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Abstract

By supervising camera rays between a scene and multi-

view image planes, NeRF reconstructs a neural scene rep-

resentation for the task of novel view synthesis. On the

other hand, shadow rays between the light source and the

scene have yet to be considered. Therefore, we propose a

novel shadow ray supervision scheme that optimizes both

the samples along the ray and the ray location. By su-

pervising shadow rays, we successfully reconstruct a neu-

ral SDF of the scene from single-view images under mul-

tiple lighting conditions. Given single-view binary shad-

ows, we train a neural network to reconstruct a complete

scene not limited by the camera’s line of sight. By further

modeling the correlation between the image colors and the

shadow rays, our technique can also be effectively extended

to RGB inputs. We compare our method with previous works

on challenging tasks of shape reconstruction from single-

view binary shadow or RGB images and observe signif-

icant improvements. The code and data are available at

https://github.com/gerwang/ShadowNeuS.

1. Introduction

Neural field [43] has been used for 3D scene representa-

tion in recent years. It achieves remarkable quality because

of the ability to continuously parameterize a scene with a

compact neural network. The neural network nature makes

it amenable to various optimization tasks in 3D vision, in-

cluding long-standing problems like image-based [28, 51]

and point cloud-based [26, 31] 3D reconstruction. So more

and more works are using neural fields as the 3D scene rep-

resentation for various related tasks.

Among these works, NeRF [27] is a representative

method that incorporates a part of physically based light

transport [38] into the neural field. The light transport de-

scribes light travels from the light source to the scene and

then from the scene to the camera. NeRF considers the latter

part to model the interaction between the scene and the cam-

eras along the camera rays (rays from the camera through
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Figure 1. Our method can reconstruct neural scenes from single-

view images captured under multiple lightings by effectively lever-

aging a novel shadow ray supervision scheme.

the scene). By supervising these camera rays of different

viewpoints with the corresponding recorded images, NeRF

optimizes a neural field to represent the scene. Then NeRF

casts camera rays from novel viewpoints through the opti-

mized neural field to generate novel-view images.

However, NeRF does not model the rays from the scene

to the light source, which motivates us to consider: can we

optimize a neural field by supervising these rays? These

rays are often called shadow rays as the light emitted from

the light source can be absorbed by scene particles along the

rays, resulting in varying light visibility (a.k.a. shadows) at

the scene surface. By recording the incoming radiance at

the surface, we should be able to supervise the shadow rays

to infer the scene geometry.

Given this observation, we derive a novel problem of su-

pervising the shadow rays to optimize a neural field rep-

resenting the scene, analogizing to NeRF that models the

camera rays. Like multiple viewpoints in NeRF, we illumi-

nate the scene multiple times using different light directions

to obtain sufficient observations. For each illumination, we

use a fixed camera to record the light visibility at the scene
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surface as supervision labels for the shadow rays. As rays

connecting the scene and the light source march through the

3D space, we can reconstruct a complete 3D shape not con-

strained by the camera’s line of sight.

We solve several challenges when supervising the

shadow rays using camera inputs. In NeRF, each ray’s

position can be uniquely determined by the known cam-

era center, but shadow rays need to be determined by the

scene surface, which is not given and has yet to be recon-

structed. We solve this using an iterative updating strategy,

where we sample shadow rays starting at the current sur-

face estimation. More importantly, we make the sampled

locations differentiable to the geometry representation, thus

can optimize the starting positions of shadow rays. How-

ever, this technique is insufficient to derive correct gradi-

ents at surface boundaries with abrupt depth changes, which

coincides with recent findings in differentiable rendering

[2, 20, 23, 40, 54]. Thus, we compute surface boundaries

by aggregating shadow rays starting at multiple depth can-

didates. It remains efficient as boundaries only occupy a

small amount of surface, while it significantly improves

the surface reconstruction quality. In addition, RGB val-

ues recorded by the camera encode the outgoing radiance at

the surface instead of the incoming radiance. The outgoing

radiance is a coupling effect of light, material, and surface

orientation. We propose to model the material and surface

orientation to decompose the incoming radiance from RGB

inputs to achieve reconstruction without needing shadow

segmentation (Row 1 and 2 in Fig. 1). As material modeling

is optional, our framework can also take binary shadow im-

ages [18] to achieve shape reconstruction (Row 3 in Fig. 1).

