
PA&DA: Jointly Sampling PAth and DAta for Consistent NAS

Shun Lu1, 2, Yu Hu1, 2*, Longxing Yang1, 2, Zihao Sun1, 2, Jilin Mei1, Jianchao Tan3, Chengru Song3

1 Research Center for Intelligent Computing Systems,
Institute of Computing Technology, Chinese Academy of Sciences

2 School of Computer Science and Technology, University of Chinese Academy of Sciences
3 Kuaishou Technology

{lushun19s, huyu, yanglongxing20b, sunzihao18z, meijilin}@ict.ac.cn,
{jianchaotan, songchengru}@kuaishou.com

Abstract

Based on the weight-sharing mechanism, one-shot NAS
methods train a supernet and then inherit the pre-trained
weights to evaluate sub-models, largely reducing the search
cost. However, several works have pointed out that the
shared weights suffer from different gradient descent direc-
tions during training. And we further find that large gra-
dient variance occurs during supernet training, which de-
grades the supernet ranking consistency. To mitigate this
issue, we propose to explicitly minimize the gradient vari-
ance of the supernet training by jointly optimizing the sam-
pling distributions of PAth and DAta (PA&DA). We theoret-
ically derive the relationship between the gradient variance
and the sampling distributions, and reveal that the optimal
sampling probability is proportional to the normalized gra-
dient norm of path and training data. Hence, we use the
normalized gradient norm as the importance indicator for
path and training data, and adopt an importance sampling
strategy for the supernet training. Our method only requires
negligible computation cost for optimizing the sampling dis-
tributions of path and data, but achieves lower gradient
variance during supernet training and better generalization
performance for the supernet, resulting in a more consistent
NAS. We conduct comprehensive comparisons with other
improved approaches in various search spaces. Results
show that our method surpasses others with more reliable
ranking performance and higher accuracy of searched ar-
chitectures, showing the effectiveness of our method. Code
is available at https://github.com/ShunLu91/PA-DA.

1. Introduction
Neural architecture search (NAS) aims to automate the

process of designing architectures. Conventional NAS

*Corresponding author.

methods [2,58] separately train each sub-model to guide the
controller for better architectures, demanding prohibitive
computational complexity. ENAS [34] explores the weight-
sharing mechanism across sub-models and One-Shot NAS
[3] proposes to train a supernet to share weights for sub-
models to achieve higher efficiency. Later on, many follow-
ups [9, 18, 30, 49] adopt this vein to perform NAS.

Though the weight-sharing mechanism greatly improves
NAS efficiency, many works [19,20,41,50,53,56,57] point
out that the shared weights suffer from different gradient
descent directions in different sub-models, leading to large
gradient variance and poor ranking consistency. To mit-
igate this issue, they [20, 41, 56, 57] propose to maintain
multi-copies of supernet weights to decrease the weight-
sharing extent, manually elaborate a better path sampling
strategy [9, 50], or introduce additional loss regularizations
[19, 50, 53]. However, they typically require multiple com-
putation burdens for the supernet training and obtain unsat-
isfying results, motivating us to explore a better solution.

Notice that significant efforts [13,17,22,36,38,40] have
been dedicated to reducing the variance of the stochastic
gradient descent (SGD) for minimizing finite sums. Many
works [1, 5, 16, 23, 25, 45, 55] focus on optimizing the data
sampling distribution to reduce the gradient variance (GV)
for training deep models. These methods generally enjoy
faster convergence and better generalization performance,
inspiring us to improve the supernet training from the per-
spective of gradient variance reduction.

We conduct a toy experiment on NAS-Bench-201 [15]
using CIFAR-10 to investigate the GV for the supernet
training. We use SPOS [18] algorithm to train the super-
net and gradually increase the candidate operations on each
edge to change the weight-sharing extent. We record the
average GV of all candidate operation weights during train-
ing and evaluate the supernet performance by measuring the
ranking results of the same 64 sub-models (corresponding
to the smallest search space with 2 candidate operations on

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11940



16 26 36 46 56

Number of Weight-Sharing Sub-models

0.5

1.5

2.5

3.5

G
V

 (×
1e

-5
)

0.0

0.2

0.4

0.6

0.8

1.0

K
T

GV
KT

(a) Different weight-sharing extent

Baseline DA PA PA&DA
Methods

2.0

2.5

3.0

3.5

G
V

 (×
1e

-5
)

0.0

0.2

0.4

0.6

0.8

1.0

K
T

GV
KT

(b) Different methods

Figure 1. (a) KT and GV with different weight-sharing extents by
changing the number of sub-models exponentially. (b) Compari-
son between the baseline and our method. KT: Kendall’s Tau, GV:
Gradient Variance. GV calculation is in the supplements.

6 edges). As illustrated in Fig.1(a), with more sub-models
sharing weights from the supernet, GV becomes larger and
the ranking consistency becomes worse. These results in-
dicate that a larger GV during training harms the supernet
ranking consistency, which prompts us to reduce the GV to
improve the supernet performance.

In this paper, we aim to reduce the supernet GV during
training to improve the convergence rate and generalization
performance. We first theoretically derive the relationship
between the supernet GV and the sampling distributions of
path and data. Then we explicitly minimize the GV by opti-
mizing the sampling distributions. We find that the optimal
sampling probability is proportional to the normalized gra-
dient norm of the path and training data. Thus we use the
normalized gradient norm as the importance indicator and
adopt an importance sampling strategy for path and data
during the supernet training. As exemplified in Fig.1(b),
by using our proposed PAth importance sampling (PA) and
DAta importance sampling (DA), we can reduce the super-
net GV and improve its ranking consistency.

