
PolyFormer: Referring Image Segmentation as Sequential Polygon Generation

Jiang Liu1,†,* Hui Ding2,† Zhaowei Cai2 Yuting Zhang2

Ravi Kumar Satzoda2 Vijay Mahadevan2 R. Manmatha2

Johns Hopkins University1 AWS AI Labs2

https://polyformer.github.io/

Abstract

In this work, instead of directly predicting the pixel-level
segmentation masks, the problem of referring image seg-
mentation is formulated as sequential polygon generation,
and the predicted polygons can be later converted into seg-
mentation masks. This is enabled by a new sequence-to-
sequence framework, Polygon Transformer (PolyFormer),
which takes a sequence of image patches and text query to-
kens as input, and outputs a sequence of polygon vertices
autoregressively. For more accurate geometric localization,
we propose a regression-based decoder, which predicts the
precise floating-point coordinates directly, without any co-
ordinate quantization error. In the experiments, PolyFormer
outperforms the prior art by a clear margin, e.g., 5.40%
and 4.52% absolute improvements on the challenging Re-
fCOCO+ and RefCOCOg datasets. It also shows strong
generalization ability when evaluated on the referring video
segmentation task without fine-tuning, e.g., achieving com-
petitive 61.5% J&F on the Ref-DAVIS17 dataset.

1. Introduction

Referring image segmentation (RIS) [7, 19, 21, 29–32,
39, 45, 50, 61, 73, 78, 86, 87] combines vision-language un-
derstanding [42, 55, 57, 75, 92] and instance segmentation
[2, 8, 16, 25, 52], and aims to localize the segmentation
mask of an object given a natural language query. It gen-
eralizes traditional object segmentation from a fixed num-
ber of predefined categories to any concept described by
free-form language, which requires a deeper understanding
of the image and language semantics. The conventional
pipeline [7, 19, 21, 29–32, 45, 50, 61, 73, 87] first extracts
features from the image and text inputs, and then fuses the
multi-modal features together to predict the mask.

A segmentation mask encodes the spatial layout of an
object, and most instance segmentation models [8, 16, 25,
52] rely on a dense binary classification network to deter-
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mine whether each pixel belongs to the object. This pixel-
to-pixel prediction is preferred by a convolutional opera-
tion, but it neglects the structure among the output predic-
tions. For example, each pixel is predicted independently of
other pixels. In contrast, a segmentation mask can also be
represented by a sparse set of structured polygon vertices
delineating the contour of the object [1, 6, 41, 47, 49, 81].
This structured sparse representation is cheaper than a dense
mask representation and is the preferred annotation format
for most instance segmentation datasets [15, 49, 70]. Thus,
it is also tempting to predict structured polygons directly.
However, how to effectively predict this type of structured
outputs is challenging, especially for convolutional neu-
ral networks (CNNs), and previous efforts have not shown
much success yet [41, 47, 81].

We address this challenge by resorting to a sequence-to-
sequence (seq2seq) framework [3, 14, 65, 66, 74], and pro-
pose Polygon transFormer (PolyFormer) for referring im-
age segmentation. As illustrated in Fig. 1, it takes a se-
quence of image patches and text query tokens as input,
and autoregressively outputs a sequence of polygon ver-
tices. Since each vertex prediction is conditioned on all
preceding predicted vertices, the output predictions are no
longer independent of each other. The seq2seq framework
is flexible on its input and output format, as long as both
of them can be formulated as sequences of variable length.
Thus, it is natural to concatenate the visual and language
features together as a long sequence, avoiding complicated
multi-modal feature fusion as in prior work [7,30,73,86,87].
In the meantime, the output can also be a long sequence
of multiple polygons separated by separator tokens, cover-
ing the scenario where the segmentation masks are not con-
nected, e.g., by occlusion, as shown in Fig. 1. Furthermore,
since a bounding box can be represented as a sequence of
two corner points (i.e., top left and bottom right), they can
also be output by PolyFormer along with the polygon ver-
tices. Thus, referring image segmentation (polygon) and
referring expression comprehension (bounding box) can be
unified in our simple PolyFormer framework.

