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Abstract

Joint hand and object pose estimation from a single
image is extremely challenging as serious occlusion often
occurs when the hand and object interact. Existing ap-
proaches typically first extract coarse hand and object fea-
tures from a single backbone, then further enhance them
with reference to each other via interaction modules. How-
ever, these works usually ignore that the hand and ob-
ject are competitive in feature learning, since the backbone
takes both of them as foreground and they are usually mu-
tually occluded. In this paper, we propose a novel Har-
monious Feature Learning Network (HFL-Net). HFL-Net
introduces a new framework that combines the advantages
of single- and double-stream backbones: it shares the pa-
rameters of the low- and high-level convolutional layers of
a common ResNet-50 model for the hand and object, leav-
ing the middle-level layers unshared. This strategy enables
the hand and the object to be extracted as the sole targets
by the middle-level layers, avoiding their competition in
feature learning. The shared high-level layers also force
their features to be harmonious, thereby facilitating their
mutual feature enhancement. In particular, we propose to
enhance the feature of the hand via concatenation with the
feature in the same location from the object stream. A sub-
sequent self-attention layer is adopted to deeply fuse the
concatenated feature. Experimental results show that our
proposed approach consistently outperforms state-of-the-
art methods on the popular HO3D and Dex-YCB databases.
Notably, the performance of our model on hand pose esti-
mation even surpasses that of existing works that only per-
form the single-hand pose estimation task. Code is avail-
able at https://github.com/lzfff12/HFL-Net.

1. Introduction

When humans interact with the physical world, they pri-
marily do so by using their hands. Thus, an accurate un-
derstanding of how hands interact with objects is essen-
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Figure 1. HFL-Net predicts the 3D hand and object poses from
single monocular RGB images accurately, even in serious occlu-
sion scenarios.

tial to the understanding of human behavior. It can be
widely applied to a range of fields, including the devel-
opment of virtual reality [36], augmented reality [33, 34],
and imitation-based robot learning [35], among others. Re-
cently, hand pose estimation [12–16] and 6D object pose
estimation [17–19] based on monocular RGB images have
respectively achieved remarkable results. However, the re-
search into joint hand-object pose estimation under circum-
stances of interaction remains in its infancy [2,3,23,26–28].

As illustrated in Figure 1, joint hand-object pose esti-
mation from a single image is extremely challenging. The
main reason for this is that when the hand and object inter-
act with each other, serious occlusion occurs; occlusion, in
turn, results in information loss, increasing the difficulty of
each task.

One mainstream solution to this problem is to utilize
context. Due to physical constraints, the interacting hand
and object tend to be highly correlated in terms of their
poses, meaning that the appearance of one can be useful
context for the other [1–3]. Methods that adopt this solu-
tion typically employ a single backbone to extract features
for the hand and object, respectively [2, 22, 27]. This uni-
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fied backbone model ensures that the hand and object fea-
tures are in the same space, which facilitates the subsequent
mutual feature enhancement between hand and object via
attention-based methods [2].

However, the hand and object pose estimation tasks are
competitive in feature learning if a single backbone model
is utilized. In more detail, when the hand and object are
close to each other, the backbone model treats them both as
foreground, and may thus be unable to differentiate the hand
features from those of the object. A straightforward solution
is to utilize two backbones [1, 3, 23], one for the hand and
the other one for the object; when this approach is adopted,
each backbone has only one target as the foreground. The
main downsides of this strategy include large model size
and (more importantly) the different feature spaces between
backbones, which introduce difficulties with regard to mu-
tual feature enhancement between the hand and object.

To solve the aforementioned problems, we propose a
novel Harmonious Feature Learning Network (HFL-Net).
HFL-Net introduces a new framework that combines the
advantages of single- and double-stream backbones. In
more detail, our backbone shares the parameters of the low-
and high-level convolutional layers of a common ResNet-50
model [4] for the hand and object, leaving the middle-level
layers unshared. Feature maps produced by low-level layers
are fed into the two sets of middle-level layers, which regard
the hand and object respectively as the sole foreground tar-
get. As a result, feature learning for the hand and object is
no longer competitive. Finally, through sharing the param-
eters of the high-level convolutional layers, the hand and
object features are forced to be in similar feature spaces. In
this way, our backbone realizes harmonious feature learning
for the hand and object pose estimation.