We compare our method with previous single-view re-

construction methods (including shadow-only and RGB-

based) and observe significant improvements in shape re-

construction. Theoretically, our method handles a dual

problem of NeRF. So, comparing the corresponding parts

of the two techniques can inspire readers to get a deeper un-

derstanding of the essence of neural scene representation to

a certain extent, as well as the relationship between them.

Our contributions are:

• A framework that exploits light visibility to reconstruct

neural SDF from shadow or RGB images under multi-

ple light conditions.

• A shadow ray supervision scheme that embraces dif-

ferentiable light visibility by simulating physical inter-

actions along shadow rays, with efficient handling of

surface boundaries.

• Comparisons with previous works on either RGB or

binary shadow inputs to verify the accuracy and com-

pleteness of the reconstructed scene representation.

2. Related Work

Neural fields for 3D reconstruction. A neural field [43]

typically parameterizes a 3D scene with a multi-layer per-

ceptron (MLP) network that takes scene coordinates as in-

put. It can be supervised with 3D constraints like point

clouds [26, 31] to reconstruct an implicit representation of

3D shapes. It is also possible to optimize a neural field from

multi-view images by differentiable rendering [2, 28, 51].

NeRF [27] demonstrates remarkable novel-view synthesis

quality on scenes with complex geometry. However, the

density representation in NeRF is not convenient for reg-

ularizing and extracting scene surfaces. Thus, [29, 41, 50]

propose to combine NeRF with surface representation to

reconstruct high-quality and well-defined surfaces. While

all the above works require known camera viewpoints,

[12, 24, 42] explore to optimize camera parameters with the

neural field jointly.

NeRF does not model the light source and assumes the

scene emits the light. This assumption is suitable for view

synthesis but not relighting. Several works extend NeRF to

relighting, where shadows are an essential factor. [3, 4, 54]

require co-located camera-light setup to avoid shadows in

captured images. [5, 6, 55] assume smooth environment

lights and ignore shadows. [11,33,37,47,49,57] adopt neu-

ral networks conditioned on the light direction to model

light-dependent shadows. Among them, [11, 47, 49, 56, 57]

first reconstruct geometry using multi-view stereo and com-

pute shadows using fixed geometry. None of the works re-

fine the geometry to match the shadows in the captured im-

ages. However, we show that it is possible to reconstruct a

complete 3D shape from scratch by exploiting information

in the shadows.

Single-view reconstruction. [17, 45, 52] explore recon-

structing neural fields from a few or a single image, but they

require data-driven prior in the pretrained networks thus

are in a different scope from ours. Non-line-of-sight imag-

ing [30, 36, 44] adopts a transient sensor to capture time-

resolve signals, which enables reconstructing the scene be-

yond the camera’s view frustum. Photometric stereo [9, 22]

reconstructs surface normals from images captured under

directional lights. Normals can be integrated to produce a

depth map but require non-trivial processing [7, 8].

Shape from Shadows. Shadows indicate varying incom-

ing radiance caused by occlusion, providing scene geome-

try cues. There is a long history of reconstructing shapes

from shadows as 1D curves [16, 19], 2D height maps

[14,32,35,53] and 3D voxel grids [21,34,46]. These works

typically capture under different light directions to get suf-

ficient observations of shadows. Shadows show the poten-

tial in these works to reconstruct surface details [53] and

intricate thin structures [46]. The most recent work in this

area is DeepShadow [18], which reconstructs a neural depth

map from shadows. A different setup with fixed lighting
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Figure 2. Different kinds of ray supervisions.

but multiple viewpoints is also adopted by [39], which in-

tegrates Shadow Mapping to reconstruct a neural represen-

tation. Concurrently and independently, [48] proposes to

simultaneously use shading and shadows in neural field re-

construction. In particular, they compute shadows at a non-

differentiable surface point located by root finding, making

it rely on a differentiable shading computation. We pro-

pose fully differentiable shadow ray supervision that opti-

mizes both the shadow ray samples and the surface point,

enabling neural field reconstruction from either pure shad-

ows or RGB images.

3. Ray Supervision in Neural Fields

This section first reveals the essence in NeRF [27] train-

ing as supervising camera rays. From there, we discover a

ray supervision scheme generalizable to arbitrary rays. The

scheme makes it feasible for shadow rays to supervise the

optimization of a neural scene representation.