Localization is important for polygon and bounding box
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Figure 1. The illustration of PolyFormer pipeline for referring image segmentation (polygon vertex sequence) and referring expression
comprehension (bounding box corner points). The polygons are converted to segmentation masks in the end.

generation, as a single coordinate prediction mistake may
result in substantial errors in the mask or bounding box pre-
diction. However, in recent seq2seq models for the visual
domain [9, 10, 56, 77], in order to accommodate all tasks
in a unified seq2seq framework, the coordinates are quan-
tized into discrete bins and the prediction is formulated as
a classification task. This is not ideal since geometric coor-
dinates lie in a continuous space instead of a discrete one,
and classification is thus usually suboptimal for localiza-
tion task [23, 43, 93]. Instead, we formulate localization
as a regression task, due to its success in object detection
[5, 24, 25, 68], where floating-point coordinates are directly
predicted without any quantization error. Motivated by [25],
the feature embedding for any floating-point coordinate in
PolyFormer is obtained by bilinear interpolation [33] of its
neighboring indexed embeddings. This is in contrast with
the common practice [9,56,77] in which the coordinate fea-
ture is indexed from a dictionary with a fixed number of
discrete coordinate bins. These changes enable our Poly-
Former to make accurate polygon and bounding box pre-
dictions.

We evaluate PolyFormer on three major referring image
segmentation benchmarks. It achieves 76.94%, 72.15%,
and 71.15% mIoU on the validation sets of RefCOCO [89],
RefCOCO+ [89] and RefCOCOg [60], outperforming the
state of the art by absolute margins of 2.48%, 5.40%, and
4.52%, respectively. PolyFormer also shows strong gen-
eralization ability when directly applied to the referring
video segmentation task without finetuning. It achieves
61.5% J&F on the Ref-DAVIS17 dataset [38], compara-
ble with [80] which is specifically designed for that task.

Our main contributions are summarized as follows:
• We introduce a novel framework for RIS and REC,

called PolyFormer, which formulates them as a
sequence-to-sequence prediction problem. Due to its
flexibility, it can naturally fuse multi-modal features
together as input and generate a sequence of polygon
vertices and bounding box corner points.

• We propose a regression-based decoder for accu-
rate coordinate prediction in this seq2seq framework,

which outputs continuous 2D coordinates directly
without quantization error. To the best of our knowl-
edge, this is the first work formulating geometric lo-
calization as a regression task in seq2seq framework
instead of classification as in [9, 10, 56, 77].

• For the first time, we show that the polygon-based
method surpasses mask-based ones across all three
main referring image segmentation benchmarks, and it
can also generalize well to unseen scenarios, including
video and synthetic data.

2. Related Work
Referring Image Segmentation (RIS) [29] aims to pro-
vide pixel-level localization of a target object in an image
described by a referring expression. The previous works
mainly focus on two aspects: (1) vision and language fea-
ture extraction, and (2) multi-modal feature fusion. For
feature extraction, there has been a rich line of work, in-
cluding the use of CNNs [7, 12, 29–32, 50, 87, 88], re-
current neural networks [12, 13, 21, 59, 71, 88], and trans-
former models [39, 44, 86]. The efforts on feature fu-
sion have explored feature concatenation [29, 50], atten-
tion mechanisms [7,30,73,87], and multi-modal transform-
ers [19, 39, 44, 78]. The method most related to ours is Se-
qTR [94], which also adopts a transformer model for gen-
erating the polygon vertices sequentially. However, SeqTR
can only produce a single polygon of 18 vertices with coarse
segmentation masks, failing to outline objects with complex
shapes and occlusion.

Referring Expression Comprehension (REC) predicts a
bounding box that tightly encompasses the target object in
an image corresponding to a referring expression. Exist-
ing works include two-staged methods [27, 28, 91, 95] that
are based on region proposal ranking, and one-stage meth-
ods [4, 35, 44, 48, 85, 94] that directly predict the target
bounding box. Several papers [44, 59, 94] explore multi-
task learning of REC and RIS since they are two closely re-
lated tasks. However, MCN [59] and RefTR [44] require
task-specific heads. Although SeqTR [94] casts the two
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Figure 2. Overview of our PolyFormer architecture. The model takes an image and its corresponding language expression as input, and
outputs the floating-point 2D coordinates of the bounding box and polygons in an autoregressive way.

tasks as a point prediction problem in a unified framework,
it shows that multi-task supervision degenerates the perfor-
mance compared with the single-task variant. In contrast,
our PolyFormer achieves improved performance via multi-
task learning of RIS and REC.