In summary, our contributions are as follows:

• We validate that the weight-sharing mechanism for su-
pernet training induces large GV, harming the supernet
performance and worsening its ranking consistency.

• By deriving the relationship between the supernet GV
and sampling distributions, we propose to explicitly
minimize the GV by jointly optimizing path and
data sampling distributions during supernet training.
We reveal that the optimal sampling probability is pro-
portional to the normalized gradient norm of path and
data, and adopt an importance sampling for them dur-
ing the supernet training.

• Our method only requires negligible computation to
perform the importance sampling for path and data,
and does not need tediously hyper-parameter tuning.
We obtain the highest Kendall’s Tau [39] 0.713 on
NAS-Bench-201 and achieve superior performance on
DARTS and ProxylessNAS search spaces.

2. Related Work

2.1. One-Shot Neural Architecture Search

Early NAS methods [2, 58] are time-consuming due to
the training of each sub-model from scratch. ENAS [34]
leverages the weight-sharing mechanism to share weights
across sub-models, greatly speeding up the NAS process.
One-Shot NAS [3] proposes to train the supernet using the
path dropout technique and then conduct the architecture
search by inheriting the pre-trained supernet weights to sub-
models for fast evaluation. Follow-up works can be roughly
divided into gradient-based approaches [8, 30, 31, 49] and
sampling-based methods [7, 18, 42, 51]. Gradient-based ap-
proaches relax the architectural parameters to be continu-
ous and jointly optimize the architectural parameters and
supernet weights using the gradient descent, which requires
multiple memory costs and often suffers from instability.
While sampling-based methods train the supernet weights
by sampling different paths (i.e. sub-models) and only op-
timize one path at each training step, which is more effi-
cient and robust in practice. For example, the widely used
SPOS [18] algorithm adopts a uniform sampling strategy to
sample path and training data during the supernet training.
In this work, we focus on the sampling-based one-shot NAS
methods and utilize SPOS as our baseline.

2.2. Improved Sampling-based One-Shot NAS

To enhance the consistency of one-shot NAS, some
works [20, 41, 56, 57] maintain multiple copies of supernet
weights to decrease the weight-sharing extent. They focus
on how to split the supernet and how to select appropriate
weights for a sampled sub-model, again complicating the
supernet training. Several works try to seek a more reason-
able gradient direction for better convergence. NSAS [53]
utilizes the loss regularization to prevent the performance of
other sub-models from degrading and SUMNAS [19] com-
putes the reptile gradient during supernet training. Both of
them are motivated by multi-model forgetting and consume
multiple computations during training. Other works manu-
ally elaborate a better path sampling strategy to handle this
issue. FairNAS [10] samples and trains candidate opera-
tions without replacement and accumulate the gradients un-
til all of them are activated, ensuring strict fairness to benefit
the supernet training. MAGIC-AT [50] increases the gradi-
ent similarity between sampled architectures by substituting
only one candidate operation across consecutively sampled
paths and employing an alignment loss for supernet train-
ing. They require lots of human experience and more com-
putation resources. In this work, we optimize the sampling
distributions of path and data according to the normalized
gradient norm, thus maintaining the efficiency and improv-
ing the consistency of one-shot NAS without the need for
complex manual design.

11941



2.3. Variance Reduction

Many approaches [13, 17, 22, 36, 38, 40] achieve linear
convergence on empirical risk minimization problems by
reducing the variance of SGD. They enjoy faster conver-
gence and better generalization performance than vanilla
SGD. Other works [1,5,16,23,25,45,55] optimize the data
sampling distribution during training to reduce the stochas-
tic gradient variance. They [33, 55] derive a clear relation-
ship that the optimal sampling distribution is proportional to
the per-sample gradient norm and use an importance sam-
pling [11,21,23,25] for the training data. As common deep
learning frameworks only provide the average gradient of a
mini-batch, it is prohibitively expensive to compute the per-
sample gradient norm. To solve this problem, [16] exploits
the side information to model the sampling distribution per
class instead of per sample and [25] approximates the up-
per bound of the per-sample gradient norm efficiently. Our
work is motivated by these methods. Differently, we fo-
cus on sampling different paths for supernet training using
the normalized gradient norm, which can be efficiently ac-
quired across mini-batches. Besides, we utilize the approx-
imation from [25] to perform an importance sampling for
training data during the supernet optimization.

3. Method
3.1. Sampling-based One-Shot NAS

One-Shot NAS [3, 34] has recently become mainstream
due to its efficiency and simplicity. Particularly, sampling-
based one-shot NAS approaches [9, 18] demonstrate supe-
rior performance in searching for top-performing architec-
tures. These methods generally have two stages, i.e., super-
net training and sub-model searching.

In the first stage, a supernet N with weights W is built
by encoding the whole search space A. During training, a
sub-model α is sampled according to the discrete distribu-
tion p(A) and we only train the weights Wα included in
the sampled sub-model at each step. We aim to obtain the
optimal supernet weights W⋆ by iteratively sampling and
training the sampled sub-models with the training loss L,

W⋆ = argmin
W

E α∼p(A)
(x,y)∼q(DT )

[L(N (x, α;Wα), y)] (1)

where (x, y) is sampled from the training dataset DT ac-
cording to the distribution q(DT ).

In the second stage, we inherit the optimal supernet
weights W⋆ for each sub-model to efficiently evaluate their
performance P on the validation dataset DV . A heuris-
tic search algorithm is often applied to search for the top-
performing sub-model α⋆,

α⋆ = argmax
α∈A

E(x,y)∼q(DV )[P(N (x, α;W⋆
α), y)] (2)

The performance of each sub-model is measured using
the supernet weights, thus the supernet ranking consistency
becomes essential for the ultimate NAS performance. We
try to reduce the supernet gradient variance during training
to improve the supernet convergence and ranking consis-
tency. We propose to jointly optimize the sampling distri-
butions of p(A) and q(DT ) during the supernet training,
which implies a bi-level optimization problem with W as
the upper-level variable and p,q as the lower-level variable

W⋆ = argmin
W

E[L(N (x, α;Wα), y)]

s.t.