3.1. Camera ray supervision in NeRF

NeRF aims to optimize a neural field to fit a scene of

interest. To obtain observations of the scene, NeRF re-

quires recording images at multiple camera viewpoints with

known camera parameters. Each image pixel records the

incoming radiance of a camera ray that passes through the

known camera center from a known direction. Since NeRF

does not model the external light source and assumes the

light is emitted from scene particles to simplify the model-

ing of a scene with fixed lighting, the incoming radiance is

actually attributed to the combined effect of light absorption

and emission by the infinitesimal particles along the cam-

era ray.To fit observations, NeRF uses differentiable vol-

ume rendering to simulate the same camera ray in the neu-

ral field. NeRF uses quadrature to approximate the contin-

uous integral in volume rendering by sampling N distances

t1, · · · , tN , started from the camera center o along the cam-

era ray direction v. With the scene density σi and emitted

radiance ci at each sample point p(ti) = o + tiv, the es-

timated radiance C at the camera can be formulated as fol-

lows,

C(o,v) =

N∑

i=1

Tiαici, (1)

where αi = 1−exp (−σi(ti+1 − ti)) is the discrete opacity

and Ti = exp(−
∑i−1

j=1 σj · (tj+1 − tj)) indicates the light

transmittance, i.e., the proportion of the emitted light reach

the camera from the point p(ti). The incoming radiance

recorded at the pixel can be used to supervise the simulated

radiance C. NeRF trains on a random subset of camera rays

in each iteration. As the neural field receives supervision

signals from many camera rays marching in different view-

point directions, it obtains sufficient scene information to

optimize the neural field in the space these rays go through.

3.2. Generalized ray supervision

The reason that NeRF can supervise the camera rays to

optimize a neural field is that multi-view cameras record

the radiance as labels of the rays. Moreover, as each cam-

era is calibrated, each recorded ray’s 3D location and ori-

entation are well-defined. We can regard each pixel of the

multi-view camera as a “ray sensor” recording the incom-

ing radiance of a particular ray because each pixel is used

independently in training. These ray sensors are the key to

the NeRF techniques. More generally, if we let the “ray

sensors” record other kinds of rays in the scene, it is also

possible to achieve scene reconstruction. This motivates us

to consider whether we can supervise other rays and design

ray sensors to record their radiance.

3.3. Shadow ray supervision

Since camera rays have achieved great success in neu-

ral scene reconstruction, as the counterpart in light trans-

port, the ray connecting the scene and the light source, a.k.a.

shadow rays, should also be able to be used to reconstruct

neural scenes. We first consider an ideal setup where many

hypothetical ray sensors are placed in the scene at differ-

ent but known locations, as shown in Fig. 2.To observe the

scene along shadow rays, we illuminate the scene with a

known directional light. Each ray sensor captures one ray

that passes the sensor from the light direction. Different

from NeRF, as we model the light source, we assume the

scene does not emit light, which is more physically correct

and can simplify the following process. Therefore, the in-

coming radiance at a ray sensor is from the light emitted

from the light source and absorbed by infinitesimal parti-

cles along the ray. Using similar quadrature as Eq. (1), we

can express the incoming radiance simulated in the neural

field as

Cin(x, l) = L
N∏

i=1

(1− αi), (2)

where and L is the intensity of the light source, x is the

location of a ray sensor and l is the light direction. To ob-

tain sufficient information to constrain the optimization, we

require the shadow rays to march the scene in different di-

rections. Therefore, we illuminate the scene with multiple
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Figure 3. Overview of our method. The proposed shadow ray supervision can be applied to single-view neural scene reconstruction on two

input types: binary shadow images (left) and RGB images (right). For binary inputs, we first compute the incoming radiance of a shadow

ray using volume rendering. Then, we construct a photometric loss to train the neural SDF to match the shadows. For RGB inputs, we

further use a material network and a rendering equation to convert the incoming radiance to the outgoing radiance. The SDF and material

networks are trained to match the ground truth colors.

light directions one by one and record the incoming radi-

ance each time. As this ray supervision scheme has been

demonstrated successful by NeRF, it is also promising to

reconstruct a neural scene here.

