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Abstract

Reactive grasping, which enables the robot to success-
fully grasp dynamic moving objects, is of great interest in
robotics. Current methods mainly focus on the temporal
smoothness of the predicted grasp poses but few consider
their semantic consistency. Consequently, the predicted
grasps are not guaranteed to fall on the same part of the
same object, especially in cluttered scenes. In this paper,
we propose to solve reactive grasping in a target-referenced
setting by tracking through generated grasp spaces. Given
a targeted grasp pose on an object and detected grasp
poses in a new observation, our method is composed of two
stages: 1) discovering grasp pose correspondences through
an attentional graph neural network and selecting the one
with the highest similarity with respect to the target pose; 2)
refining the selected grasp poses based on target and histor-
ical information. We evaluate our method on a large-scale
benchmark GraspNet-1Billion. We also collect 30 scenes
of dynamic objects for testing. The results suggest that our
method outperforms other representative methods. Further-
more, our real robot experiments achieve an average suc-
cess rate of over 80 percent. Code and demos are available
at: https://graspnet.net/reactive.

1. Introduction
Reactive grasping is in great demand in the industry.

For instance, in places where human-robot collaboration is
heavily required like factories, stress on laborers will be sig-
nificantly relieved if robots can receive tools from humans
and complete the harder work for laborers. Such a vision is
based on reactive grasping.

On the contrary to static environments, in reactive grasp-
ing, dynamic task setting poses new challenges for algo-
rithm design. Previous research in this area mainly focuses
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Figure 1. (a) Classic reactive grasping guarantees the smoothness
of the grasp poses but cannot predicts grasps on the same part of
the hammer. (b) Our target-referenced reactive grasping takes se-
mantic consistency into consideration. The generated grasp poses
across frames are illustrated with blue grippers.

on planning temporally smooth grasps [22, 42] to avoid
wavy and jerky robot motion. Few of them pay attention
to its semantic consistency. In short, given a targeted grasp
at the first frame, we want the robot to grasp the same part
of the object in the following frames. Additionally, it is not
guaranteed that grasp predictions made by classical meth-
ods fall on the same object in cluttered scenes. Hence, most
of their experiments are conducted on single-object scenes.
Unlike previous works, this work is aimed at achieving tem-
porally smooth and semantically consistent reactive grasp-
ing in clutter given a targeted grasp. We refer to such a task
setting as target-referenced reactive grasping as shown in
Fig.1. Note that despite robot handover is a major applica-
tion scenario of reactive grasping, this work focuses on a
more general task setting - dynamic object grasping.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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A naive idea to solve this task is to generate reference
grasp poses for the initial scene and consecutively track the
object’s 6D pose. As the object moves, the initial grasp
pose can be projected to a new coming frame based on the
object’s 6D pose. Although such an idea seems to be natu-
ral and valid, some bottleneck greatly degrades its viabil-
ity. First of all, the solution to reactive grasping should
be able to handle objects’ motion in real-time, meaning
that it requires fast inference speed and immediate response
to continuous environmental changes. However, 6D pose
tracking may be time-consuming due to commonly-used in-
stance segmentation [11,40]. Second, 6D pose tracking usu-
ally requires objects’ prior knowledge, such as CAD mod-
els [4,41], which is not always available in the real world as
well or achieves only category-level generalization [37].

Different from tracking objects, we propose to track
grasps by a two-stage policy instead. We also comply
with the restriction that no prior knowledge of the ob-
jects is allowed. Given a target grasp on a partial-view
point cloud, we first discover its corresponding grasp among
future frame’s detected grasp poses as coarse estimation.
These gasp poses can be given by an off-the-shelf grasp de-
tector. Inspired by recent progress in local feature match-
ing, which often uses image descriptors like SIFT [17] to
describe interesting regions of images, we view grasp poses
and their corresponding features as geometric descriptors
on a partial-view point cloud. Based on such an assump-
tion, we can simply estimate correspondences between two
grasp sets from two different observation frames by match-
ing the associated grasp features. Note that in opposition
to classical local feature matching, features of the entire
scene are also incorporated to help achieve global aware-
ness. Furthermore, consecutive matching along an observa-
tion sequence may lead to the accumulation of error, on top
of the coarse estimation through correspondence matching,
we further use a memory-augmented coarse-to-fine module
which uses both target grasp features and historical grasp
features to refine the grasp tracking results for better tem-
poral smoothness and semantic consistency.