Sequence-to-Sequence (seq2seq) Modeling has achieved
a lot of successes in natural language processing (NLP) [3,
14, 65, 66, 74]. Sutskever et al. [74] propose a pioneering
seq2seq model based on LSTM [71] for machine transla-
tion. Raffel et al. [66] develop the T5 model to unify various
tasks including translation, question answering and classi-
fication in a text-to-text framework. [3] further shows that
scaling up language models significantly improves few-shot
performance. Inspired by these successes in NLP, recent en-
deavors in computer vision and vision-language also start
to explore seq2seq modeling for various tasks [9, 10, 56,
77, 84, 94]. However, they cast geometric localization tasks
as a classification problem, i.e., quantizing coordinates into
discrete bins and predicting the coordinates as one of the
bins. This enables them to unify all tasks into a simple uni-
fied seq2seq framework, but neglects the differences among
tasks. In PolyFormer, geometric localization is formulated
as a more suitable regression task that predicts continuous
coordinates without quantization.

Contour-based Instance Segmentation aims to segment
instances by predicting the contour. [6] labels object in-
stances with polygons via a recurrent neural network. Polar-
Mask [81] models instance masks in polar coordinates, and
converts instance segmentation to instance center classifica-
tion and dense distance regression tasks. Deep Snake [63]
extends the classic snake algorithm [82] and uses a neural
network to iteratively deform an initial contour to match the
object boundary. PolyTransform [47] exploits a segmen-
tation network to first generate instance masks to initialize
polygons, which are then fed into a deformation network to
better fit the object boundary. BoundaryFormer [41] intro-
duces a point-based transformer with mask supervision via
a differentiable rasterizer. However, these papers are lim-
ited in how they handle fragmented objects.

3. PolyFormer

3.1. Architecture Overview

Fig. 2 gives an overview of PolyFormer architecture. In-
stead of predicting dense segmentation masks, PolyFormer
sequentially produces the corner points of the bounding box
and vertices of polygons outlining the object. Specifically,
we first use a visual encoder and a text encoder to ex-
tract image and text features, respectively, which are then
projected into a shared embedding space. Next, we con-
catenate the image and text features, and feed them into
a multi-modal transformer encoder. Finally, a regression-
based transformer decoder takes the encoded features and
outputs the continuous floating-point bounding box corner
points and polygon vertices in an autoregressive way. The
segmentation mask is generated as the region encompassed
by the polygons.

3.2. Target Sequence Construction

We first describe how to represent ground-truth bounding
box and polygon sequences.

Polygon Representation. A segmentation mask is de-
scribed using one or more polygons outlining the referred
object. We parameterize a polygon as a sequence of 2D ver-
tices {(xi, yi)}Ki=1 , (xi, yi) ∈ R2 in the clock-wise order.
We choose the vertex that is closest to the top left corner of
the image as the starting point of the sequence (see Fig. 3).

Vertex and Special Tokens. For each vertex coordinate x
or y, previous works [9, 10, 56, 77, 84, 94] uniformly quan-
tize it into an integer between [1, B], where B ∈ N is the
number of bins of the coordinate codebook. In contrast, we
maintain the continuous floating-point value of the original
x or y coordinate without any quantization. To represent
multiple polygons, we introduce a separator token <SEP>
between two polygons. Polygons from the same object are
ordered based on the distance between their starting points
and the image origin. Finally, we use <BOS> and <EOS>
tokens to indicate the beginning and end of the sequence.
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Figure 3. Illustration of polygon sequence representation. The ver-
tices in a polygon are sorted in clockwise order, where the starting
points (orange dots) are the vertices that are closest to the image
origin. The segmentation mask is generated as the region encom-
passed by the polygons.

Unified Sequence with Bounding Box. A bounding box is
represented by two corner points, i.e., top-left (xb

1, y
b
1) and

bottom-right (xb
2, y

b
2). The coordinates of the bounding box

and multiple polygons can be concatenated together into a
single long sequence as follows:

[<BOS>, (xb
1, y

b
1), (x

b
2, y

b
2), (x

1
1, y

1
1),

(x1
2, y

1
2), ...,<SEP>, (x

n
1 , y

n
1 ), ...,<EOS>],

where (xn
1 , y

n
1 ) is the starting vertex of the nth polygon. In

general, the bounding box corner points and polygon ver-
tices are regarded as the coordinate tokens <COO>.

3.3. Image and Text Feature Extraction

As illustrated in Fig. 2, the input of our framework con-
sists of an image I and a referring expression T .

Image Encoder. For an input image I ∈ RH×W×3, we use
a Swin transformer [53] to extract the feature from the 4-th
stage as visual representation Fv ∈ RH

32×
W
32×Cv .

Text Encoder. Given the language description T ∈ RL

with L words, we use the language embedding model from
BERT [18] to extract the word feature Fl ∈ RL×Cl .