We further enhance the representation power of the hand
and object features through the use of efficient attention
models. Several existing methods have successfully real-
ized hand-to-object feature enhancement via cross-attention
operations [1, 2]; however, object-to-hand feature enhance-
ment usually turns out to be difficult [1, 2]. Motivated by
the observation that when one pixel on the hand is occluded,
the object feature in the same location usually provides use-
ful cues, we propose a simple but effective strategy for fa-
cilitating object-to-hand feature enhancement. Specifically,
we adopt ROIAlign [6] to extract fixed-size feature maps
from the two output streams of our backbone respectively
according to the hand bounding box. We then concatenate
the two feature maps along the channel dimension and feed
the obtained feature maps into a self-attention module [7].
Object-to-hand feature enhancement is automatically real-
ized via the fully-connected and multi-head attention layers
in the self-attention module. Finally, we split the output
feature maps by the self-attention layer along the channel
dimension, and take the first half as the enhanced hand fea-

ture maps.
We demonstrate the effectiveness of HFL-Net through

comprehensive experiments on two benchmarks: HO3D [9]
and Dex-YCB [10], and find that our method consistently
outperforms state-of-the-art works on the joint hand-object
pose estimation task. Moreover, benefiting from the learned
harmonious hand and object features, the hand and object
pose estimation tasks in HFL-Net are mutually beneficial
rather than competitive. In our experiments, the perfor-
mance of HFL-Net on the hand pose estimation task sur-
passes even recent works [12,15,32] that only estimate hand
poses in both the training and testing stages.

2. Related Work
2.1. RGB-based 3D Hand Pose Estimation

Existing RGB-based 3D hand pose estimation meth-
ods can be roughly grouped into the following two cate-
gories: hand model-free methods [14, 16, 29, 38, 39] and
hand model-based methods [12, 15, 16, 44–47].

Hand model-free methods predict coordinates of 3D
hand joints or 3D hand mesh vertices directly from a single
RGB image [14,16]. Predicting 3D hand joints is easier, but
the joints lack geometry information of the hand surface. In
comparison, the 3D mesh contains rich geometric topology
of the hand. To obtain reasonable topology between mesh
vertices, graph convolution [14,16,29] is usually adopted to
refine the vertex features. However, methods that directly
predict hand mesh require dense and accurate 3D vertex an-
notations, which are difficult to obtain.

Hand model-based methods make use of hand priors
to simplify the task of mesh prediction [12, 15, 44–46].
They are usually based on parameterized hand models, e.g.,
MANO [31], that are pre-trained on a large number of
manually-scanned hand meshes in various pose and shapes.
With these priors, hand model-based methods only need to
estimates a small number of pose and shape coefficients,
by which they obtain the hand mesh. Good results can be
found in a number of recent works [12, 15, 45].

The above methods focus on the hand pose estimation
task and achieve superior performance when there is no
hand-object interaction. However, in real-world scenarios,
the hand interacts with objects frequently. Hand-object in-
teraction brings in unique challenges to the pose estimation
task. In the following, we will review recent works on in-
teractive hand-object pose estimation.

2.2. RGB-based 3D Hand-object Pose Estimation

Existing RGB-based 3D hand-object pose estimation
techniques can be divided into two categories: the
optimization-based methods [21, 24, 25, 41, 42] and the
learning-based methods [1, 2, 20, 22, 23, 27, 43]. The
optimization-based methods refine the hand and object pose
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Figure 2. Overview of our HFL-Net framework, which includes an elaborately designed backbone based on ResNet-50, hand and object
interaction modules, and hand and object decoders. By adopting independent stage-2 and stage-3 convolutional layers, our backbone
model avoids competition in feature learning between the hand and object. Furthermore, due to the shared stage-4 layers, the hand and
object features are forced to be in a similar space, enabling us to conduct effective object-to-hand and hand-to-object feature enhancement.
Finally, the enhanced hand and object features are fed into their respective decoder for pose estimation. Best viewed in color.

according to their contact surface with physical constraints,
i.e., attraction and repulsion. Estimating the contact sur-
face between the hand and object is usually time-consuming
[42]. To relieve this problem, Tse et al. [25] proposed a
graph-based network to speed up the contact surface esti-
mation.