We conduct extensive experiments on two benchmarks
to evaluate our method and demonstrate its effectiveness.
The results show that our method outperforms two repre-
sentative baseline methods. We also conduct real robot ex-
periments on both single-object scenes and cluttered scenes.
We report success rates of 81.25% for single-object scenes
and 81.67% for multi-object scenes.

2. Related Works

2.1. Grasping in Static Scenes

Thanks to the advances in the field of 3D percep-
tion [2, 25, 26], 6-DoF static grasping which takes point
cloud as input is gaining increasing attention in both the

research community and industry. In general, there are two
lines of work that have been explored. The first line adopts
a sampling-evaluation manner [15,18,23,34]. Grasp candi-
dates are sampled or generated on the point clouds and then
their qualities are evaluated by neural networks. The sec-
ond line processes the point cloud of the entire scene and
predicts grasp poses across the scene [9,10,24,27,36] in an
end-to-end manner. Compared to the first line, the end-to-
end strategy achieves better balance in terms of the speed-
accuracy tradeoff. Some researchers also propose to predict
actions in continuous space [14,32,38]. Nevertheless, these
methods can be adversely impacted by distribution shifts.
Our method uses a pre-trained grasp pose detector from [9]
which belongs to the second research line.

2.2. Reactive Grasping

Though reactive grasping remains much less explored,
a small amount of literature has partially investigated this
more difficult problem. Most of these papers rely on object
motion tracking. [1] predicts object motion and adaptively
plans the grasp for a reachable grasp candidate. However,
the object’s motion is limited to few prototypes and thus
it cannot handle the case where the objects move unpre-
dictably. [19] tracks the objects’ poses, yet the grasp plan-
ning phase is limited by a set of fixed grasp trajectories.
[12,20,28] requires prior knowledge of the objects which is
not always available in the real-world.

Some attempts on reactive grasping without prior infor-
mation have been conducted recently. [22] picks the nearest
grasp poses across frames. [42] samples grasp candidates by
adding disturbances to grasp poses from the previous frame
and evaluates their qualities in the current frame’s scene.
These methods focused on the smoothness of the grasp
pose sequence but did not impose semantic constraints.
Their predicted grasp poses can switch between different
objects. Thus they mainly demonstrate single object grasp-
ing, and [42] requires an extra human hand segmentation
module to avoid grasping the human’s hand during hand-
over while our correspondence matching module mitigates
such a problem since grasps on hands and grasps on objects
have low correspondence scores. [8] proposed a temporal
association module to alleviate this dilemma. However, it
only considers correspondence across two frames which is
prone to error accumulation. In this paper, we further adopt
a refinement module to adjust the grasp pose according to
the target and historical grasp poses.

Some other works adopt continuous action prediction
[14, 32]. Even if it is not designed for dynamic environ-
ments, it can be executed on moving objects thanks to the
closed-loop controller. These methods may suffer greatly
from distribution shifts. Different from these methods, our
method tracks grasp poses explicitly.
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Figure 2. An overview of the proposed method for target-referenced reactive grasping. Given a target grasp and colored point clouds of
a new coming frame with N points, our pipeline first detects M grasp candidates of size M × 12 (3 for translation and 9 for rotation)
across the scene. It then extracts grasp features of size M × 4C for each detected grasp by cropping and embedding the points along the
grasping direction. Furthermore, grasp features aggregation is used to estimate corresponding grasps between the previous frame and the
current frame. After filtering, the correspondence score matrix produces K valid pairs of grasp. The predicted corresponding grasps are
then fed into a refinement network along with the target grasp and other frames selected from a memory pool to be updated toward the
target. Contents in the memory pool are updated by the refined values as well.