Multi-modal Transformer Encoder. To fuse the image
and textual features, we flatten Fv into a sequence of vi-
sual features F ′

v ∈ R( H
32 ·

W
32 )×Cv and project F ′

v and Fl into
the same embedding space with a fully-connected layer:

F ′
v = F ′

vWv + bv, F
′
l = FlWl + bl, (1)

where Wv and Wl are learnable matrices to transform the
visual and textual representations into the same feature di-
mension, bv and bl are the bias vectors. The projected image
and text features are then concatenated: FM = [F ′

v, F
′
l ].

The multi-modal encoder is composed of N transformer
layers, where each layer consists of a multi-head self-
attention layer, a layer normalization and a feed-forward
network. It takes the concatenated feature FM and gener-
ates the multi-modal feature FN

M progressively.
To preserve position information, absolute positional en-

codings [37] are added to the image and text features. In
addition, we add 1D [66] and 2D [17, 79] relative position
bias to image and text features, respectively.

Multi-head Self-Attention

2D Coordinate Embedding

(𝑥, 𝑦)Coordinate

𝑒(',()

×𝑁Multi-head Cross-Attention

Feed Forward Network

𝐹)*

𝑄*

Class HeadCoordinate Head

2D Coordinate 
Embedding Codebook

(a) (b)

𝑒(',() 𝑒(',()

𝑒(',() 𝑒(',()

𝑒(',()

Figure 4. The architecture of the regression-based transformer de-
coder (a). The 2D coordinate embedding is obtained by bilinear
interpolation from the nearby grid points, as illustrated in (b).

3.4. Regression-based Transformer Decoder

Previous visual seq2seq methods [9,10,56,84,94] quan-
tize a continuous coordinate x into a discrete bin [x], intro-
ducing an inevitable quantization error |x − [x]|. They for-
mulate coordinate localization as a classification problem
to predict one of [x]s, which is suboptimal for geometric
localization. To address this issue, we propose a regression-
based decoder that does not use quantization, and instead
predicts the continuous coordinate values directly (i.e., we
use x instead of [x]), as shown in Fig. 4.

2D Coordinate Embedding. In [9, 10, 56, 84, 94], the co-
ordinate codebook is in 1D space, D ∈ RB×Ce , where
B is the number of bins, Ce is the embedding dimension.
The embedding of x is obtained by indexing the code-
book, i.e., D([x]). To better capture the geometric rela-
tionship between x and y and have a more accurate coor-
dinate representation, we build a 2D coordinate codebook,
D ∈ RBH×BW×Ce , where BH and BW are the numbers
of bins along height and width dimensions. With this 2D
coordinate codebook, we can obtain the precise coordinate
embedding for any floating-point coordinate (x, y) ∈ R2.
First, the floor and ceiling operations are applied on (x, y)
to generate four discrete bins: (x, y), (x̄, y), (x, ȳ), (x̄, ȳ) ∈
N2, and the corresponding embeddings can be indexed from
the 2D codebook, e.g., e(x,y) = D(x, y). Finally, we get the
accurate coordinate embedding e(x,y) by bilinear interpola-
tion, as in [25]:

e(x,y) =(x̄− x)(ȳ − y) · e(x,y) + (x− x)(ȳ − y) · e(x̄,y)+

(x̄− x)(y − y) · e(x,ȳ) + (x− x)(y − y) · e(x̄,ȳ).
(2)

Transformer Decoder Layers. To capture the relations
between multi-modal feature FN

M and 2D coordinate em-
bedding e(x,y), we introduce N transformer decoder lay-
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ers. Each transformer layer consists of a multi-head self-
attention layer, a multi-head cross-attention layer and a
feed-forward network.

Prediction Heads. Two lightweight heads are built on top
of the last decoder layer output QN to generate final pre-
dictions. The class head is a linear layer that outputs the
token types, indicating whether the current output is a coor-
dinate token (<COO>), separator token (<SEP>) or an end-
of-sequence token (<EOS>):

p̂ = WcQ
N + bc, (3)

where Wc and bc are parameters of the linear layer.
The coordinate head is a 3-layer feed-forward network

(FFN) with ReLU activation except for the last layer. It
predicts the 2D coordinates of the referred object bounding
box corner points and polygon vertices:

(x̂, ŷ) = Sigmoid(FFN(QN )). (4)

3.5. Training

Polygon Augmentation. A polygon is a sparse representa-
tion of the dense object contour. Given a dense contour, the
generation of sparse polygons is usually not unique. Given
this property, we introduce a simple yet effective augmenta-
tion technique to increase polygon diversity. As illustrated
in Fig. 5, the dense contour is first interpolated from the
original polygon. Then, uniform down-sampling is applied
with an interval randomly sampled from a fixed range to
generate sparse polygons. This creates diverse polygons at
different levels of granularity, and prevents the model from
being overfitted to a fixed polygon representation.

