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Abstract

Semantic image editing provides users with a flexible

tool to modify a given image guided by a correspond-

ing segmentation map. In this task, the features of the

foreground objects and the backgrounds are quite differ-

ent. However, all previous methods handle backgrounds

and objects as a whole using a monolithic model. Con-

sequently, they remain limited in processing content-rich

images and suffer from generating unrealistic objects and

texture-inconsistent backgrounds. To address this issue,

we propose a novel paradigm, Semantic Image Editing

by Disentangling Object and Background (SIEDOB), the

core idea of which is to explicitly leverages several hetero-

geneous subnetworks for objects and backgrounds. First,

SIEDOB disassembles the edited input into background

regions and instance-level objects. Then, we feed them

into the dedicated generators. Finally, all synthesized

parts are embedded in their original locations and utilize

a fusion network to obtain a harmonized result. More-

over, to produce high-quality edited images, we propose

some innovative designs, including Semantic-Aware Self-

Propagation Module, Boundary-Anchored Patch Discrim-

inator, and Style-Diversity Object Generator, and inte-

grate them into SIEDOB. We conduct extensive experi-

ments on Cityscapes and ADE20K-Room datasets and ex-

hibit that our method remarkably outperforms the base-

lines, especially in synthesizing realistic and diverse objects

and texture-consistent backgrounds. Code is available at

https://github.com/WuyangLuo/SIEDOB.

1. Introduction

Semantic image editing has recently gained significant

traction due to its diverse applications, including adding, al-

tering, or removing objects and controllably inpainting, out-

painting, or repainting images. Existing methods have made

impressive progress benefiting from Generative Adversar-
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Figure 1. Existing methods struggle to deal with the compound of

backgrounds and several overlapping objects in a complex scene.

They generate distorted objects and texturally inconsistent back-

grounds. The proposed method can cope well with this input.

ial Networks (GAN) [5,14] and have demonstrated promis-

ing results in relatively content-simple scenes, such as land-

scapes. However, they still suffer from inferior results for

content-rich images with multiple discrepant objects, such

as cityscapes or indoor rooms. This paper aims to improve

editing performance in complex real-world scenes.

When image editing experts deal with a complex task,

they decompose the input image into multiple indepen-

dent and disparate elements and handle them with different

skills. For example, when editing a photo with a congested

road, they process the cars and pedestrians individually and

then fill in the background. Inspired by this spirit, we pro-

pose a heterogeneous editing model, which mimics the ex-

perience of human experts and explicitly splits the com-

pound content into two distinct components: Backgrounds

and objects. The background has no regular shape and may

span a large area. More importantly, the re-generated back-

ground’s texture and the existing area must be consistent.

Foregrounds objects are class-specific and appear anywhere

with various scales. Due to the significant differences be-

tween the two components, it is necessary to disentangle

them from the input and process them with different net-

works.

Several recent works [23, 28, 32] have been dedicated to

this task. SESAME [32] proposes a new pair of genera-

tor and discriminator based on the cGAN framework [31],

which generates edited content through a single-shot in-

ference. ASSET [23] builds a transformer-based archi-

tecture with a sparse attention mechanism and synthesizes

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1868



edited regions relying on a codebook generated by VQ-

GAN [4]. SPMPGAN [28] proposes a coarse-to-fine gen-

erator equipped with style-preserved modulation layers to

retain style consistency between edited regions and con-

text. These methods effectively enhance the ability of a

monolithic model to handle the entire input. However,

they deal with backgrounds and objects equally using the

same generator, which causes them to produce inferior

results. Figure 1 demonstrates an example. To tackle

this limitation, we present a novel framework, Semantic

Image Editing by Disentangling Object and Background

(SIEDOB), to generate backgrounds and foreground ob-

jects separately, which can achieve two goals: Synthesiz-

ing texture-consistent backgrounds and generating photo-

realistic and diverse objects.

SIEDOB first disassembles the edited image into back-

ground regions and instance-level objects, then employs dif-

ferent generators to synthesize the corresponding content,

and finally aggregates generated objects with backgrounds

via a fusion network. In this way, we decouple our task into

several more feasible subtasks and handle different compo-

nents using dedicated sub-models.

Generating texture-consistent backgrounds with known

context is not trivial since backgrounds may cross a size-

able spatial area in an image and have no regular shape.

We propose a pair of boosted generator and discriminator

to address this problem. Specifically, we propose Semantic-

Aware Self-Propagation Module (SASPM) to help the gen-

erator efficiently transfer the semantic-wise features of

known regions to generated regions. Moreover, to fur-

ther enhance texture consistency, we design a Boundary-

Anchored Patch Discriminator to force the generator to pay

more attention to local textures of editing fringe.