2.3. Local Feature Matching in Computer Vision

Unlike global features which summarize the entire scene,
local features distribute densely across the scene and de-
scribe interesting regions. Under slightly different camera
views, local feature matching is aimed at recognizing dis-
tinctive regions and establishing associations in images or
point clouds. The mainstream of local feature matching in-
cludes detector-based matching and detector-free matching.
For detector-based matching, classical hand-crafted fea-
tures such as SIFT [17] and ORB [29] are widely adopted.
With the development of deep learning, learned local fea-
tures [5, 6] achieve satisfying results as well. Different
from detector-based methods that extract sparse local fea-
tures, detector-free methods establish pixel-wise or point-
wise dense features [3,13,16,31,33]. With the extracted lo-
cal features, nearest neighbor search or learning-based ap-
proach [30, 39] are often used in the matching phase. In
our task, we consider each grasp brings rich geometric and
visual patterns of the grasped local patch and our grasp cor-
respondence are built upon these local features.

3. Problem Formulation
In this section, we first briefly introduce some notations

and metrics for grasp pose and grasp distance in 3D space,
followed by formulating the problem of target-referenced
reactive grasping.

We define a grasp pose G as

G = (R t), (1)

where R ∈ R3×3 denotes the rotation of the grasp pose and
t ∈ R3×1 denotes the translation. Consider two arbitrary
grasps G1 and G2, a grasp distance measure is defined as

D(G1,G2) = ∆R+∆t,

∆R = arccos
trace(R⊤

1 R2)− 1

2
,

∆t = ||t1 − t2||.

(2)

Then we make a formal statement of target-referenced
reactive grasping based on the background definition above.
Given G1 at first frame as reference grasp, for any timestep
j > 1, target-referenced reactive grasping is aimed at find-
ing the grasp Gj that minimizes the grasp distance:

Gj∗ = argmin
Gj

D(Gj ,Tj1G1), (3)

where Tj1 ∈ R4×4 means the ground-truth transformation
matrix of the reference grasp from the initial frame to the
frame at timestep j in the camera’s coordinate system.

4. Method
In this section, we detail our grasp tracking pipeline, as

illustrated in Fig.2. For a target grasp, we first detect grasp
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Figure 3. Visualization of grasp features representation.

candidates across the scene. Then we discover strong cor-
respondences between the target grasp and grasp candidates
by attentional grasp features aggregation. We finally use a
memory-augmented refinement network to correct the pre-
dictions towards the target grasp.

4.1. Grasp Detector

For each incoming new frame, we generate a grasp set
along with it. This work uses an off-the-shelf GraspNet
baseline [9] for proposals of grasp candidates. GraspNet
is a learned grasp pose detector that takes the partial point
cloud of the scene P as input and outputs a grasp set G
across the entire scene. In GraspNet, a point cloud P of size
N × 3 is downsampled and transformed to feature vectors
of size M × C by the PointNet++ backbone network [26]
where C denotes the channel dimension of the features and
M is the number of points after farthest point sampling [7].
For each sampled point, GraspNet predicts a grasp G and
its confidence score. The detected grasp set is then sent to
the following steps for grasp tracking. While GraspNet per-
forms well in this work, the following steps are not limited
to any specific grasp detector.

4.2. Grasp Correspondence Network

We follow the formulation of grasp correspondence
in [8]. A many-to-many correspondence matrix is learned
during training, given two grasp sets in consecutive frames.
During testing, we can choose the grasp pose with the high-
est correspondence score with the target pose in the previ-
ous frame as the tracked pose.

Grasp Features Representation First we illustrate how
we represent grasp features. For M grasp poses in a scene,

we follow [8] to extract seed features, geometric features
and appearance features for them, each having a shape of
M × C. In addition, since it is quite common in the real
world that multiple similar objects exist simultaneously in
the scene, grasps on similar objects cannot be distinguished
in such situations which results in correspondence switch-
ing between objects. Hence we further add global scene
features of size M × C to provide information about the
scene state. This global feature is extracted by max-pooling
pointwise features from the backbone output, thus is the
same for each of M grasp poses. Finally, we concatenate
geometric features, visual features, seed point features and
global scene features to construct grasp features of dimen-
sion 4C for each grasp, denoted by x. We show the above
process in Fig.3. We present more details of grasp features
representation in the supplementary material.