Objective. Given an image, a referring expression and pre-
ceding tokens, the model is trained to predict the next token
and its type:

Lt = λtLcoo((xt, yt), (x̂t, ŷt)|I, T, (xi, yi)i=1:t−1)

· I[pt == <COO>] + λclsLcls(pt, p̂t|I, T, p1:t−1),
(5)

where

λt =

{
λbox, t ≤ 2,

λpoly, otherwise,

Lcoo is the L1 regression loss, Lcls is the label smoothed
cross-entropy loss, and I[·] is the indicator function. The
regression loss is only computed for the coordinate tokens,
where λbox and λpoly are the corresponding token weights.
The total loss is the sum of Lt over all tokens in a sequence.

Inference. During inference, we start the generation by in-
putting the <BOS> token. First, we get the token type from
the class head. If it is a coordinate token, we will obtain
the 2D coordinate prediction from the coordinate head con-
ditioned on the preceding predictions; if it is a separator
token, it indicates the end of the preceding polygon, so the
separator token will be added to the output sequence. This

(a) (b) (c) (d)

Figure 5. Illustration of polygon augmentation. Polygons at differ-
ent levels of granularity (c) - (d) are sampled from dense contour
(b) that is interpolated from the original polygon (a).

sequential prediction will stop once <EOS> is output. In the
generated sequence, the first two tokens are bounding box
coordinates and the rest are polygon vertices. The final seg-
mentation mask is obtained from the polygon predictions.

4. Experimental Results
4.1. Datasets and Metrics

Datasets. The experiments are conducted on four major
benchmarks for RIS and REC: RefCOCO [89], RefCOCO+
[89], RefCOCOg [60, 62], and ReferIt [36]. RefCOCO has
142,209 annotated expressions for 50,000 objects in 19,994
images, and RefCOCO+ consists of 141,564 expressions
for 49,856 objects in 19,992 images. Compared with Re-
fCOCO, location words are absent from the referring ex-
pressions in RefCOCO+, which makes it more challenging.
RefCOCOg consists of 85,474 referring expressions for
54,822 objects in 26,711 images. The referring expressions
are collected on Amazon Mechanical Turk, and therefore
the descriptions are longer and more complex (8.4 words
on average vs. 3.5 words of RefCOCO and RefCOCO+).
ReferIt contains 130,364 expressions for 99,296 objects in
19,997 images collected from the SAIAPR-12 dataset [20].
We use the UMD split for RefCOCOg [62] and Berkeley
split for ReferIt.

Evaluation Metrics. We use mean Intersection-over-
Union (mIoU) as the evaluation metric for RIS. For a fair
comparison, we also use overall Intersection-over-Union
(oIoU) when comparing with papers that only report oIoU
results. Additionally, we also evaluate PolyFormer on the
REC task as it is a unified framework for both RIS and REC
tasks. We adopt the standard metric Precision@0.5 [77,94],
where a prediction is considered correct if its Intersection-
over-Union (IoU) with the ground-truth box is higher than
0.5.

4.2. Implementation Details

Model Settings. In PolyFormer-B, we use Swin-B [53] as
the visual encoder and BERT-base [18] as the text encoder.
For the transformer encoder and decoder, we adopt 6 en-
coder layers and 6 decoder layers. To investigate the im-
pact of different model scales, we develop a larger model,
PolyFormer-L, that adopts Swin-L as the visual backbone
with 12 transformer encoder and decoder layers.
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Method Visual Text RefCOCO RefCOCO+ RefCOCOg ReferIt
Backbone Encoder val test A test B val test A test B val test test