In our task, depending on the scenario, the edited object

may be requested to be inpainted or generated. If an ob-

ject is partially visible, it undergoes a lightweight inpainting

network. Otherwise, we employ a Style-Diversity Object

Generator to obtain multi-modal results based on a style

bank. After generating the backgrounds and all objects,

we re-integrate them into a whole. However, the separate

generation may lead to sudden boundaries and dissonance

between objects and surroundings. To tackle this problem,

we utilize a simple fusion network that predicts the residual

value for each pixel to harmonize outputs.

Our main contributions can be summarized as follows:

• We propose a new solution for semantic image editing,

named SIEDOB, which can handle complex scenes by

decoupling the generation of backgrounds and objects.

• We propose Semantic-Aware Self-Propagation Module

and Boundary-Anchored Patch Discriminator to facil-

itate texture-consistent background generation.

• We propose a Style-Diversity Object Generator that

can generate diverse and realistic object images from

masks.

• Extensive experiments on two benchmarks indicate

that our method can generate texture-consistent results

and deal with crowded objects well.

2. Related Works

2.1. Semantic Image Editing

Semantic image editing refers to modifying a given im-

age by manipulating a corresponding segmentation map

and keeping the context coherent. This approach pro-

vides powerful editing capabilities, such as adding and re-

moving objects, modifying shapes, and re-painting back-

grounds. Compared to several related tasks, including se-

mantic image synthesis [14, 33, 40, 42, 51] and image in-

painting [13, 30, 45, 46, 48], semantic image editing has not

been fully exploited due to its difficulty in generating re-

alistic objects and texture-consistent backgrounds simulta-

neously. A few recent works are devoted to semantic image

editing [10,23,28,32]. HIM [10] is an early exploration that

only operates on a single object using a two-stage network.

SESAME [32] introduces a new pair of generators and

discriminators to improve the quality of the generated re-

sults. Moreover, SESAME adopts a more flexible workflow

that can respond to various image editing requirements of

users. ASSET [23] proposes a novel transformer-based ap-

proach modeling long-range dependencies, enabling high-

resolution image editing. SPMPGAN [28] presents a style-

preserved modulation technique and builds a progressive ar-

chitecture that solves the style inconsistency problem in se-

mantic image editing. These methods all consider semantic

image editing as a global generation problem. Thus, they

use a single model to process all elements of the edited im-

age equally. In this work, we propose a decoupled frame-

work to handle objects and backgrounds separately using

heterogeneous generators, demonstrating more promising

results.

2.2. Image Synthesis via Heterogeneous Generators

For a wide variety of image generation tasks, most ap-

proaches impose monolithic generators on the entire im-

age, including unsupervised image generation [17, 18, 35],

image-to-image translation [29, 33, 42, 51], image inpaint-

ing [24, 45, 46], and image editing [15, 26]. They share

the same network structure and weights to generate all the

content without specialized submodels for different seman-

tic regions or classes. Other methods use different archi-

tectures or weights to generate different image elements to

improve generation quality for different components. For

example, they employ multiple local branches specialized
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Figure 2. Overview of the proposed method. To reduce the complexity of modeling the entire edited region, we use a heterogeneous model

to synthesize foreground objects and backgrounds separately, which contains three components: (1) Background generation, (2) object

generation, (3) fusion network.

for different parts [6, 9, 11, 21], decoupling content and

style [12, 20, 27], generating foreground and a single fore-

ground object separately [39, 43], enhancing local genera-

tion [1,37], or having separate modules for different seman-

tic categories [22, 40]. However, these methods are devel-

oped for pure image generation or translation tasks where

their input is noises, categories, segmentation maps, or full

images. Therefore, they only need to synthesize simple but

visually plausible results to fool the discriminator. Seman-

tic image editing is a more challenging task, and its diffi-

culty lies in keeping coherence between edited and known

regions. In this paper, we propose a heterogeneous frame-

work that utilizes different sub-models for foreground ob-

jects and backgrounds to improve their generation quality

concurrently.

3. Proposed Method

Our goal is to edit a given image I ∈ R
H×W×3 guided

by a user-provided segmentation map S ∈ L
H×W×L within

an edited region defined by a mask map M ∈ B
H×W×1

whose value is 0 in the non-edited region and 1 in the edited

region. Here H , W , and L denote the height, width, and

number of semantic categories, respectively. The edited re-

gion of I is erased as input Ie = I × (1 − M). We create

a background mask MB and all instance-level object masks

{Mq
c } in the edited region based on the segmentation map.

Here, c ∈ C, C is a pre-defined set of considered foreground

categories, and Mq
c is the q-th instance that falls into the

category c. The background mask MB is composed of the

remaining pixels. Thus, we can disassemble the input im-

age Ie to the background and objects according to MB and

{Mq
c }. Then we generate the background and objects sepa-

rately using the respective generators. Finally, we integrate

all generated content via a fusion network. The workflow is

depicted in Figure 2.

3.1. Background Generation

For image editing, the background usually needs to be

partially generated to fill the space, such as sky or ground.