α ∼ p⋆(A), (x, y) ∼ q⋆(DT ),

p⋆ = argmin
p

V[d(p)],

q⋆ = argmin
q

V[d(q)]

(3)

where d(p) and d(q) are the gradient variance function re-
garding the path and data sampling distributions. In the fol-
lowing, we introduce how to derive their relationship and
alternatively optimize both sampling distributions.

3.2. Path Importance Sampling

For the sake of simplicity, we first explain how to seek
the optimal p⋆ with the data sampling distribution q fixed.
Given total training steps N , we can re-formulate the ex-
pectation in Eq.1 as below

W⋆ = argmin
W

N∑
i=1

piL(N (xi, αi;Wαi
), yi) (4)

At i-th training step, when we sample a sub-model αi

from the distribution p(A) with the probability pi, the re-
sulting stochastic gradient is given by

di(pi) =
1

Npi
∇WL(N (xi, αi;Wαi), yi) (5)

where the scaling factor (Npi)
−1 ensures the gradient

di(pi) is an unbiased approximation of the true quantity.
While in previous works [9,18] using the uniform sampling
strategy, the sampling probability of αi is pi = 1

N . We ex-
pect to minimize the gradient variance in Eq.5 by optimiz-
ing the sampling distribution p, which can be formulated as
the following optimization problem

min
p

V[d(p)] = E
[
d⊤d

]
− E [d]

⊤ E [d] (6)

By introducing Eq.5 into Eq.6, we have

E[d⊤d] =
N∑
i=1

pi
1

N2

1

p2i
∥∇WL(N (xi, αi;Wαi), yi)∥

2

E[d] =
N∑
i=1

pidi =
1

N

N∑
i=1

∇WL(N (xi, αi;Wαi
), yi)

(7)

11942



...

...

Train

Update

DAta Importance Sampling (DA)

PAth Importance Sampling (PA)

 

 

Supernet

 

Supernet

Supernet Training

Train

Update

Sampling

Sampling

 

Training Data

Figure 2. Our supernet training framework includes path importance sampling and data importance sampling. Red arrows show similar
gradients of candidate operations via our method. We use the normalized gradient norm to update the path and data sampling distributions.

We can see that E[d] is independent of the path sampling
distribution p, so we can reformulate the problem in Eq.6
as a constrained optimization problem

min
p

N∑
i=1

1

N2

1

pi
∥∇WL(N (xi, αi;Wαi

), yi)∥2

s.t.

N∑
i=1

pi = 1 and pi ≥ 0 ∀i = 1, 2, . . . N

Since each ∥∇WL(N (xi, αi;Wαi
), yi)∥2 ≥ 0, the opti-

mal sampling probability pi must satisfy the inequality con-
straint and thus we can only consider the equality constraint.
By introducing the Lagrangian multiplier λ, we have the La-
grangian function Ψ(p, λ) as below

Ψ(p, λ) =
N∑
i=1

1

N2

1

pi
∥∇WL(N (xi, αi;Wαi

), yi)∥2

+ λ(

N∑
i=1

pi − 1)

(8)

By setting ∂Ψ(p,λ)
∂pi

= 0, we can get

pi =
∥∇WL(N (xi, αi;Wαi), yi)∥

N
√
λ

(9)

Applying the equality constraint, we have
√
λ =∑N

i=1
∥∇WL(N (xi,αi;Wαi

),yi)∥
N , and further derive the op-

timal sampling distribution p⋆ when

p⋆i =
∥∇WL(N (xi, αi;Wαi), yi)∥∑N
i=1 ∥∇WL(N (xi, αi;Wαi

), yi)∥
(10)

Consequently, we can conclude that the optimal path sam-
pling probability p⋆i is proportional to the normalized gra-
dient norm of the sub-model αi, saying that sampling the

sub-model with a larger gradient norm can reduce the GV
for the supernet training.

In practice, we measure the gradient norm of the sub-
model αi as the sum of the gradient norm of its contained
candidate operations and use the normalized gradient norm
of each candidate operation as their sampling probability.
We calculate the gradient norm after backward and update
the sampling probability after each epoch. Hence, our opti-
mization for the path sampling distribution p only requires
negligible computation and is particularly efficient.

3.3. Data Importance Sampling

Now we consider the optimal data sampling distribution
q⋆ with the path distribution p fixed. The solution for the q⋆

is off-the-shelf as in previous works [1, 33, 55]. They have
demonstrated that sampling training data according to their
normalized gradient norm is helpful to reduce GV for deep
models training, which can be formally expressed as

q⋆i ∝ ∥∇WL(N (xi, αi;Wαi
), yi)∥ (11)

However, computing the per-sample gradient norm is
computationally prohibitive, especially in the context of
training deep models, where common deep learning frame-
works generally provide the average gradient in a batch-
wise manner instead of per-sample-wise. Several works
[21, 24, 25, 52] have delved into this problem and [25] de-
signs an efficient method to approximate the upper bound of
the gradient norm for each training data. Specifically, they
propose that the gradient of the loss function regarding the
pre-activation outputs of the last layer ∇L can be deemed
an effective estimate of the upper bound, that is

sup{∥∇WL(N (xi, αi;Wαi), yi)∥} ≤ ∇L (12)

In this way, we can easily measure the importance of each
training data by accessing their upper bound. Take the im-

11943



Algorithm 1 Supernet training algorithm of PA&DA
Input: Input training data DT , supernet N with weights W ,
training epochs nepochs, training steps nsteps per epoch.
Output: Optimized supernet weights W⋆.