The learning-based methods design unified models for
joint hand and object pose estimation. They typically adopt
an off-the-shelf hand model, e.g., MANO [31], and also as-
sume the 3D object model is available. Therefore, they can
directly predict the hand and object pose based on these pri-
ors. Early works [1,23] adopt double-stream backbones for
independent hand and object pose estimation, at the cost of
higher model complexity. Recent works [2, 22, 27] adopt a
single-stream backbone to extract hand and object features.
However, they ignore the hand and object feature learning
are competitive if a single-stream backbone is adopted.

Due to physical constraint, the pose of interactive hand
and object are highly correlated with each other. There-
fore, the hand and object appearance can be useful context
for each other. Existing works have proposed various ap-
proaches to utilize this context information. For example,
Tekin et al. [43] and Chen et al. [1] integrated hand and ob-
ject features with recurrent neural networks. Liu et al. [2]
utilized a cross-attention layer to enhance the object feature
with that of the hand. Hampali et al. [27] employed trans-
former to model the correlation between the hand or ob-
ject keypoints, so as to improve the accuracy of hand-object
pose estimation.

In this paper, we propose a novel framework that ex-
tracts harmonious hand and object features, which not only

relieves the competition between the hand and object pose
estimation tasks, but also enables effective mutual enhance-
ment between the hand and object features.

3. Methodology
This section presents the framework of our Harmonious

Feature Learning Network (HFL-Net) for joint hand and ob-
ject pose estimation. As shown in Figure 2, HFL-Net com-
prises an elaborately designed backbone model, two inter-
action modules between the hand and object, a hand de-
coder, and an object decoder. The backbone model pro-
duces harmonious feature maps for the hand and object,
respectively, which enables these feature maps to enhance
each other in the subsequent interaction modules. Finally,
the hand and object decoders estimate the hand and object
poses, respectively. In the below, we will describe these
components sequentially.

3.1. Feature Extraction Backbone

We take the popular ResNet-50 [4] model as an exam-
ple to illustrate the structure of our backbone. Most ex-
isting works adopt a single ResNet-50 model [2, 22, 27] as
their backbone, which regards both of the hand and object
as foreground targets. When occlusion occurs due to hand-
object interaction, feature learning for the hand and object
becomes competitive, as illustrated in Figure 3. In what
follows, we modify the original ResNet-50 model to learn
harmonious features for the hand and object, respectively.

The layers in ResNet-50 are divided into five stages,
which are denoted as stage-0 to stage-4, according to size
of the feature maps [4]. As illustrated in Figure 2, our back-
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Figure 3. Heatmap illustration of the feature maps output by
our backbone and ResNet-50. Heatmaps for our backbone model
highlight the hand and object quite clearly under circumstances of
occlusion, thanks to our harmonious feature learning scheme. In
comparison, the original ResNet-50 backbone results in entangled
and obscure hand and object features.

bone keeps the structure of the stage-0, stage-1, and stage-4
layers of the ResNet-50 model unchanged, but adopts inde-
pendent stage-2 and stage-3 layers for the hand and object,
respectively. The feature maps output by the stage-1 lay-
ers are fed into the two sets of stage-2 and stage-3 layers,
respectively. In this way, each set of stage-2 and stage-3
layers has only one foreground target, and can therefore fo-
cus on the feature learning of either the hand or the object.

Finally, the two sets of feature maps output by the stage-
3 layers are fed into the same stage-4 layers. Due to the
sharing of the stage-4 layers, the feature spaces for the
hand and object streams are forced to be unified, facili-
tating the subsequent interaction operations between their
features. Using the same approach as in [2], we adopt
Feature Pyramid Network (FPN) [5] to combine the fea-
tures in stages 1 to 4. Since the hand and object have in-
dependent stage-2 and stage-3 layers, they adopt different
FPNs. The final feature maps produced by the two FPNs
are denoted as Ph ∈ RH

4 ×W
4 ×256 for the hand stream and

Po ∈ RH
4 ×W

4 ×256 for the object stream; here H and W de-
note the height and width of the input image, respectively.