Positional Information To provide positional informa-
tion for grasps, we encode grasp poses by MLP layers of
size (12, 2C, 4C). These feature vectors are then added to
the raw grasp features x, such that grasps can be treated in
a similar way to words in a sentence.

x← x+MLP(1)(p), (4)

where p is the grasp pose of dimension 12, consisting of 9
parameters for the rotation matrix and 3 for translation. We
use this feature as the final grasp features representation.
Such a process makes our method position-dependent and
benefits following the grasp features aggregation step.

Attentional Grasp Features Aggregation Thanks to the
above-mentioned grasp features, it is now straightforward
to reason about the visual, geometric and positional prop-
erties of grasps jointly. For a grasp Gi, we first embed its
associated grasp features using MLP layers and transform
its feature size from 4C to 2C by MLP layers.

fgi = MLP(2)(xi), (5)

Apart from the features of a grasp itself, given a pair
of grasp sets, it is intuitive that interacting with contex-
tual grasps within grasp sets or across grasp sets is criti-
cal to reduce ambiguities and increase the distinctiveness of
grasps as well. [8] adopts vanilla MLP blocks which can-
not model long-range relationships among grasp poses. In
this paper, we take advantage of the global receptive field of
the attentional graph neural network (GNN) to model such
dependencies. Following [30], self-attention and cross-
attention [35] are adopted for context aggregation within
grasp sets and across grasp sets. In particular, features
are aggregated unidirectionally in self-attention and bidirec-
tionally in cross-attention. Given two grasp sets G1 and G2
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that each consists of M grasps, grasp features aggregation
generates matching descriptors fm1 , fm2 ∈ RM×2C .

Here we outline the workflow of grasp features aggrega-
tion. In self-attention, we only process grasps within G1

or G2. Taking G1 as an example, grasp features fG1 of
size (M × 2C) are first mapped to three elements which
are named query, key and value in convention by learnable
weights WQ, WK and WV ∈ R2C×2C . The attention
computation can then be written as A = (Q · KT )/

√
C

where A denotes the attention matrix and has a size of
(M × M ) and (·) is the dot product operator. A actu-
ally measures the similarity between query and key. After
that, the message propagation step can be defined as M =
softmax(A) · V. M is later fed into MLP layers of size
(2C, 4C, 2C) to produce the output features which have the
same size as fG1 . Since M can be regarded as the sum
of value vectors weighted by the similarity measure, there-
fore the output feature vectors represent correspondences
among grasps in G1. In cross-attention, we consider grasp
features from both G1 and G2. To produce the output fea-
ture vector, the only thing different is that key and value
are no longer generated from fG1 but from fG2 . Intu-
itively, in self-attention information flows only within G1

or G2 whereas in cross-attention information flows from
G2 to G1 or vice versa. We consider the output of cross-
attention layers as a representation of correspondence be-
tween G1 and G2. We interleave self-attention and cross-
attention layers by Nc times and get the matching descrip-
tors fm1 , fm2 which are later used to compute correspon-
dences within and across grasp sets.

Correspondence Estimation Given fm1 , fm2 , we can
simply compute the correspondence matrix S ∈ RM×M .
For each pair of grasps from these two sets, the correspon-
dence score can be calculated by cosine similarity

S(i · j) =
fm1
i · fm2

j

||fm1
i ||2 · ||f

m2
j ||2

. (6)

Since cosine similarity is naturally normalized, it makes
training more stable. Taking advantage of contrastive learn-
ing, during training a target grasp can be assigned the same
class to any number of grasps in the other grasp set. This is
important because some grasps are close in terms of trans-
lation and some are close in terms of rotation. During train-
ing, our method allows parallel prediction of multiple target
grasps. We simply pick grasps that have the highest cor-
respondence scores with respect to target grasps. Before
entering the next stage, a grasp set is filtered to K grasps
by removing upward grasps and grasps with low correspon-
dence scores with respect to all other grasps. If the number
of grasps is less than K, we repeat the first grasp. In real
robot experiments, only one target grasp is used.

4.3. Memory-augmented Refinement Network

Since the correspondence is estimated between fixed
grasp sets, the tracking performance greatly relies on the
grasp detector which is not guaranteed to generate identi-
cal grasps across different frames. Also, consecutive corre-
spondence matching may lead to an accumulation of errors.
Therefore, to further improve the semantic consistency with
the reference grasp pose, a refinement network is used to
correct predictions made by correspondences towards the
target grasp.