1: for j = 1 to nepochs do
2: for k = 1 to nsteps do
3: Sample a path based on the distribution p(A);
4: Sample a mini-batch training data based on the

distribution q(DT );
5: Train supernet weights W by gradient descent;
6: Record gradient norm of the sampled path after

back-propagation;
7: Approximate and record gradient norm of the

sampled data using Eq.13.
8: end for
9: Linearly increase smoothing parameters δ and τ ;

10: Update the path sampling distribution p(A) accord-
ing to Eq.10 and add it to uniform distribution;

11: Update the data sampling distribution q(DT ) ac-
cording to Eq.11 and add it to uniform distribution;

12: end for

age classification task as an example, the pre-activation out-
puts of the last layer yL are usually followed by a softmax
layer. When using the cross-entropy loss, we can derive
the gradient expression for ∇L in advance and conveniently
compute it during training as below

∇L = softmax(yL)− 1(yi) (13)

The above computation only requires an additional line
of code and can be efficiently executed in a mini-batch man-
ner. Therefore, we use this approximation to estimate the
importance of training data and adopt the normalized results
to update the sampling distribution q after each epoch.

3.4. Importance Sampling NAS

Our method aims to improve the supernet ranking con-
sistency by reducing the gradient variance during training.
We propose a novel and effective importance-based sam-
pling strategy for training the supernet, including path im-
portance sampling and data importance sampling. Though
we fix one of the sampling distributions in the above deriva-
tion, we jointly optimize them in practice. We summarize
our supernet training algorithm in Algo.1.

PAth Importance Sampling (PA) Following the derived
relationship in Eq.10, we record and accumulate the gradi-
ent norm for each sampled path after the back-propagation.
We use the normalized gradient norm of each candidate op-
eration as their importance and update the sampling distri-
bution after each epoch. To handle those parameter-free op-
erations and avoid the meaningless gradient information at

early epochs, we employ a smoothing parameter δ to add
our importance sampling distribution and the uniform sam-
pling distribution. We simply linearly increase δ from 0 to 1
during training and provide a discussion about other chang-
ing schemes in our experiments.

DAta Importance Sampling (DA) We use the upper
bound in Eq.13 as the importance indicator for our training
data. After each epoch, we utilize the normalized impor-
tance to update the data sampling distribution and adopt an
importance sampling strategy with replacement to sample
the training indices for the coming epoch. Note that if a
training instance is not sampled in the current epoch, it will
have zero gradient norm in the update, leading to zero sam-
pling probability. Analogously, we use a smoothing param-
eter τ to add our importance sampling distribution and the
uniform sampling distribution together to tackle the above
problem. We linearly increase τ from 0 to 1 during training
and compare other strategies in our ablation studies.

4. Experiments
To demonstrate the effectiveness of PA&DA in reducing

gradient variance during supernet training, we conduct two
types of evaluations. The first is developed on the NAS-
Bench-201 [15] using the CIFAR-10 dataset [26] and we
provide a comprehensive ranking comparison with other
methods. The second type is based on the widely-used pub-
lic search spaces DARTS [30] and ProxylessNAS [4], using
CIFAR-10 and ImageNet [27] datasets, respectively. We
conduct an architecture search on these search spaces and
compare our search performance with other state-of-the-art
methods. At the end of this section, we further provide ex-
tensive ablation studies to analyze our method in depth.

4.1. Evaluation of Supernet Ranking Consistency

Search Space NAS-Bench-201 [15] is a popular NAS
benchmark and provides the training and test performance
of CIFAR-10, CIFAR-100, and ImageNet-16 for each sub-
model in this search space. Sub-models are composed of
repeated stacking cells with the same structures. Each cell
has four nodes and six edges, and each edge has five candi-
date operations, leading to 56 architectures in total.

Settings We construct the supernet with default settings
as NAS-Bench-201 and train it on the CIFAR-10 dataset.
The smoothing parameters δ and τ are linearly increased
from 0 to 1. We employ total training epochs of 256 with
a mini-batch size of 256. The SGD optimizer is adopted
with an initial learning rate of 0.05, a momentum of 0.9,
and a cosine decay strategy. After training the supernet,
we evaluate the performance of all sub-models on the test
dataset by inheriting the pre-trained supernet weights.

11944



Method Cost KT P@Top5%

SPOS [18] 1.6 0.639 ± 0.030 0.211 ± 0.168
FairNAS† [9] 5.4 0.541 ± 0.023 0.160 ± 0.034
Magic-AT† [50] 4.4 0.547 ± 0.059 0.019 ± 0.011
NSAS [53] 14.6 0.653 ± 0.051 0.064 ± 0.028
SUMNAS† [19] 22.6 0.505 ± 0.039 0.145 ± 0.061
Few-Shot-25 [56] 18.6 0.696 -
GM†-8 [20] 18.0 0.656 ± 0.011 0.153 ± 0.006
CLOSE [57] 2.5 0.643 ± 0.050 0.031 ± 0.021

PA&DA 1.8 0.713 ± 0.002 0.301 ± 0.018

Table 1. Ranking results on NAS-Bench-201. Cost: we report
the supernet training time in terms of the GPU hours. †: they did
not release code thus we implement them following their paper
strictly. Few-Shot-25 and GM-8 denote splitting the one-shot su-
pernet into 25 and 8 sub-supernets, respectively.

