
FAR100 dataset and 5-Datasets. MEM denotes the memory usage
for saving bases and expanded parameters.

Split CIFAR100 5-Datasets

Methods ACC (%) MEM (M) ACC (%) MEM (M)

API (GPM) 81.2 ± 0.2 7.3 91.1 ± 0.2 7.7
API 81.4 ± 0.4 2.0 91.1 ± 0.3 3.1

number of bases (see (9)).
Figure 5 (b) gives the variation of memory usage on

Split CIFAR100. API-Base denotes the memory for stor-
ing bases. API-Param denotes memory for expanding pa-
rameters. API-Total denotes the sum of API-Base and API-
Param. We can find that our methods use the least mem-
ory among all the methods. Furthermore, GPM’s memory
usage increases all the time. However, API-Total and API-
Base increase first and then decrease. API-Param increases
all the time, but it is much less than API-Base.

4.2.3 Ablation Study

We replace DualGPM with GPM in API and give the results
in Table 3. Here API (GPM) denotes the variant of API that
uses GPM in API for overcoming CF. API is our original
method that uses DualGPM for overcoming CF. We can find
that API (GPM) performs similarly to API but uses much
more memory.

To verify the effectiveness of using (11) for plasticity im-
provement, we replace GRR with a constant value. This
means the model adds an equal number of channels for each
layer before learning each new task and we call this strategy
‘Equal’. We use C to denote the number of added chan-
nels for each task in ‘Equal’ and vary C in [1, 2, 3]. Obvi-
ously, increasing C will increase the expanded parameters
and thus increase memory usage.

Table 4 shows the expanded parameters and accuracy for
each experiment. We can find that ‘Equal’ gets better results
when expanding more parameters. However, when getting
similar accuracy to API, ‘Equal’ requires more parameters
to improve the model’s plasticity. This shows the superior-
ity of using (11) for improvement.

Table 4. Performance of different expansion strategies on Split CI-
FAR100 and 5-Datasets. Param denotes the number of expanded
parameters.

Split CIFAR100 5-Datasets

Methods ACC (%) Param (M) ACC (%) Param (M)

Equal (C=1) 79.5 ± 0.3 0.20 90.3 ± 0.2 0.06
Equal (C=2) 80.5 ± 0.4 0.40 90.7 ± 0.4 0.12
Equal (C=3) 81.4 ± 0.3 0.60 90.9 ± 0.2 0.19

API 81.4 ± 0.4 0.26 91.1 ± 0.3 0.11
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Figure 6. Accuracy and memory usage with different hyperparam-
eters. Here, memory usage (MEM) is the memory for saving bases
and expanded parameters.

4.2.4 Hyperparameter Analysis

We vary the value of ρ and K in (11). Specifically, ρ is var-
ied in [0.3, 0.4, 0.5, 0.6, 0.7] and K is varied in [5, 10, 15].
Figure 6 (a) shows API’s accuracy on Split CIFAR100. Fig-
ure 6 (b) shows API’s memory usage on Split CIFAR100.
We can find that both API’s accuracy and memory usage
increase with the increase of ρ and K. This is intuitively
reasonable since increasing ρ and K makes the model ex-
pand more parameters and thus give larger improvement in
plasticity. We choose ρ = 0.5 and K = 10 to make a better
trade-off between memory and accuracy.

5. Conclusion

In this work, we propose a new method, called API, for
continual learning. Besides the ability to overcome catas-
trophic forgetting (CF), API evaluates a model’s plasticity
and improves plasticity adaptively for a new task if neces-
sary. Experiments in the task incremental setting, where
task identities are available for testing, show that API can
achieve better performance than other state-of-the-art base-
lines. Future work will extend API to other continual learn-
ing settings, like those where task identities are unavailable
for testing.
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