We illustrate the heatmap of the feature maps output
by our backbone and ResNet-50 in Figure 3. As the fig-
ure shows, the feature maps produced by our backbone
model highlight the hand and object quite clearly under cir-
cumstances of occlusion, thanks to our harmonious feature
learning scheme. By contrast, in the feature maps output
by ResNet-50, the hand and object features tend to be com-
petitive and obscure. In the experimentation section, we
show that our backbone model achieves significantly better
performance than the common single- and double-stream
ResNet-50 backbones.
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Figure 4. Structure of our hand and object interaction modules.
The two figures illustrate (a) object-to-hand and (b) hand-to-object
feature enhancement, respectively.

3.2. Interaction Modules

Due to physical constraints, interacting hands and ob-
jects are highly correlated in terms of their pose, meaning
that the appearance of one can provide useful context for
the other. In this section, we introduce our hand-to-object
and object-to-hand feature enhancement modules, based on
the harmonious features produced by our backbone.

As illustrated in Figure 2, we adopt ROIAlign [6] to ob-
tain feature maps Fh ∈ RH

8 ×W
8 ×256 from Ph according to

the hand bounding box and Fo ∈ RH
8 ×W

8 ×256 from Po ac-
cording to the object bounding box. Moreover, we employ
the same ROIAlign layer to obtain Foh from Po accord-
ing to the hand bounding box and obtain Fho from Ph ac-
cording to the overlapped area between the hand and object
bounding boxes. Foh and Fho are utilized for object-to-
hand and hand-to-object feature enhancement, respectively.

Object-to-Hand Enhancement. The hand is non-rigid,
flexible, and typically occluded when grasping an object;
therefore, rich features are required to predict the hand pose.
As illustrated in Figure 1, when a hand is seriously oc-
cluded, the object in the hand can be a strong cue regarding
the hand pose. Motivated by this observation, we propose
to enrich the hand feature by directly concatenating Fh and
Foh along the channel dimension. The obtained new feature
maps are denoted as FH ∈ RH

8 ×W
8 ×512.

We feed FH into a self-attention layer to deeply fuse
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Fh and Foh. As illustrated in Figure 4(a), fusion between
Fh and Foh is realized from two perspectives in the self-
attention layer. First, intra-pixel feature fusion is achieved
using 1× 1 convolutional layers in the multi-head attention
(MHA) and the feedforward network (FFN). Second, inter-
pixel feature fusion is realized via the attention operations
in MHA. Benefiting from the attention operation, each fea-
ture in Foh implicitly affects the features of all pixels in Fh.

Finally, we slice the feature maps output by the self-
attention layer along the channel dimension into two halves
and take the first half as the enhanced hand feature Fhe ∈
RH

8 ×W
8 ×256.

Hand-to-Object Enhancement. Compared with the
hand, the object is more rigid and less flexible. There-
fore, we conduct hand-to-object enhancement according
to the hand features located within the area of intersec-
tion between the hand and object. Similar to [2], we em-
ploy a cross-attention layer for hand-to-object enhance-
ment. Specifically, we adopt Fo as the query and Fho as
both the key and value. The enhanced object feature maps
are denoted as Foe ∈ RH

8 ×W
8 ×256. Foe is fed into the

object decoder to obtain the 6D pose of the object. Dif-
ferent from [2], we obtain Fo and Fho from two different
but complementary feature maps, i.e., Ph and Po. By con-
trast, the inputs to the cross-attention layer in [2] are all
from the same feature maps. In the experimentation sec-
tion, we show that our strategy achieves better performance
compared with [2].

3.3. Hand and Object Decoders

We adopt identical decoder structures to those used in
[2]. For the sake of completeness, we briefly introduce these
structures below.

Hand Decoder. The hand decoder takes Fhe as input to
an hourglass network [11], which produces both new fea-
ture maps and heatmaps H ∈ RH

8 ×W
8 ×21 for 21 2D joint

points. Subsequently, the new feature maps and heatmaps
are fused via 1× 1 convolutions and element-wise addition.
The fused feature maps are then fed into four successive
residual blocks, the outputs of which are flattened into one
1024-dimensional vector. This vector is then fed into two
fully connected layers to predict the hand pose and shape
parameters according to the MANO model [31]; these are
denoted as θ ∈ R48 and β ∈ R10, respectively. With the ob-
tained MANO parameters, we finally obtain the estimated
3D hand mesh V ∈ R778×3 and 3D coordinates of hand
joints J ∈ R21×3 for the hand in the 2D image.