4. Shadow ray supervision with a single-view

camera

Note that in the above formulation, we adopt hypotheti-

cal ray sensors to record the incoming radiance in the light

direction and at the known positions in the scene. These

ray sensors are ideal because they are placed at desired po-

sitions in the scene and always face toward the light. Un-

der these strong assumptions, it is possible to get sufficient

supervision for the shadow rays. However, these ray sen-

sors are hard to implement in an actual setup, unlike NeRF,

where the ray sensors are just the pixels of multi-view cam-

eras. In this section, we will propose a more practical set-

ting for a real capture setup.

In general, we conduct shadow ray supervision from a

single-view camera, which can be a practical alternative to

the ray sensors in the previous formulation. We similarly

illuminate the scene with a light in direction l. The scene

is assumed to be opaque, and thus the camera captures ex-

actly the outgoing radiance at visible surfaces. We consider

two types of camera inputs: binary shadow images [18] and

RGB images, as shown in Fig. 3. Binary shadow images

use outgoing radiance to determine whether a point is illu-

minated, which can be seen as an approximation of bina-

rized incoming radiance. RGB images are a more complex

case that records a combined effect of material, surface ori-

entation, and incoming radiance. We will first consider the

more straightforward case when we can obtain the incom-

ing radiance at visible surfaces from binary shadow images

and then handle the more complex RGB images.

However, another challenge is that, given the recorded

pixel values, we still do not know the exact depths of the

visible surface points. Thus, we are given scene observa-

tions as outgoing radiance in the camera viewing direction

at points at unknown depths. This problem is handled by

the proposed techniques that determine the depth and relate

outgoing radiance to incoming radiance.

We represent the scene as the zero level set of a signed

distance function (SDF) S =
{
u ∈ R

3|f(u) = 0
}

, where

f is a neural network that regresses the signed distance at

the input 3D position. The 3D points visible by the camera

are the first intersections between the camera rays and the

SDF. Note that here the camera rays are only used to de-

termine the surface points but not to construct supervision,

which is the job of shadow rays. Specifically, ray march-

ing [51] is used to compute the intersection point x at the

current SDF. Then we can compute the incoming radiance

Cin(x, l) at the intersection by volume rendering. As we

are modeling an SDF instead of a density field, we replace

the discrete opacity αi in Eq. (2) by the one derived from

the SDF following NeuS [41], as

αi = max

(
1−

Φs(f(p(ti+1)))

Φs(f(p(ti)))
, 0

)
, (3)

where Φs(x) = (1+ e−sx)−1 is the sigmoid function and s
is a learnable scalar parameter that controls whether Eq. (2)

approaches volume rendering or surface rendering.

Differentiable intersection points. To locate the inter-

section point x given the SDF, ray marching is the most

straightforward choice. However, as it is non-differentiable,

it is prone to be misled by surface points with incorrect

depths, leading to worse results. To optimize the intersec-

tion points using backpropagated gradients, we use implicit

differentiation [1, 51], which makes the intersection point

differentiable to the SDF network parameters as

x̂ = x−
v

n · v
f(x), (4)

where v is the camera ray direction and n = ∇xf(x) is
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the surface normal derived from the SDF network. Then,

we use Cin(x̂, l) as the differentiable radiance at intersec-

tion x. As x acts as the start position of a shadow ray, it

can be optimized by gradients from Eq. (2). When the com-

puted incoming radiance Cin(x̂, l) does not agree with the

supervision, the SDF network can optimize both the signed

distances along the shadow ray and the starting position of

the ray to fit the observation.

Multiple shadow rays at boundaries. We observe that

x̂ in Eq. (4) only differentiates along the camera direction

v. When supervising Cin(x̂, l) with the recorded images, it

will cause issues at pixels corresponding to surface bound-

aries. At surface boundaries, a pixel spans disconnected

regions at different depths, where each region occupies a

part of the pixel’s area. When x̂ moves perpendicular to

the camera direction v, it can significantly change the com-

puted radiance at surface boundaries by changing the area

proportional to each region. If we only sample one shadow

ray started at one region, it will lead to incorrect gradients

similar to the case in differentiable mesh rendering [20,23].