To compare with other methods, we calculate Kendall’s
Tau (KT) and Precision@Top5% (P@Top5%) metrics. KT
indicates the proportion of correct ranking pairs in all rank-
ing pairs, which measures the supernet overall ranking con-
sistency. P@Top5% is the proportion of predicted top-5%
sub-models in real top-5% sub-models, showing the ability
to identify superb architectures.

Results We summarize the results in Tab.1. The
regularization-based or manually-designed methods such as
FairNAS, Magic-AT, and SUMNAS not only consume more
training time but also perform worse than SPOS. NSAS ob-
tains higher KT but lower P@Top5% and spends nearly
an order of magnitude more training time than SPOS. Al-
though the splitting methods such as Few-Shot-NAS, GM,
and CLOSE achieve better KT, they generally need sev-
eral times more cost than SPOS. In contrast, PA&DA only
requires 0.2 more GPU hours than SPOS and reaches the
highest KT and P@Top5% when compared with others,
demonstrating that our training paradigm is effective and
beneficial to improving the supernet ranking consistency.

4.2. Search Performance on CIFAR-10

Search Space We use the CIFAR-10 dataset to search for
superior cells in the DARTS [30] search space. The su-
pernet is composed of six normal cells and two reduction
cells. Normal cells process the feature map without down-
sampling, while reduction cells perform down-sampling on
the feature map with stride = 2 and are located at the 1/3
and 2/3 of the total depth of the supernet. Each cell consists
of seven nodes with four intermediate nodes and fourteen
edges with eight candidate operations on each edge. We
search for the most two powerful operations for each edge
to get the final searched cell.

Settings We follow the settings in NSAS [53] to combine
our method with RandomNAS [28]. We use the SGD op-

c_{k-2}

0
sep_conv_3x3

sep_conv_5x5

1

sep_conv_3x3

2
sep_conv_5x5

3

sep_conv_3x3

c_{k-1}
skip_connect

sep_conv_5x5

dil_conv_5x5

c_{k}

(a) Normal Cell

c_{k-2} 0

sep_conv_3x3

avg_pool_3x3

2

sep_conv_3x3

c_{k-1}
1

avg_pool_3x3

skip_connect

skip_connect
3

avg_pool_3x3

c_{k}
avg_pool_3x3

(b) Reduction Cell

Figure 3. Our best searched cells in the DARTS search space.

timizer with momentum 0.9 and weight decay 3e-4 to train
the supernet for 50 epochs. The initial learning rate is 0.025
and is then decayed to 0.001 by a cosine strategy. After the
supernet training, we randomly search for 60 rounds and
evaluate 100 sub-models at each round to select the most
promising architecture. By re-training the searched archi-
tecture, we compare the top-1 classification accuracy with
other methods. We visualize the best searched cell in Fig.3,
and provide other cells and re-training details in our Supp.

Results We report the best and average test accuracy from
repeated experiments with three random seeds in Tab.2.
As can be seen, our method achieves the highest average
test accuracy 97.52 ± 0.07, surpassing the original DARTS
and its advanced variants. When compared with other im-
proved one-shot NAS methods such as NSAS, Few-Shot-
NAS, GM, and CLOSE, our method consistently outper-
forms them with the least search cost.

Our best cells are shown in Fig.3. We can observe
that both the normal cell and the reduction cell have the
skip connect operation from the input nodes, leading to
a residual link with other operations. As pointed out in
[44], such a ResNet-style residual link is helpful for achiev-
ing state-of-the-art performance, demonstrating that our
method excels in identifying excellent architectures.

4.3. Search Performance on ImageNet

Search Space We use the chain-like search space as pro-
posed in ProxylessNAS [4], including 21 searchable lay-
ers in the supernet. We search for lightweight MobileNet
[37] blocks by exploring the kernel sizes {3, 5, 7} and ex-
pansion rates {3, 6} for the searchable blocks. A search-
able skip connect is added for the blocks without down-
sampling, leading to 7 or 6 candidate operations per layer.

Settings We utilize our method to train the supernet on 8
GPU cards for 120 epochs, with a total batch size of 2048.
SGD optimizer is adopted with the weight decay 4e-5 and
momentum 0.9. The initial learning rate is 0.5 and is de-
cayed to 5e-4 by a cosine strategy. After training the super-
net, we use an evolutionary search algorithm to search for
top-performing architectures with the FLOPs constraint 400
M. The evolutionary search lasts for 20 epochs in total. At
each epoch, we maintain a population with 50 sub-models,

11945



Method Test Accuracy Parameters Search Cost Search
Best(%) Average(%) (M) (GPU Days) Method

NASNet-A [59] 97.35 - 3.3 1,800 RL
ENAS [34] 97.11 - 4.6 0.5 RL
DARTS [30] - 97.00 ± 0.14 3.3 0.4 Gradient
GDAS [14] 97.07 - 3.4 0.3 Gradient
RandomNAS [28] - 97.15 ± 0.08 4.3 2.7 Random
DARTS-PT [46] 97.52 97.39 ± 0.08 3.0 0.8 Gradient
BaLeNAS [54] - 97.50 ± 0.07 3.8 0.6 Gradient
AGNAS [42] 97.54 97.47 ± 0.003 3.6 0.4 Gradient
ZARTS [47] - 97.46 ± 0.07 3.7 1.0 Gradient

GDAS-NSAS [53] 97.27 - 3.5 0.4 Gradient
RandomNAS-NSAS [53] 97.36 - 3.1 0.7 Random
Few-Shot-NAS† [56] 97.42 97.37 ± 0.06 3.8 2.8 Gradient
GM [20] 97.60 97.51 ± 0.08 3.7 2.7 Gradient
CLOSE [57] - 97.28 ± 0.04 4.1 0.6 Gradient

PA&DA 97.66 97.52 ± 0.07 3.9 0.4 Random

Table 2. Comparison with other state-of-the-art methods on the CIFAR-10 dataset using DARTS search space. We report the best and
average test accuracy of repeated experiments.†: reported by GM [20].