Object Decoder. The object decoder takes Foe as in-
put. It consists of 6 convolutional layers, which output a
tensor C ∈ RH

8 ×W
8 ×3p. p denotes the number of control

points, including one center point, 8 corner points and 12
edge midpoints of the 3D bounding box for the object. The
tensor predicts the offsets of each pixel in Foe to the 2D

location of each control point in the image as well as the
prediction confidence.

3.4. Overall Loss Function

Loss Functions. Since we adopt the same hand and ob-
ject decoders as in [2], we also employ its loss functions.
The following is the total loss function in our training phase:

Ltotal = Lhand + Lobj , (1)

where

Lhand = αhLH + α3dL3d + αmanoLmano, (2)

Lobj = αp2dLp2d + αconfLconf . (3)

Lhand and Lobj represent the loss functions for the hand
and object pose estimation tasks, respectively. LH denotes
the L2 loss for 2D joint point detection and is imposed on
H. L3d stands for the L2 loss that is imposed on V and
J. Lmano is the L2 loss on MANO parameters β and θ.
Lp2d and Lconf are the L1 loss imposed on C. Finally, αh,
α3d, αmano, αp2d and αconf are coefficients that balance
the weight of each loss function.

Inference Phase. In the inference phase, the hand de-
coder directly predicts MANO parameters to obtain V and
J. For the object pose, we first obtain C via the object de-
coder. Then, we adopt the Perspective-n-Point (PNP) [37]
algorithm with C as input to predict the object pose in the
same way as [2].

4. Experiments
4.1. Implementation Details

We adopt the model proposed in [2] as our baseline,
upon which we build our HFL-Net with the novel backbone
model and interaction modules. Our backbone is based on
a ResNet-50 model [4] that was pretrained on ImageNet.
We crop and resize all images in each database to 256 ×
256 pixels, which is smaller than the size used in [2]. Sam-
ple images can be found in Figure 1. During training, we
adopt data augmentation including random scaling, rota-
tion, translation, and color jittering. We set the batch size to
64. Following [2], we set αh, α3d, αmano, αp2d and αconf

to 100, 10000, 1, 500 and 100, respectively. We adopt the
Adam optimizer and a weight decay of 5e-4 for optimiza-
tion. The total number of training epochs is 70. The initial
learning rate is 1e-4 and decays for every 10 epochs. All
implementations are based on PyTorch.

4.2. Datasets and Metrics

HO3D. The HO3D dataset [9] consists of 77K images
from 68 video sequences. It includes 10 objects and 10 sub-
jects. We use the official splitting protocol for the training
and testing sets, and submit the test results to the official
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Methods Joint↓ Mesh↓ F@5↑ F@15↑ Object

Pose2Mesh et al. [29] 12.5 12.7 44.1 90.9 No
Hasson et al. [22] 11.4 11.4 42.8 93.2 Yes
I2L-MeshNet [30] 11.2 13.9 40.9 93.2 No
Hasson et al. [23] 11.0 11.2 46.4 93.9 Yes
Hampali et al. [9] 10.7 10.6 50.6 94.2 Yes

METRO [15] 10.4 11.1 48.4 94.6 No
Liu et al. [2] 10.1 9.7 53.2 95.2 Yes

ArtiBoost [28] 11.4 10.9 48.8 94.4 Yes
Keypoint Trans. [27] 10.8 - - - Yes

HandOccNet [12] 9.1 8.8 56.4 96.3 No
Ours 8.9 8.7 57.5 96.5 Yes

Table 1. Performance comparison with state-of-the-art methods on
hand pose estimation on the HO3D dataset. The last column in-
dicates whether a method performs the object 6D pose estimation
task.

Methods cleanser↑ bottle↑ can↑ average↑
Liu et al. [2] 88.1 61.9 53.0 67.7

Ours 81.4 87.5 52.2 73.3
Table 2. Performance comparison with state-of-the-art methods on
object 6D pose estimation on the HO3D dataset.