To be specific, we store the tracked grasp poses on past
frames and their associated features in a memory pool. For
each forward pass, the refinement network uses historical
observations selected from the memory pool to refine the
parameters of the selected grasp pose in the current frame.
Here the historical frames from the memory pool are se-
lected according to their time indexes. In practice, we select
the reference pose in the first frame and apply uniform sam-
pling for simplicity in the interval (1, t − 1] to select past
frames, where t denotes the current time index.

For a L frame grasping sequence that consists of 1 frame
of tracking target, 1 current frame, and L−2 frames selected
from the memory pool, grasp features of size L× (4C) are
first transformed to L × 2C by MLP layers. After that, we
simply repeat the target frame and concatenate it with other
frames, resulting in features of size (L − 1) × (2C). Such
that all the selected frames are conditioned on the tracking
target. We then apply temporal encoding which is similar to
positional encoding introduced in [35]. These features are
then fed into a refinement network which outputs (L − 1)
refined poses. Note that both historical grasp poses and the
grasp pose in the current frame are updated. This refine-
ment network has the same architecture as the grasp cor-
respondence network, except that only self-attention layers
are adopted. Moreover, the rotation is parameterized by the
6D representation introduced in [43]. Causal mask is used
to avoid causality confusion as well.

4.4. Supervision

The objective function used to train the above pipeline
can be divided into two parts:

L = Lc + βLR,t, (7)

where Lc denotes the loss for correspondence learning and
LR,t denotes the loss for grasp pose refinement. β is the
weighting term which we set as 1 during training.

For Lc, we follow [8] and adopt supervised contrastive
loss. For any two grasp poses with positive correspondence
label, we denote them as corr(Gi,Gk) = 1 or vice versa.
Given two arbitrary grasp sets G1 and G2, we first locate
the positive grasp set P(i) = {G2k ∈ G2|corr(Gi,Gk) = 1}
for any Gi ∈ G1. This correspondence loss can then be
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written as:

Lc =
∑

G1
i ∈G1

−1
|P(i)|

∑
G2
k∈P (i)

log
exp(S(i · k)/τ)∑

G2
j∈G2

exp(S(i · j)/τ)
,

(8)
where |P(i)| denotes the cardinality and τ is a scalar tem-
perature parameter. This loss pulls together the positive
grasp pairs in embedding space, whereas pushes apart neg-
ative grasp pairs meanwhile.

For grasp pose refinement, we adopt a transformation
loss which consists two terms for optimizing rotation and
translation respectively. Consider J = {j1, j2, · · · , jn} that
stores arbitrary number of time index, for any time step
j ∈ J , given target grasp G1, we first compute its trans-
formed grasp in jth frame’s coordinates, denoted by

Gj1 = (Rj1 tj1), (9)

We then define the transformation loss as:

LR,t =
1

|J |
∑
j∈J

1

|Gj |
∑

Gj
i∈Gj

||(R∗)−1Rj1 − I||2

+
1

|J |
∑
j∈J

1

|Gj |
∑

Gj
i∈Gj

||tj1 − t∗||2,
(10)

where Gj denotes grasp set at time step j.

5. Experiments
5.1. Dataset

The proposed pipeline is trained on GraspNet-1Billion
dataset [9] which is a large-scale real-world dataset for
grasp detection. It includes 89 objects, 190 scenes and
256 camera views for each scene. We follow [8] to gen-
erate grasp correspondence labels across viewpoints on the
GraspNet-1Billion dataset and refer readers to [8] for more
details. In addition, we further collect 30 scenes of moving
objects for testing. For each frame, we record the RGBD
images and objects’ 6D poses. We manually annotate 10
grasps for the first frame of each scene as targets and fur-
ther project the annotated grasps according to the 6D poses
for the future frames. This test set is named Moving Grasp-
Net.