Method Params. FLOPs Top-1 Top-5
(M) (M) (%) (%)

AmoebaNet-A [35] 5.1 555 74.5 92.0
MnasNet-A1 [43] 3.9 312 75.2 92.5
PNAS [29] 5.1 588 74.2 91.9
TNASP-C [32] 5.3 497 75.8 92.7

DA-NAS [12] - 389 74.6 -
SPOS [18] 5.4 472 74.8 -
FBNet-C [48] 5.5 375 74.9 -
ProxylessNAS [4] 7.1 465 75.1 92.3
FairNAS-A [9] 4.6 388 75.3 -
MAGIC-AT [50] 6.0 598 76.8 93.3
Few-Shot NAS [56] 4.9 521 75.9 -
GM [20] 4.9 530 76.6 93.0

PA&DA 5.3 399 77.3 93.5

Table 3. Comparison with other state-of-the-art methods on the
ImageNet dataset using the ProxylessNAS search space.

including 25 sub-models from mutation and crossover re-
spectively. We retrain our searched architecture on the Im-
ageNet training dataset and evaluate its performance on the
validation dataset. The detailed retraining configuration and
our searched architecture are provided in our Supp.

Results The performance comparison is summarized in
Tab.3. Our PA&DA surpasses DA-NAS and FairNAS-A
with a bit more FLOPs. When compared with SPOS or
other improved one-shot NAS methods such as Proxyless-
NAS, MAGIC-AT, Few-Shot NAS, and GM, our searched
architecture is smaller and obtains the highest top-1 accu-
racy 77.3, suffice to demonstrate the efficacy of our method.

4.4. Ablation Studies

Effect of batch size As larger batch sizes (BS) can stabi-
lize the training of deep models with lower GV, we use the
SPOS [18] to ablation BS from 16 to 512 to validate this
phenomenon during supernet training. To ensure sufficient
convergence, we use double epochs for BS 512. As shown
in Fig.5(a), GV decreases and KT increases monotonically
as BS becomes larger, and BS 512 obtains the best KT 0.670
± 0.029. This further confirms that lower GV benefits the
supernet training, which exactly meets our idea. However,
PA&DA does not require more epochs than BS 512 and gets
higher KT, thus is more efficient and effective.

Effect of schedules for smoothing parameters To pre-
load data indices for efficiency, we update the sampling
probability of DA after each epoch. We explore two chang-
ing styles for τ : linearly decrease and increase, and eval-
uate the distribution granularity sample-wise or class-wise
in Tab.4. Notice that using a sample-wise distribution and
linearly increasing τ yields the best result. As for PA, we
investigate the update frequency for the sampling distribu-
tion and also two changing styles for δ. Results show that
updating the sampling probability per epoch and linearly in-
creasing δ is better. Both results suggest a linearly increase
schedule for smoothing parameters, showing that the impor-
tance sampling is preferable in the late of training.

Effect of DA and PA We conduct the ablation study for
DA and PA in Tab.5. When DA and PA are both disabled,
our method degenerates to the baseline method SPOS [18].
When either one is applied, we can obtain higher KT and
P@Top5%. Furthermore, both modules cooperate well with

11946



0 50 100 150 200 250
Epoch

0.0

2.5

5.0

7.5

10.0

G
V

 (×
1e

-5
)

SPOS
PA&DA

(a) CIFAR-10

0 50 100 150 200 250
Epoch

0.0

2.5

5.0

7.5

10.0

G
V

 (×
1e

-5
)

SPOS
PA&DA

(b) CIFAR-100

0 50 100 150 200 250
Epoch

0.0

2.5

5.0

7.5

10.0

G
V

 (×
1e

-5
)

SPOS
PA&DA

(c) ImageNet16-120

C10 C100 IN16
Datasets

0.4

0.5

0.6

0.7

K
T

SPOS
PA&DA

(d) Ranking Comparison

Figure 4. KT and GV on NAS-Bench-201 using three datasets. C10: CIFAR-10, C100: CIFAR-100, IN16: ImageNet16-120.

Module Freq. Style Gran. KT

DA
PE ↓ Class 0.635 ± 0.029
PE ↑ Class 0.637 ± 0.024
PE ↓ Instance 0.643 ± 0.021
PE ↑ Instance 0.644 ± 0.014

PA
PS ↓ Path 0.663 ± 0.008
PS ↑ Path 0.698 ± 0.007
PE ↓ Path 0.667 ± 0.003
PE ↑ Path 0.699 ± 0.004

Table 4. Ranking performance w.r.t the smoothing parameters and
update schedules for DA and PA. PE: update the sampling distri-
bution per epoch, PS: update the sampling distribution per step.

each other, and using them together yields the best result.
Besides, we empirically observe that PA contributes more
performance gains than DA.

DA PA KT P@Top5%

- - 0.639 ± 0.030 0.211 ± 0.168
✓ - 0.644 ± 0.014 0.225 ± 0.049
- ✓ 0.699 ± 0.004 0.299 ± 0.008
✓ ✓ 0.713 ± 0.002 0.301 ± 0.018

Table 5. Ablation study for PA and DA.