Methods MPJPE↓ PAMPJPE↓ Object

METRO [15] 15.24 6.99 No
Spurr et al. [32] 17.34 6.83 No

Liu et al. [2] 15.27 6.58 Yes
HandOccNet [12] 14.04 5.80 No

Ours 12.56 5.47 Yes
Table 3. Performance comparison with state-of-the-art methods on
hand pose estimation on the Dex-YCB dataset. The last column in-
dicates whether a method performs the object 6D pose estimation
task.

website to report performance. For hand pose estimation,
we report the F-scores, the mean joint error (PAMPJPE)
and mean mesh error (PAMPVPE) in millimeters following
Procrustes alignment. For object 6D pose estimation, we
report the percentage of objects whose average vertex error
is within 10% of the object diameter (ADD-0.1D) [40]. Fol-
lowing [2,27,28], we evaluate the performance of our model
only on the objects that have been seen during training.

Dex-YCB. Dex-YCB [10] is a recently introduced large-
scale dataset that includes 582K images from over 1000
video sequences. It covers 10 subjects and 20 objects. This
paper presents the results according to the official s0 split-
ting protocol. For hand pose estimation, we report both
PAMPJPE and the mean joint error in millimeters without
Procrustes alignment (MPJPE). For object 6D pose estima-
tion, we report ADD-0.1D. Following [40], since many ob-
jects in the datasets are symmetric, we use the symmetric
version of ADD-0.1D.

Methods ADD-0.1d(s)↑
Liu et al. [2] Ours

Image Size 512× 512 256× 256
master chef can 34.2 23.3

cracker box 56.4 66.6
sugar box 42.4 35.6

tomato soup can 17.1 12.2
mustard bottle 44.3 48.1
tuna fish can 11.9 8.6
pudding box 36.4 31.2
gelatin box 25.6 26.0

potted meat can 21.9 21.1
banana 16.4 16.9

pitcher base 36.9 36.5
bleach cleanser 46.9 42.5

bowl* 30.2 36.2
mug 18.5 16.8

power drill 36.6 45.1
wood block* 38.5 45.9

scissors 12.9 13.6
large marker 2.8 3.7

extra large clamp* 38.9 44.8
foam brick* 27.5 28.8

average 29.8 30.2
Table 4. Performance comparison with state-of-the-art methods on
object 6D pose estimation on the Dex-YCB database. We denote
the objects that are considered to be symmetric by a * superscript.

4.3. Comparisons with State-of-the-Art Methods

Comparisons on HO3D. Performance comparisons on
hand pose estimation are summarized in Table 1. The PAM-
PJPE and PAMPVPE of HFL-Net are 8.9mm and 8.7mm,
respectively. Our proposed approach outperforms all state-
of-the-art methods on this task. In more detail, HFL-Net
outperforms its baseline model [2] by 1.2mm and 1.0mm
on PAMPJPE and PAMPVPE, respectively. It even con-
sistently outperforms a very recent work named HandOcc-
Net [12] on all metrics. It is worth noting that here HandOc-
cNet performs the hand pose estimation task only, without
considering the object pose estimation task. We attribute the
advantage of HFL-Net to the harmonious feature it extracts,
which relieves the competition in feature learning between
the hand and object, while also achieves effective object-to-
hand feature enhancement.

We also conduct comparisons on object 6D pose estima-
tion in Table 2. The average ADD-0.1 score of our method
is 73.3%, representing a significantly improvement over [2]
by 5.6%. This experiment justifies the effectiveness of our
backbone model, which largely removes the interference in
feature learning between the hand and the object and there-
fore obtains better object pose estimation performance.

Moreover, although we adopt a more complex backbone
than [2], the time cost of our backbone is in fact lower. This
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is because the image size in this work is set to 256 × 256
pixels, while that in [2] is 512 × 512 pixels. The time cost
of our backbone and that in [2] are 3.87ms and 7.5ms per
image on a Titan V GPU. Therefore, our model can be more
efficiently utilized in practice.

Comparisons on Dex-YCB. Performance comparisons
on hand pose estimation are summarized in Table 3.
The PAMPJPE and MPJPE of HFL-Net are 5.47mm and
12.56mm, respectively. Our proposed approach outper-
forms all state-of-the-art methods on this task. In more
detail, HFL-Net outperforms its baseline model [2] by
1.11mm and 2.71mm on PAMPJPE and MPJPE, respec-
tively; moreover, it also outperforms HandOccNet [12],
which focuses on hand pose estimation. Experiments on
this database further justify the superiority of our method.