Therefore, we first obtain a pixel subset Ω correspond-

ing to surface boundaries, and a differentiable area ratio w
for each boundary pixel using the surface walk procedure

in [54]. Then we locate two intersections xn and xf at dif-

ferent depths within the pixel and compute their incoming

radiance Cin(x̂n, l) and Cin(x̂f , l) respectively. When com-

puting the incoming radiance corresponding to pixel p, we

average the incoming radiance at boundary pixels as

Ĉin =

{
Cin(x̂, l) p /∈ Ω

wCin(x̂n, l) + (1− w)Cin(x̂f , l) p ∈ Ω
(5)

Then, we can supervise the computed incoming radiance

Ĉin with a pixel Is on a binary shadow image as

Lshadow = ∥Ĉin − Is∥1. (6)

Decomposing incoming radiance by inverse rendering.

To cope with RGB images, we incorporate an inverse ren-

dering equation consisting of material, incoming radiance,

and surface orientation. We model the non-Lambertian

BRDF as a diffuse component ρd and a specular component

ρs. Following [22, 47], we use a weighted combination of

spherical Gaussian basis to represent the specular compo-

nent ρs as ρs = yTD(h,n), where h = l−v

∥l−v∥ is the half-

vector between light direction l and view direction −v, D
is the specular basis and y is the specular coefficients. We

model another MLP network g to regress material proper-

ties (ρd,y) = g(x) at surface location x.

The outgoing radiance at point x can be formulated as

C(x,−v) = (ρd + ρs)Cin(x, l)(l · n) (7)

The outgoing radiance Ĉ corresponding to a boundary pixel

is the weighted combination of multiple samples, similar to

Eq. (5). Now we can supervise the computed radiance using

a pixel Ir on an RGB image as

Lrgb = ∥Ĉ − Ir∥1 (8)

Light source modeling. Our technique supports directional

light or point light as the light source to compute the incom-

ing radiance in Eq. (2). For directional light, the light direc-

tion l and intensity L are known and uniform for all shadow

rays. For point light, we calculate the light direction and

intensity at point x as

L =
Lp

∥q − x∥22
, l =

q − x

∥q − x∥2
(9)

where Lp is a scalar point light intensity and q is the light

location.

Training. To regularize the network to output valid SDF,

we add an Eikonal loss [15] on M sample points as

Leik =
1

M

M∑

i

(∥∇f(pi)∥2 − 1)2. (10)

We train the Eikonal loss with Eq. (6) or Eq. (8) depending

on whether binary shadow images or RGB images are used

as supervision.

Our technique is mainly evaluated on bounded scenes of

an object on the ground. To bound the camera rays, we

set camera rays that do not intersect with the SDF to inter-

sect with the ground. To resolve the scale ambiguity from

single-view inputs and reconstruct a scene with the accu-

rate scale, we assume the ground plane’s position and ori-

entation are known. More discussion on the handling of the

ground plane can be found in the supplementary material.

5. Experiments

5.1. Implementation details

We adopt an SDF MLP network similar to NeuS [41] for

both the binary shadow inputs and RGB inputs. When han-

dling RGB inputs, the SDF network outputs an extra 256-

dimensional feature vector. It will be concatenated with 3D

position and surface normal to regress diffuse and specu-

lar coefficients by another MLP network. During training,

we randomly select four images in each batch, and for each

image, 256 pixel positions are sampled as supervision sig-

nals. The camera ray intersection points are located by ray

marching, and possible surface boundaries are computed

using a surface walk process [54] started at these intersec-

tion points. We train the network for 150k iterations, which

takes about 24 hours on a single RTX 2080Ti. More imple-

mentation details can be found in the supplementary mate-

rial.
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Figure 4. Comparison on binary shadow inputs. Each result’s heat map shows error distribution compared to the ground truth depth map.

5.2. Evaluation

To demonstrate the ability to leverage information from

shadow rays in scene reconstruction, we evaluate our

method on single-view binary shadow images and RGB im-

ages captured under multiple known light directions. We

first present qualitative and quantitative comparisons with

state-of-the-art methods supporting similar inputs. Then,

we evaluate the effectiveness of the shadow ray supervision

scheme with a comprehensive ablation study. Finally, we

show more results and applications of the proposed method.