oI
oU

STEP [7] RN101 Bi-LSTM 60.04 63.46 57.97 48.19 52.33 40.41 - - 64.13
BRINet [30] RN101 LSTM 60.98 62.99 59.21 48.17 52.32 42.11 - - 63.11
CMPC [31] RN101 LSTM 61.36 64.53 59.64 49.56 53.44 43.23 - - 65.53
LSCM [32] RN101 LSTM 61.47 64.99 59.55 49.34 53.12 43.50 - - 66.57
CMPC+ [51] RN101 LSTM 62.47 65.08 60.82 50.25 54.04 43.47 - - 65.58
MCN [59] DN53 Bi-GRU 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40 -
EFN [21] WRN101 Bi-GRU 62.76 65.69 59.67 51.50 55.24 43.01 - - 66.70
BUSNet [83] RN101 Self-Att 63.27 66.41 61.39 51.76 56.87 44.13 - - -
CGAN [58] DN53 Bi-GRU 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69 -
LTS [34] DN53 Bi-GRU 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25 -
ReSTR [39] ViT-B Transformer 67.22 69.30 64.45 55.78 60.44 48.27 - - 70.18
PolyFormer-B Swin-B BERT-base 74.82 76.64 71.06 67.64 72.89 59.33 67.76 69.05 71.91
PolyFormer-L Swin-L BERT-base 75.96 78.29 73.25 69.33 74.56 61.87 69.20 70.19 72.60

m
Io

U

VLT [19] DN53 Bi-GRU 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65 -
CRIS [78] RN101 GPT-2 70.47 73.18 66.10 62.27 68.06 53.68 59.87 60.36 -
SeqTR [94] DN53 Bi-GRU 71.70 73.31 69.82 63.04 66.73 58.97 64.69 65.74 -
RefTr [44] RN101 BERT-base 74.34 76.77 70.87 66.75 70.58 59.40 66.63 67.39 -
LAVT [86] Swin-B BERT-base 74.46 76.89 70.94 65.81 70.97 59.23 63.34 63.62 -
PolyFormer-B Swin-B BERT-base 75.96 77.09 73.22 70.65 74.51 64.64 69.36 69.88 65.98
PolyFormer-L Swin-L BERT-base 76.94 78.49 74.83 72.15 75.71 66.73 71.15 71.17 67.22

Table 1. Comparison with the state-of-the-art methods on three referring image segmentation benchmarks. RN101 denotes ResNet-
101 [26], WRN101 refers to Wide ResNet-101 [90], and DN53 denotes Darknet-53 [67].

Method Visual Text RefCOCO RefCOCO+ RefCOCOg ReferIt
Backbone Encoder val test A test B val test A test B val test test

UNTIER-L [11] RN101 BERT 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77 -
VILLA-L [22] RN101 BERT 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71 -
RefTr [44] RN101 BERT-base 85.65 88.73 81.16 77.55 82.26 68.99 79.25 80.01 76.18
SeqTR [94] DN53 Bi-GRU 87.00 90.15 83.59 78.69 84.51 71.87 82.69 83.37 69.66
MDETR [35] ENB3 RoBERTa-base 87.51 90.40 82.67 81.13 85.52 72.96 83.35 83.31 -
OFA-B [77] RN101 Embedding layer 88.48 90.67 83.30 81.39 87.15 74.29 82.29 82.31 -
UniTAB [84] RN101 RoBERT-base 88.59 91.06 83.75 80.97 85.36 71.55 84.58 84.70 -
OFA-L [77] RN152 Embedding layer 90.05 92.93 85.26 85.80 89.87 79.22 85.89 86.55 -
PolyFormer-B Swin-B BERT-base 89.73 91.73 86.03 83.73 88.60 76.38 84.46 84.96 80.90
PolyFormer-L Swin-L BERT-base 90.38 92.89 87.16 84.98 89.77 77.97 85.83 85.91 81.50

Table 2. Comparison with the state-of-the-art methods on three referring expression comprehension benchmarks. ENB3 denotes
EfficientNet-B3 [76].

Training Details. To leverage large-scale image-text
dataset with grounded box annotations, we first pre-train
PolyFormer on the REC task with the combination of Vi-
sual Genome [40], RefCOCO [89], RefCOCO+ [89], Re-
fCOCOg [60, 62], and Flickr30k-entities [64]. During the
multi-task fine-tuning stage, for RefCOCO, RefCOCO+,
and RefCOCOg datasets, we train the model for both RIS
and REC on a combined training dataset [4] with all vali-
dation and testing images removed; for ReferIt [36] dataset,
only the ReferIt training set is used. We use the AdamW op-
timizer [54] with (β1, β2) = (0.9, 0.999) and ϵ = 1×10−8.
The initial learning rate is 5× 10−5 with polynomial learn-
ing rate decay. We train the model for 20 epochs during pre-

training and 100 epochs for fine-tuning with a batch size of
160 and 128, respectively. The coefficients for losses are set
as λbox = 0.1, λpoly = 1 and λcls = 5× 10−4. Images are
resized to 512× 512, and polygon augmentation is applied
with a probability of 50%. The 2D coordinate embedding
codebook is constructed with 64× 64 bins.