We also conduct comparisons on the object 6D pose esti-
mation task in Table 4. These results show that our method
outperforms [2] with smaller image size. It is worth not-
ing that object pose estimation on the Dex-YCB database is
significantly more challenging than that on HO3D. This is
because the scene in Dex-YCB is more complex: it usually
contains multiple mutually occluded objects in the same im-
age, which brings in severe interference to the object pose
estimation task.

4.4. Ablation Study

In the following, we perform ablation studies on the
HO3D dataset to demonstrate the effectiveness of our back-
bone and interaction modules.

Effectiveness of Our Backbone. To show the effective-
ness of our backbone, we compare its performance with the
commonly used single- and double-stream backbones. The
model sizes of the three backbones are 34.97M, 25.08M,
and 50.15M, respectively. The single-stream backbone
adopts only one ResNet-50 model for both the hand and
the object, while the double-stream backbone employs in-
dependent ResNet-50 models for the hand and object, re-
spectively.

In Table 5, we first compare the performance of the
three backbones without the use of any hand-to-object or
object-to-hand feature enhancement modules. As is evident,
the double-stream backbone significantly outperforms the
single-stream backbone, indicating that the hand and object
feature learning are indeed competitive if the single-stream
backbone is adopted. Meanwhile, our backbone can attain
nearly the same level of performance as that of the two-
stream backbone, with considerably fewer model parame-
ters. This comparison reveals that the competition between
the hand the object feature learning can be largely alleviated
through the adoption of unshared stage-2 and stage-3 layers.
In conclusion, our backbone model effectively relieves the
competition between the hand and object pose estimation
tasks with only a moderate increase in model size.

Methods Joint↓ Mesh↓ cleanser↑ bottle↑ can↑ average↑
Single-Stream 10.4 10.3 80.1 55.3 46.2 60.5
Double-Stream 9.7 9.6 82.2 74.1 49.4 68.6

Ours 9.8 9.7 84.1 70.3 48.2 67.5
Table 5. Performance comparison between different backbones on
the HO3D dataset. No interaction modules are utilized in this ex-
periment. The last column lists the average performance on three
objects.

Methods Joint↓ Mesh↓ cleanser↑ bottle↑ can↑ average↑
Single-Stream 10.2 10.0 86.2 62.1 42.3 63.5
Double-Stream 9.5 9.4 91.2 73.3 46.8 70.4

Ours 8.9 8.7 81.4 87.5 52.2 73.3
Table 6. Performance comparison between different backbones on
the HO-3D dataset. The interaction modules introduced in Section
3.2 are employed on top of all backbones.

Our backbone model presents more advantages when the
interaction modules are adopted. In Table 6, all three back-
bones are equipped with the same interaction modules de-
scribed in Section 3.2. Combining the results of Table 5 and
Table 6, it is clear that the performance gain of the double-
stream backbone after adopting the interaction modules are
quite small. This may be because the outputs of the two
streams are not in the same feature space; as a result, inter-
actions between the hand and object features are difficult. In
comparison, our backbone produces harmonious hand and
object features via sharing layers in stage-4, facilitating the
subsequent mutual enhancement between the hand and ob-
ject features. In Table 6, it is clear that the combination of
our backbone and the interaction modules achieves consid-
erably better performance than the results based on single-
and double-stream backbones. The above experiments jus-
tify the effectiveness of our backbone model.

Effectiveness of Hand-to-Object Feature Enhance-
ment. In Table 7, we study the effect of adopting different
features to enhance the object feature. In these experiments,
we consistently use Fo as the query in the cross-attention
operation. The first experiment involves adopting Fho as
the key and value, which is adopted in this paper and de-
noted as H-to-O in Table 7. The second experiment is quite
similar to the first one, except that we replace Fho with its
counterpart extracted from Po. This experiment is denoted
as O-to-O. As shown in Table 7, the two methods are com-
parable in terms of hand pose estimation. However, H-to-O
significantly outperforms O-to-O by as much as 8.9% on the
ADD-0.1D score for the small object ‘can’. This may be
because Fho provides more complementary features since
it is cropped from Ph. The above experiments demonstrate
that the hand feature is indeed helpful to enhance the object
feature, especially for small objects that suffer from more
severe hand-object occlusions.