5. Analysis and Discussions
5.1. Gradient Variance Comparison

To show the benefit of PA&DA for reducing GV dur-
ing supernet training, we compare PA&DA with the base-
line method SPOS [18] on CIFAR-10, CIFAR-100, and
ImageNet-16-120 datasets using NAS-Bench-201 [15]. We
repeat the experiments with three different seeds and record
the supernet GV of each epoch in Fig.4. As the training
goes on and smoothing parameters linearly increases, the
original uniform sampling strategy for path and data gradu-
ally shifts to the biased sampling, making PA&DA achieve
lower GV than the baseline. Due to this advantage, the su-

16 32 64 128 256 512*
Batch Size

4

6

8

G
V

 (×
1e

-5
)

GV
KT 0.55

0.60

0.65

0.70

K
T

(a) KT and GV w.r.t Batch Size

0 50 100 150 200 250
Epoch

2.0

1.5

1.0

0.5

Tr
ai

na
bi

lit
y 

(×
1e

3)

SPOS
PA&DA

(b) Trainability comparison

Figure 5. Effect of various batch sizes and trainability comparison.

pernet trained by PA&DA obtains higher ranking consis-
tency in three datasets as shown in Fig.4(d).

5.2. Trainability of Paths from PA

As analyzed above, PA plays a more critical role than
DA. To explore its key advantage, we adopt the trainabil-
ity from TE-NAS [6] to measure the sampled path at each
training step. Results are shown in Fig.5(b). We can see that
the sampled path of PA constantly enjoys a higher trainabil-
ity than the baseline, especially at the end of the training,
which explains the faster convergence and better general-
ization performance from PA.

6. Conclusion
In this work, we reduce the gradient variance for the su-

pernet training by jointly optimizing the path and data sam-
pling distributions to improve the supernet ranking consis-
tency. We derive the relationship between the gradient vari-
ance and the sampling distributions and use the normalized
gradient norm to update both distributions. Extensive ex-
periments demonstrate the effectiveness of our method. In
the future, we will further explore more effective methods
to reduce gradient variance for supernet training.

Acknowledgments
This work was supported in part by the Na-

tional Key R&D Program of China under grant No.
2018AAA0102701 and in part by the National Natural Sci-
ence Foundation of China under Grant No. 62176250 and
No.62203424.

11947



References
[1] Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron

Courville, and Yoshua Bengio. Variance reduction in
sgd by distributed importance sampling. arXiv preprint
arXiv:1511.06481, 2015. 1, 3, 4

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using rein-
forcement learning. In ICLR, 2017. 1, 2

[3] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc Le. Understanding and simplifying
one-shot architecture search. In ICML, 2018. 1, 2, 3

[4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In
ICLR, 2019. 5, 6, 7

[5] Haw-Shiuan Chang, Erik Learned-Miller, and Andrew Mc-
Callum. Active bias: Training more accurate neural networks
by emphasizing high variance samples. In NIPS, 2017. 1, 3

[6] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural
architecture search on imagenet in four gpu hours: A theo-
retically inspired perspective. In ICLR, 2021. 8

[7] Xiangxiang Chu, Xudong Li, Shun Lu, Bo Zhang, and Jix-
iang Li. Mixpath: A unified approach for one-shot neural
architecture search. arXiv preprint arXiv:2001.05887, 2020.
2

[8] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xi-
aolin Wei, and Junchi Yan. Darts-: robustly stepping out of
performance collapse without indicators. In ICLR, 2021. 2

[9] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-
nas: Rethinking evaluation fairness of weight sharing neural
architecture search. In ICCV, 2021. 1, 3, 6, 7

[10] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li.
Fair DARTS: eliminating unfair advantages in differentiable
architecture search. In ECCV, 2020. 2

[11] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baha-
ran Mirzasoleiman, Peter Bailis, Percy Liang, Jure Leskovec,
and Matei Zaharia. Selection via proxy: Efficient data selec-
tion for deep learning. In ICLR, 2020. 3

[12] Xiyang Dai, Dongdong Chen, Mengchen Liu, Yinpeng
Chen, and Lu Yuan. Da-nas: Data adapted pruning for ef-
ficient neural architecture search. In ECCV, 2020. 7

[13] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.
Saga: A fast incremental gradient method with support for
non-strongly convex composite objectives. In NIPS, 2014.
1, 3

[14] Xuanyi Dong and Yi Yang. Searching for a robust neural
architecture in four gpu hours. In CVPR, 2019. 7

[15] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search. In ICLR,
2020. 1, 5, 8

[16] Siddharth Gopal. Adaptive sampling for sgd by exploiting
side information. In ICML, 2016. 1, 3

[17] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A uni-
fied theory of sgd: Variance reduction, sampling, quantiza-
tion and coordinate descent. In AISTATS, 2020. 1, 3

[18] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot

neural architecture search with uniform sampling. In ECCV,
2020. 1, 2, 3, 6, 7, 8

[19] Hyeonmin Ha, Ji-Hoon Kim, Semin Park, and Byung-Gon
Chun. Sumnas: Supernet with unbiased meta-features for
neural architecture search. In ICLR, 2022. 1, 2, 6

[20] Shoukang Hu, Ruochen Wang, Lanqing Hong, Zhenguo Li,
Cho-Jui Hsieh, and Jiashi Feng. Generalizing few-shot nas
with gradient matching. In ICLR, 2022. 1, 2, 6, 7

[21] Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G
Andersen, Jeffrey Dean, Gregory R Ganger, Gauri Joshi,
Michael Kaminksy, Michael Kozuch, Zachary C Lipton,
et al. Accelerating deep learning by focusing on the biggest
losers. arXiv preprint arXiv:1910.00762, 2019. 3, 4

[22] Rie Johnson and Tong Zhang. Accelerating stochastic gra-
dient descent using predictive variance reduction. In NIPS,
2013. 1, 3