4.3. Main Results
Referring Image Segmentation. We compare PolyFormer
with the state-of-the-art methods in Table 1. It can be ob-
served that PolyFormer models outperform previous meth-
ods on each split of the three datasets under all metrics
by a clear margin. First, on the RefCOCO dataset, com-
pared with the recent LAVT [86], PolyFormer-B achieves
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Method Visual Backbone J&F J F
CMSA+RNN [87] ResNet-50 40.2 36.9 43.5
URVOS [72] ResNet-50 51.5 47.3 56.0
CITD [46] ResNet-101 56.4 54.8 58.1
ReferFormer [80] Swin-L 60.5 57.6 63.4
ReferFormer [80] Video-Swin-B 61.1 58.1 64.1

PolyFormer-B† Swin-B 60.9 56.6 65.2
PolyFormer-L† Swin-L 61.5 57.2 65.8

Table 3. Comparison with the state-of-the-art methods on Ref-
DAVIS17. †means our model is trained on image datasets only.
ReferFormer is trained on both image and video datasets.

better results with absolute mIoU gains of 1.5%, 0.2%, and
2.28% on the three splits. Second, on the more challeng-
ing RefCOCO+ dataset, PolyFormer-B significantly out-
performs the previous state-of-the-art RefTr [44] by ab-
solute mIoU margins of 3.9%, 3.93%, 5.24% on the val-
idation, test A and test B sets, respectively. Third, on
the most challenging RefCOCOg dataset where language
expressions are longer and more complex, PolyFormer-B
achieves notable performance improvements of 2.73% and
2.49% mIoU points on the validation and test sets com-
pared with the second-best method RefTr [44]. Using the
stronger Swin-L backbone and a larger encoder and de-
coder, PolyFormer-L achieves consistent performance gains
of around 1∼2 absolute points over PolyFormer-B across
all datasets. These results demonstrate the superiority of
our polygon-based method PolyFormer over the previous
mask-based methods.
Referring Expression Comprehension. We further eval-
uate PolyFormer on the REC datasets and compare the per-
formance with other state-of-the-art methods in Table 2.
OFA [77] is a foundation model which provides a unified in-
terface for a wide range of tasks from different modalities.
Compared with OFA-L, PolyFormer-L achieves better re-
sults on RefCOCO and comparable results on the remaining
two datasets. Note that OFA utilizes 19M image-text data
for pre-training, while PolyFormer only uses 6M image-text
pairs. Another recent paper SeqTR [94] also proposes a
seq2seq model for multi-task learning of RIS and REC, but
they observe performance degradation for each task when
trained jointly. PolyFormer-B significantly outperforms Se-
qTR by absolute margins of 2.73%, 5.04% and 1.77% on
the three validation sets. These results illustrate the effec-
tiveness of our unified framework.

Zero-shot Transfer to Referring Video Object Segmen-
tation. To further test its generalization ability, we evalu-
ate PolyFormer on the referring video object segmentation
dataset Ref-DAVIS17 [38] in a zero-shot manner. We sim-
ply view the video data as a sequence of images, and ap-
ply PolyFormer to the video frame-by-frame. As shown in
Table 3, PolyFormer-L achieves 61.5% J&F without any

Decoder RefCOCO RefCOCO+ RefCOCOg

R
IS Classification 74.11 68.79 67.69

Regression 75.96 (+1.85) 70.65 (+1.86) 69.36 (+1.67)

R
E

C Classification 87.03 81.35 82.21
Regression 89.73 (+2.70) 83.73 (+2.38) 84.46 (+2.25)

Table 4. Ablation study on regression-based decoder.

Order Aug Multi-task <SEP> RefCOCO RefCOCO+ RefCOCOg

✗ ✗ ✗ ✗ 55.92 51.64 50.65
✓ ✗ ✗ ✗ 68.35 63.28 62.18
✓ ✓ ✗ ✗ 72.07 66.68 65.20
✓ ✓ ✓ ✗ 75.14 69.86 68.70
✓ ✓ ✓ ✓ 75.96 70.65 69.36

Table 5. Ablation study on target sequence construction.

finetuning on the video data. It is even better than the state-
of-the-art ReferFormer [80], which is fully trained on refer-
ring video segmentation data.