Dataset. The aforementioned experiments are performed

on three datasets. First, we use the dataset released by

DeepShadow [18], which contains binary shadow images

of six scenes under different point lights. Each scene is

terrain-like and captured by a vertical-down camera. For

more complex scenes captured by other viewpoints, we find

that no publicly available dataset satisfies our needs. There-

fore, we construct new synthetic and real datasets for a thor-

ough evaluation. For synthetic data, we render eight scenes

using objects from the NeRF synthetic dataset [27]. Each

test case is built by adding a horizontal plane to model the

ground, placing the object on the plane, and rendering the

scene using Blender [13]. We render binary shadow images

and RGB images of resolution 800×800. To test different

light types, we render each scene with 100 directional lights

and 100 point lights. We select lights randomly sampled on

the upper hemisphere, similar to the camera position selec-

tion in NeRF. Our synthetic dataset features realistic materi-

als with specular effects. Transparency and inter-reflections

are disabled as these effects are beyond our assumption.

We also capture a real dataset to investigate our method’s

applicability to real capture setups. For each scene, we

place the object on the ground, illuminate the scene with

only a handheld cellphone flashlight and capture it with a

fixed camera. We capture around 40 RGB images when the

handheld flashlight moves around the scene and obtain the

light locations similarly to [4]. We place a checkerboard on

the ground and capture one additional image with the same

fixed camera to calibrate the ground. Please see Tab. 1 for a

summary of used datasets.

Metrics. As the compared methods output depth maps or

normal maps of the visible regions, we also evaluate the

RGB Binary shadow Directional light Point light

DeepShadow [18] ✓ ✓

Our Synthetic ✓ ✓ ✓ ✓

Our Real ✓ ✓

Table 1. Datasets used in the evaluation.

Method Metric DeepShadow dataset Our binary

DeepShadow Depth L1↓ 0.0223 0.5020

Ours Depth L1↓ 0.0135 0.1870

DeepShadow Normal MAE↓ 20.93 29.71

Ours Normal MAE↓ 19.68 20.21

Table 2. Quantitative comparison of reconstruction quality on the

DeepShadow dataset and our binary shadow dataset.

quality of single-view reconstruction by depth errors in L1

(Depth L1) and normal errors in mean angular error (Nor-

mal MAE) computed in the visible foreground region. It

should be noted that as some compared methods output a

depth map without a specific scale, Depth L1 is calculated

after aligning the depth map to the ground truth using ICP.

5.2.1 Comparison on binary shadow inputs

On binary shadow images, we compare our method with

DeepShadow [18], the only existing method that sup-

ports scene reconstruction from similar inputs. We find

DeepShadow works better with a vertical-down camera,

possibly because it represents the scene geometry as a

depth map. Therefore, we conduct this experiment on the

DeepShadow dataset and the test samples captured under

a similar viewpoint in our synthetic dataset. Although

this setup gives advantages to DeepShadow, qualitative and

quantitative results show that our method achieves better

shape reconstruction on both datasets. As shown at the top

row of Fig. 4, our method achieves visually comparable re-

sults with DeepShadow on reconstructing a terrain-like ge-

ometry. For more complex inputs, our method reconstructs

more detailed and complete structures than DeepShadow,

as shown at the bottom row of Fig. 4. Benefiting from the

shadow ray supervision of the complex shadow cast by the

occluded geometry, our method can reconstruct the invisible

regions, as shown by the results at the bottom right. The re-
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Figure 5. Comparison on RGB inputs. The heat maps in the first row show the error distribution compared to the ground truth normal map.
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Figure 6. Qualitative comparison with different ablations.

sults show that our method brings significant improvement

in reconstructing complex scenes. Please see Tab. 2 for the

quantitative results. Note that our method requires the depth

of the ground plane. This is also used by DeepShadow to

initialize its depth map prediction.

5.2.2 Comparison on RGB inputs

On RGB inputs from our synthetic dataset, we compare our

method with two state-of-the-art photometric stereo meth-

ods [9, 22] which also consider shadows. SDPS-Net [9] is

a deep-learning method that augments the training dataset

with images under shadows, and Li et al. [22] is a recent

neural field method that considers shadows cast by the re-

constructed depth map. Both achieve higher performance

in photometric stereo with the leverage of shadows. Com-

pared with these methods, our method can better leverage

shape cues in the shadows to reconstruct shapes with more

precise global structure as shown in Fig. 5. Thanks to the

shadow ray supervision of 3D neural SDF representation,

our method can better handle abrupt depth changes at sur-

face boundaries. As shown in Tab. 3, we achieve the lowest

depth and normal reconstruction errors, illustrating the ef-

fectiveness of the proposed shadow ray supervision scheme

in leveraging shadow information.