5.2. Pre-processing and Augmentation

Before being fed into the network, the point cloud is
first downsampled to 20000 points and the RGB values are
normalized. We also remove points outside a pre-defined
workspace. Furthermore, we adopt massive data augmen-
tation to avoid over-fitting and enrich objects’ motion. For
each object in the scene, its point cloud is augmented on-
the-fly by a random translation of [−0.2, 0.2] meter in all
XYZ directions and a random rotation of [−30, 30] degrees

around z-axis. Moreover the scene’s point cloud is rotated
by [−30, 30] degrees around both x-axis and z-axis. Due
to the space limitations, please refer to the supplementary
materials for details about network implementation.

5.3. Performance of Grasp Tracking

Evaluation Metric We propose a new Multiple Grasp
Pose Tracking (MGTA) metric which follows the idea
of Multiple Object Tracking Accuracy (MOTA) [21] in
multi-object tracking task, except that the similarity mea-
sure between two grasps is computed using Eq.(2). Details
are given in supplementary materials. Apart from MGTA,
we also report the mean translation error and rotation error
to the tracking target of each sequence.

We follow the same evaluation procedure on GraspNet1-
Billion and Moving GraspNet. For each scene, we pick 10
reference grasps in the first frame which are later used for
grasp tracking. To be specific, these reference grasps are
detected by a grasp detector on GraspNet1-billion but man-
ually labeled on Moving GraspNet. For each remaining
frame, we compute the ground truth grasps using objects’
6D poses and segmentation mask of the scene. The metrics
are calculated using the transformed reference grasps and
predictions associated with each frame.

Comparing with Representative Methods We compare
our methods with two other baseline methods. A heuristic
method is implemented as the first baseline. Given a grasp
pose from the previous frame, its nearest neighbor detected
in the current camera coordinates is picked. For the second
method, we adopt Bundle Track [40] which is one represen-
tative method in the field of unseen object 6D pose tracking.
It fits our task setting well since it requires no objects’ CAD
model.

As it is shown in Tab.1 and Tab.2, our method out-
performs baseline methods on both GraspNet-1Billion and
Moving GraspNet. It is found in experiments that, in many
cases, grasps cannot fall on the same objects if we only pick
the nearest neighbors. Also, it can be drawn from the results
that tracking results are improved significantly after refine-
ment, especially for rotation. Note that MGTA will be
negative if there is a large number of false positives, false
negatives, and ID switches.

5.4. Real Robot Experiments

In real robot experiments, we use Flexiv Rizon robot arm
with an Intel Realsense L515 depth camera mounted on the
end-effector. A Robotiq-85 parallel-jaw gripper is used with
3D-printed extended fingertips attached to it. The real robot
experiments run on an NVIDIA 3090 GPU at around 10 fps.
Please refer to the supplementary materials for details of the
objects.
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Method Seen Similar Novel
MGTA↑ n (cm)↓ n (°)↓ MGTA↑ n (cm)↓ n (°) MGTA↑ n (cm)↓ n (°)↓

Nearest -0.81 15.2 95.98 -0.80 15.4 97.61 -0.83 16.6 96.90
Bundle Track [40] 0.74 1.52 15.80 0.72 1.47 16.37 0.72 1.93 15.41

Ours, w/o refinement -0.32 2.31 53.24 -0.30 2.68 57.59 -0.39 2.93 58.49
Ours, M=512 0.80 1.58 10.89 0.80 1.74 10.62 0.75 2.10 15.03

Ours, M=1024 0.84 1.34 10.15 0.85 1.52 9.84 0.78 1.90 12.96
Ours, M=2048 0.85 1.27 9.82 0.86 1.35 9.50 0.79 1.84 11.48

Table 1. GraspNet-1Billion evaluation results on seen, similar and novel objects respectively. M denotes the number of grasp detected, its
default value is 1024.

t

t

Figure 4. Illustration of tracking a toy dog and toy rabbit. We can see that the grasp poses are consistent, i.e., on the head of the dog and
the ear of the rabbit. Yellow bounding box represents to the view limit of the camera. No box means the camera can see the entire scene.

Method MGTA↑ n (cm)↓ n (°)↓
Nearest -0.47 8.09 67

Bundle Track 0.37 7.60 23.52
Ours, w/o refinement -0.43 6.24 62.33

Ours, M=512 0.47 5.53 22.63
Ours, M=1024 0.52 4.60 20.37
Ours, M=2048 0.54 4.14 18.28

Table 2. Moving GraspNet evaluation results. All objects in Mov-
ing GraspNet are novel. M denotes the number of grasp detected,
its default value is 1024.