[23] Tyler B Johnson and Carlos Guestrin. Training deep mod-
els faster with robust, approximate importance sampling. In
NIPS, 2018. 1, 3

[24] Angelos Katharopoulos and François Fleuret. Biased im-
portance sampling for deep neural network training. arXiv
preprint arXiv:1706.00043, 2017. 4

[25] Angelos Katharopoulos and François Fleuret. Not all sam-
ples are created equal: Deep learning with importance sam-
pling. In ICML, 2018. 1, 3, 4

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 5

[28] Liam Li and Ameet Talwalkar. Random search and repro-
ducibility for neural architecture search. In UAI, 2020. 6,
7

[29] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In ECCV, 2018. 7

[30] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In ICLR, 2019. 1, 2, 5, 6,
7

[31] Shun Lu, Yu Hu, Longxing Yang, Zihao Sun, Jilin Mei, Yim-
ing Zeng, Xiaowei Li, and Tecent ADlab. Du-darts: Decreas-
ing the uncertainty of differentiable architecture search. In
BMVC, 2021. 2

[32] Shun Lu, Jixiang Li, Jianchao Tan, Sen Yang, and Ji
Liu. Tnasp: A transformer-based nas predictor with a self-
evolution framework. In NeurIPS, 2021. 7

[33] Deanna Needell, Rachel Ward, and Nati Srebro. Stochas-
tic gradient descent, weighted sampling, and the randomized
kaczmarz algorithm. In NIPS, 2014. 3, 4

[34] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. In ICML, 2018. 1, 2, 3, 7

[35] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In AAAI, 2019. 7

11948



[36] Nicolas Roux, Mark Schmidt, and Francis Bach. A stochas-
tic gradient method with an exponential convergence rate
for finite training sets. In NIPS, 2012. 1, 3

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018. 6

[38] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Min-
imizing finite sums with the stochastic average gradient.
Mathematical Programming, 162(1):83–112, 2017. 1, 3

[39] Pranab Kumar Sen. Estimates of the regression coefficient
based on kendall’s tau. Journal of the American statistical
association, 1968. 2

[40] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual co-
ordinate ascent methods for regularized loss minimization.
arXiv preprint arXiv:1209.1873, 2012. 1, 3

[41] Xiu Su, Shan You, Mingkai Zheng, Fei Wang, Chen Qian,
Changshui Zhang, and Chang Xu. K-shot nas: Learnable
weight-sharing for nas with k-shot supernets. In ICML, 2021.
1, 2

[42] Zihao Sun, Yu Hu, Shun Lu, Longxing Yang, Jilin Mei,
Yinhe Han, and Xiaowei Li. Agnas: Attention-guided mi-
cro and macro-architecture search. In ICML, 2022. 2, 7

[43] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
and Quoc V Le. Mnasnet: Platform-aware neural architec-
ture search for mobile. In CVPR, 2019. 7

[44] Xingchen Wan, Binxin Ru, Pedro M Esperança, and Zhen-
guo Li. On redundancy and diversity in cell-based neural
architecture search. In ICLR, 2022. 6

[45] Linnan Wang, Yi Yang, Renqiang Min, and Srimat Chakrad-
har. Accelerating deep neural network training with inconsis-
tent stochastic gradient descent. Neural Networks, 93:219–
229, 2017. 1, 3

[46] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi-
aocheng Tang, and Cho-Jui Hsieh. Rethinking architecture
selection in differentiable nas. In ICLR, 2021. 7

[47] Xiaoxing Wang, Wenxuan Guo, Junchi Yan, Jianlin Su, and
Xiaokang Yang. Zarts: On zero-order optimization for neural
architecture search. In NeurIPS, 2021. 7

[48] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
CVPR, 2019. 7

[49] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
SNAS: Stochastic neural architecture search. In ICLR, 2019.
1, 2

[50] Jin Xu, Xu Tan, Kaitao Song, Renqian Luo, Yichong Leng,
Tao Qin, Tie-Yan Liu, and Jian Li. Analyzing and mitigating
interference in neural architecture search. In ICML, 2022. 1,
2, 6, 7

[51] Longxing Yang, Yu Hu, Shun Lu, Zihao Sun, Jilin Mei,
Yinhe Han, and Xiaowei Li. Searching for burgerformer with
micro-meso-macro space design. In ICML, 2022. 2

[52] Jiong Zhang, Hsiang-Fu Yu, and Inderjit S Dhillon. Autoas-
sist: A framework to accelerate training of deep neural net-
works. In NeurIPS, 2019. 4

[53] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and
Steven Su. Overcoming multi-model forgetting in one-shot
nas with diversity maximization. In CVPR, 2020. 1, 2, 6, 7

[54] Miao Zhang, Shirui Pan, Xiaojun Chang, Steven Su, Jilin
Hu, Gholamreza Reza Haffari, and Bin Yang. Balenas: Dif-
ferentiable architecture search via the bayesian learning rule.
In CVPR, 2022. 7

[55] Peilin Zhao and Tong Zhang. Stochastic optimization with
importance sampling for regularized loss minimization. In
ICML, 2015. 1, 3, 4

[56] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fon-
seca, and Tian Guo. Few-shot neural architecture search. In
ICML, 2021. 1, 2, 6, 7

[57] Zixuan Zhou, Xuefei Ning, Yi Cai, Jiashu Han, Yiping Deng,
Yuhan Dong, Huazhong Yang, and Yu Wang. Close: Cur-
riculum learning on the sharing extent towards better one-
shot nas. In ECCV, 2022. 1, 2, 6, 7

[58] Barret Zoph and Quoc V. Le. Neural architecture search with
reinforcement learning. In ICLR, 2017. 1, 2

[59] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In CVPR, 2018. 7

11949