5.2.3 Ablation Study

To demonstrate the effectiveness of the proposed differen-

tiable intersection points and boundary sampling strategy,

we construct two ablations by removing the two techniques

Method Metric Avg Metric Avg

SDPS-Net Depth L1↓ 0.9163 Normal MAE↓ 38.94

Li et al. Depth L1↓ 0.8794 Normal MAE↓ 23.61

W/o diff. inter. Depth L1↓ 0.2569 Normal MAE↓ 18.01

W/o bound. samp. Depth L1↓ 0.3552 Normal MAE↓ 28.44

Ours Full Depth L1↓ 0.1341 Normal MAE↓ 15.03

Table 3. Quantitative results on our RGB dataset.

Input GT Depth map Ours

Figure 7. Results of invisible geometry reconstruction. The third

column illustrates the region visible by the camera.

and comparing them with our complete method on our syn-

thetic directional RGB inputs. In the first ablation, we only

sample one shadow ray at a boundary pixel. As shown in the

left half of Fig. 6, without boundary sampling, the recon-

structed geometry will extrude along the image plane direc-

tion, leading to significant errors around the boundary. In

the second ablation, we directly use the non-differentiable

intersection points. From the right half of Fig. 6, we can

see that the errors around the left arm increase as the net-

work fail to update the depth using inaccurate backprop-

agated gradients. Quantitative results in Tab. 3 show that

our proposed techniques greatly enhance the performance

of geometry reconstruction.

5.2.4 More Results

We present more results to demonstrate the ability of the

proposed method to reconstruct occluded geometry and
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Input GT Ours Input GT Ours

Figure 8. Results on more various inputs.

Input Relighting

Figure 9. Results of novel-light synthesis.

synthesize images under novel lighting. We also test our

method on handling more various inputs, including real im-

ages.

Reconstructing invisible geometry. Our method can re-

construct geometry that is not directly visible from the cam-

era. As shown in Fig. 7, our method reconstructs more com-

plete geometry than the visible region in the third column,

e.g., the invisible chair leg and the bulldozer blade. As these

invisible shapes cast shadows captured by the camera (la-

beled by red boxes in Fig. 7), the corresponding shadow

rays can supervise the shape to match the shadows.

Novel-light synthesis. After reconstructing the neural

scene, we can re-render the scene under a novel light di-

rection, as shown in Fig. 9. Besides shading and specular

effects, we can generate accurate shadows on the ground

and the object itself, consistent with the object’s shape. The

results also indicate that it is beneficial to integrate shadow

ray supervision into a neural relighting pipeline. Please also

see the supplementary video for continuous relighting re-

sults.

Results on more various inputs. In order to demonstrate

the generalization of our method, we test our method on

more challenging synthetic data. As shown in Fig. 8, our

method can reconstruct scenes with multiple objects (Col-

umn 2). Our method still successfully reconstructs some

leaves and stems for inputs with extremely complex struc-

tures for single-view reconstruction (Column 1). We further

apply our method to our real data. As shown in Fig. 10, our

method reconstructs complete 3D shapes and accurate sur-

face details from the simple setup and can handle the ground

with non-trivial materials. Reconstructed results from real

inputs can also generate realistic relighting results.

Input Normal Shape Relighting

Figure 10. Results on real data.

5.3. Limitations

The effectiveness of the proposed shadow ray supervi-

sion in reconstructing neural scenes is demonstrated by ex-

tensive experiments. However, as an early attempt to model

shadow rays, our method is based on several assumptions.

We assume the scene does not emit light and ignore inter-

reflections to simplify light modeling. We observe that

some thin structures are too complex that they can still be

missing in our reconstruction. It is a general limitation and

can be improved by the progress in thin structure neural

SDF, as indicated by very recent works [10, 25].

6. Conclusion

Compared with NeRF supervising camera rays, we

achieve fully differentiable supervision of shadow rays in

a neural scene representation. This technique enables shape

reconstruction from single-view multi-light observations

and supports both pure shadow and RGB inputs. Our tech-

nique works well for both point and directional lights and

can be used for 3D reconstruction and relighting. A multi-

ray sampling strategy is proposed to handle challenges

posed by surface boundaries in locating shadow rays. Ex-

periments show that our technique outperforms the SOTAs

in single-view reconstruction, and it has the power to recon-

struct scene geometries out of the camera’s line of sight.
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