Protocol For each frame, we receive RGBD images from
the in-hand camera. We transform the point cloud to the
camera coordinate system at ready state by the camera ex-
trinsic for simplicity as well. Due to safety considerations,
points outside a pre-defined workspace will be masked. Af-
ter a grasp candidate generation phase, we select the grasp
with the highest predicted score as a reference grasp and
keep tracking it for each new frame. During the tracking
phase, the robot moves to a pre-grasp pose which is 0.02

Object ID #Attempt #Success Success Rate
1 10 8 0.8
2 10 9 0.9
3 10 8 0.8
4 10 7 0.7
6 10 8 0.8
7 10 8 0.8
9 10 8 0.8
10 10 9 0.9

Total 80 65 0.8125

Table 3. Real robot experiments results on single object scenes.

meters higher than the actual grasp pose. The robot executes
the grasp once three conditions are met simultaneously: 1)
the translation distance between the gripper center and the
target grasp in XY-plane is lower than 0.01 meter (the XY-
plane is parallel to the table); 2) the translation distance be-
tween the gripper center and the target grasp in 3D space
is lower than 0.04 meters; 3) the rotation distance between
the gripper and the target grasp in 3D space is lower than
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Object ID #Attempt #Success Success Rate
7,7,8,8 10 8 0.8

10,13,14 10 9 0.9
1,11,15,16,17,18 10 8 0.8

2,3,5 10 9 0.9
9,12 10 7 0.7

20,20 10 8 0.8
Total 60 49 0.8167

Table 4. Real robot experiments results on multi-object scenes.



Figure 5. Correspondence switching between similar objects. Red
arrow indicates correct correspondence and blue arrow indicates
wrong correspondence.

15 degrees. The initial positions of the objects are chosen
randomly.

Results As shown in Tab.3 and Tab.4, we execute 20
grasp attempts for each scene. In single-object scenes, we
randomly sample 8 objects for testing and we achieve a suc-
cess rate of 81 percent. In multi-object scenes, we only
choose objects with similar visual and geometric patterns
to test the temporal smoothness and semantic consistency
of the predicted grasps. Results suggest that single-object
scenes and multi-object scenes have nearly the same success
rate which further proves the effectiveness of our method.
We illustrate one case from real robot experiments in Fig.4.

5.5. Analysis

Effect of Global Features In Sec.4.2, we incorporate
global features to represent grasp features. While local
grasp features are sufficient to identify corresponding lo-
cal structures, grasp trials may fail due to correspondence
switches among objects with similar visual and geometric
patterns as we can see in Fig.5. Such phenomenon may be

Object ID Method #Attempt #SW

7,7,8,8 w/o global features 10 5
Full model 10 1

1,17,17 w/o global features 10 4
Full model 10 0

Table 5. Statistics of Correspondence Switching. SW represents
correspondence switching.

due to lacking awareness of the scene state and we propose
to solve it by global features as what we state in Sec.4.2. In
order to analyze the actual effectiveness of global features,
we further record how frequent correspondence switching
happens with or without global features. We conduct these
experiments on identical objects which are placed close to
each other in the scenes. Tab.5 suggests that the num-
ber of correspondence switches decreased significantly with
global features.

Failure Analysis There are three major types of failure
cases found in real robot experiments. First, some predicted
grasp candidates from the detector do not have good qual-
ities. Naturally, tracking such targets may lead to failed
grasps. Second, it is hard to heuristically plan the timing to
close the gripper. Due to some grasps may fall on the edges
of objects, it is common that the objects may slip away im-
mediately when the robot receives the command to close
the gripper. Furthermore, since we mount the camera on
the wrist, the point cloud may become fragmented due to
view limitation and occlusion, especially when the objects
fall behind the gripper. In such cases, the predictions can be
inaccurate.

6. Conclusion
We present a novel solution to reactive grasping in a

target-referenced setting. For a reference grasp, our method
predicts temporally smooth and semantically consistent
grasp poses in the future frames without any prior knowl-
edge of instance. Experiments conducted on both single-
object and multi-object scenes show that our method pro-
vides reliable grasp plans under various environments.
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