4.4. Ablation Studies

In this section, we perform extensive ablation studies on
the RefCOCO, RefCOCO+ and RefCOCOg validation sets
to study the effects of core components of PolyFormer. All
ablation experiments are performed on PolyFormer-B.

Coordinate Classification vs. Regression. We implement
a classification-based model for coordinate prediction fol-
lowing [9, 84, 94]. Specifically, the coordinates are quan-
tized into discrete bins and a classifier is adopted to output
the discrete tokens. As shown in Table 4, the regression-
based model consistently outperforms the classification-
based model on all datasets, e.g., +1.86 for RIS and +2.38
for REC on the RefCOCO+ dataset. This shows that the
regression-based model is a better choice for geometric lo-
calization tasks than the classification-based counterpart.

Component Analysis of Target Sequence Construction.
We study the effects of several components in constructing
the target sequence, including (1) polygon ordering, where
the polygon vertices are ordered clock-wise and the starting
point is set as the vertex closest to the image origin; (2) data
augmentation, where we generate polygons at different lev-
els of granularity on-the-fly during training; (3) multi-task
learning of RIS and REC; and (4) separator token, where
we add <SEP> token to handle multi-polygon cases. The
results are shown in Table 5. Using randomly ordered poly-
gons only achieves 55.92% mIoU on RefCOCO. Polygon
ordering is essential and leads to a substantial improve-
ment of 12.43%. Both polygon augmentation and multi-
task learning are beneficial, with gains of 3.72% and 3.07%,
respectively. The separator token <SEP> brings a 0.82% in-
crease of mIoU. This small gain is reasonable considering
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Expression: “an Asian girl with a pink shirt eating at the table”

tpoly = 1 (Start) tpoly = 5 tpoly = 9 tpoly = 13 tpoly = 17 tpoly = 20 tpoly = 23 (End)

Figure 6. The cross-attention maps of the decoder when generating the polygon. ⋆ is the 2D vertex prediction at inference step tpoly .
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(a) “a dark grey
dog on a light grey
round bed wearing
a red collar”

(b) “girl in purple” (c) “zebra eating
grass with a goose
in front of it”

(d) “a black car
parked at a trans-
portation terminal”

(e) “A gentleman
otter in a 19th cen-
tury portrait”

(f) “A pikachu
fine-dining with a
view to the Eiffel
Tower”

(g) “A pig robot
preparing a deli-
cious meal”

Figure 7. The results of LAVT [86] (top), SeqTR [94] (middle), and PolyFormer (bottom) on RefCOCOg test set (a-d) and images generated
by [69] (e-g). LAVT is for referring image segmentation only. For SeqTR, we generate the bounding boxes and segmentation masks from
the task-specific models as they perform better than the multi-task variant.

only a small number of samples have multiple polygons.
We observe similar trends in the remaining two datasets.

4.5. Visualization Results

Cross-attention Map. When generating the vertex tokens,
the regression-based decoder computes the self-attention
over the preceding tokens and cross-attention over the
multi-modal feature. Here we visualize the cross-attention
map (averaged over all layers and heads) when the model
predicts a new token. Fig. 6 shows the cross-attention maps
at different steps of the polygon generation. We observe that
the cross-attention map concentrates on the object referred
to by the sentence, and moves around the object boundary
during the polygon generation process.

Prediction Visualization. We show the visualization re-
sults of PolyFormer on the RefCOCOg test set in Fig. 7 (a)-
(d). It can be seen that PolyFormer is able to segment the
referred object in challenging scenarios, e.g., instances with
occlusion and complex shapes, and instances that are par-
tially displayed or require complex language understanding.

We also show the results on images generated by Stable Dif-
fusion [69] in Fig. 7 (e)-(g). PolyFormer demonstrates good
generalization ability on synthetic images and text descrip-
tions that have never been seen during training. In contrast,
the state-of-the-art LAVT [86] and SeqTR [94] fail to gen-
erate satisfactory results. More visualization results are pro-
vided in the supplementary material.

5. Conclusion

In this work, we propose PolyFormer, a simple and uni-
fied framework for referring image segmentation and re-
ferring expression comprehension. It is a sequence-to-
sequence framework that can naturally fuse multi-modal
features as the input sequence and multi-task predictions
as the output sequence. Moreover, we design a novel
regression-based decoder to generate continuous 2D coor-
dinates without quantization errors. PolyFormer achieves
competitive results for RIS and REC and shows good gener-
alization to unseen scenarios. We believe this simple frame-
work can be extended to other tasks beyond RIS and REC.
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