Effectiveness of Object-to-Hand Feature Enhance-
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Model Joint↓ Mesh↓ cleanser↑ bottle↑ ca↑ average↑
w/o inter. 9.8 9.7 84.1 70.3 48.2 67.5
O-to-O 9.6 9.5 92.3 74.2 42.3 69.5
H-to-O 9.6 9.4 92.1 70.4 51.2 71.3

Table 7. Ablation study on the hand-to-object feature enhancement
module. H-to-O and O-to-O adopt the same query, but different
values and keys for cross-attention.

Model Joint↓ Mesh↓ cleanser↑ bottle↑ can↑ average↑
w/o enhance 9.6 9.4 92.1 70.4 51.2 71.3

SA 9.5 9.4 91.2 77.3 51.0 73.1
CA 9.5 9.4 84.4 82.1 44.2 70.2

ADD+SA 9.3 9.3 87.2 78.3 52.1 72.5
Ours 8.9 8.7 81.4 87.5 52.2 73.3

Table 8. Ablation study on the object-to-hand feature enhancement
module. Hand-to-object feature enhancement is adopted by all
methods in this table.

ment. In Table 8, we compare the performance of our
object-to-hand enhancement module with four possible
variants. The first variant does not enhance the hand fea-
ture, and is denoted as ‘w/o enhance’ in the table. The sec-
ond one is denoted as SA, which is based on self-attention
and employs Fh as the query, key, and value. The third one
is denoted as CA, and utilizes Fh as the query and Fo as
the key and value for cross attention. The fourth method
is denoted as ‘ADD+SA’, which first fuses Fh and Foh via
element-wise addition and then apply a self-attention mod-
ule to the fused feature maps.

As shown in the Table 8, both SA and CA boost the hand
pose estimation performance slightly. This means that Fo

can help to enhance the representation power of Fh. In
addition, ADD+SA achieves better performance than both
SA and CA. Finally, our method performs significantly bet-
ter than all the former three methods in hand pose esti-
mation. In particular, it outperforms ADD+SA by 0.4mm
and 0.6mm in PAMPJPE and PAMPVPE, respectively, in-
dicating that concatenation is a more powerful strategy than
element-wise addition to fuse Fh and Foh. These experi-
ment experimental results justify that our hand feature en-
hancement approach is quite effective for hand pose estima-
tion.

4.5. Qualitative Comparisons

We make qualitative comparisons between HFL-Net and
state-of-the-art methods [2, 12] in Figure 5 and Figure 6,
respectively. It can be seen from the figures that HFL-Net
makes more accurate pose estimation than [2, 12]. More-
over, even in serious occlusion scenarios, HFL-Net still
makes reasonable hand pose prediction with our powerful
object-to-hand feature enhancement module.

Liu et al.OursImage
Front View Front ViewOther View Other View Front View Other View

HandOccNet

Figure 5. Qualitative comparisons between HFL-Net and [2,12] on
the HO3D database. HandOccNet [12] is an approach that predicts
the hand pose only.

Liu et al.OursImage

Front View Front viewOther View Other View Front View Other View

HandOccNet

Figure 6. Qualitative comparisons between HFL-Net and [2, 12]
on the Dex-YCB database. HandOccNet [12] is an approach that
predicts the hand pose only.

5. Conclusion

In this work, we propose a novel Harmonious Feature
Learning Network (HFL-Net) with both effective backbone
and feature interaction modules. Our backbone shares the
parameters of the low- and high-level convolutional lay-
ers of a common ResNet-50 model for the hand and ob-
ject, leaving the middle-level layers unshared. In this way,
HFL-Net not only avoids the competition in feature learn-
ing between the two, but also extracts harmonious features,
facilitating the subsequent mutual enhancement between
the hand and object features. In addition, our approach to
object-to-hand feature enhancement is both simple and ef-
fective, enabling us to outperform methods that focus solely
on hand pose estimation only. Experimental results show
that our method consistently achieves state-of-the-art per-
formance on standard benchmarks for joint hand and object
pose estimation.
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