Therefore, generating style-consistent texture patterns in

edited regions is critical and challenging since the gener-

ated background and the known region coexist. In addi-

tion, an image’s background may be across a distant spatial

distance and have no regular shape. Efficiently and accu-

rately transferring feature styles from known to edited re-

gions is vital for generating texture-consistent results. To

this end, we propose a Semantic-Aware Self-Propagation

Module (SASPM), which explicitly extracts semantic-wise

feature codes from feature maps and propagates them to the

corresponding regions at the same layer. Furthermore, we

employ a Boundary-Anchored Patch Discriminator to en-

force the generator to focus on local textures at the editing

boundary.

The proposed background generator GB is shown in

3(c). We feed the disassembled background region into GB

as the input: IB = Ie × MB . GB follows an encoder-

decoder structure. The encoder is composed of several suc-

cessive GatedConv layers [46] with stride two, and the de-

coder contains corresponding GatedConv layers with up-

sampling and several SASPM.

Semantic-Aware Self-Propagation Modules (SASPM)

SASPM aims at propagating features of known regions

to edited regions in a semantic-aware manner. Taking the

sky area as an example shown in Figure 3(a)(b), a SASPM

is divided into two steps. First, we extract the semantic-

aware feature code by computing the average of the known

sky area. Then, the feature code is broadcast into the en-

tire sky area according to the corresponding semantic mask.

SASPM can transfer the feature codes of each semantic label

at the same feature level without the constraint of the recep-

tive field. Formally, let F ∈ R
H×W×C denote a feature
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Edited Image Known Sky Region Entire Sky RegionEdited Image Known Sky Region Entire Sky Region

(a) A semantic category (sky) spans the known region and the edited region

(b) Principle of SASPM

(c) Background Generator
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Figure 3. (a) A background category, such as sky, may span known

and edited regions. We want to transfer the features from the

known region to the generated region in a semantic-aware fash-

ion. (b) The principle of SASPM. We extract the feature code for

each background category from the known region and then propa-

gate it to the entire region. (c) The architecture of our background

generator.

map in front of a SASPM. H , W are the spatial dimension

and C is the number of channels. Let U ∈ R
L×C repre-

sent L feature codes extracted from the known region, and

the feature codes of non-background classes are set to zero.

We generate a code map P based on the segmentation map

S ∈ L
H×W×L through a matrix multiplication to spatially

broadcast the feature codes into the corresponding semantic

region:

P = S ⊗ U (1)

Thus, P ∈ R
H×W×C is restored to the spatial dimension

filled with the category-specific feature codes. Finally, we

propagate P into the original F using a modulation opera-

tion following SPADE [33]. Specifically, we learn two pa-

rameters γP ∈ R
H×W×C and βP ∈ R

H×W×C from P to

modulate F :

FP = ReLU (γP ⊙ IN(Conv(F ))⊕ βP ) (2)

Where Conv(·), IN(·), and ReLU(·) denote Convolu-

tional Layer, Instance Normalization, and ReLU activation

function, respectively. ⊙ and ⊕ are element-wise multipli-

cation and addition.
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Figure 4. Boundary-Anchored Patch Discriminator DBAP takes

in four real image patches or fake image patches of random size.

All patches are centered on the boundary of the edited region en-

closed by the red line.

Boundary-Anchored Patch Discriminator

We employ two discriminators for our background gen-

erator: (1) A global discriminator used by previous works

[28]; (2) a novel Boundary-Anchored Patch Discriminator

DBAP . We introduce DBAP to enforce the generator to pay

attention to local texture across the fringe of the edited area.

We expect DBAP can capture known and generated textures

simultaneously to facilitate texture-consistent results. To

this end, we randomly select several central points anchored

on the boundary of the edited region to crop patches from

real or generated images, as shown in Figure 4. Thus, the

fake patches contain both real and fake textures, so DBAP

can distinguish between true and false through texture con-

sistency.

The training objective of GB is comprised of L1 Dis-

tance Loss L1, Perceptual Loss LP [16], Global Adversar-

ial Loss LG
GAN , and Local Patch Adversarial Loss LL

GAN :

LB = L1 + λPBLP + LG
GAN + λL

GANLL
GAN (3)

Where L1 and LP force the generated results to be closer to

the ground truth in RGB space and VGG space [38]. LG
GAN

and LL
GAN are applied to global images and local patches,

respectively. All adversarial losses in this work are asso-

ciated with a SNPatchGAN Discriminator [46] using the

hinge version [2].

3.2. Object Generation

Our task involves dealing with two scenarios: Inpaint-

ing or generating an objectÐthe former aims at completing

an object based on its visible part. The latter synthesizes

an inexistent object from its mask with an arbitrary appear-

ance. Unlike handling all objects at once, cropping each

edited object and independently generating them allows
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Figure 5. (a) How to extract style maps? During training, we extract their style codes from ground truth images or randomly sampled

images and then generate style maps by broadcasting. During inference, we sample a class-specific style code directly from the style bank.

(b) The structure of Semantic-Style Normalization Module (SSNM). (c) We build a Style-Diversity Object Generator equipped with SSNM.

us to use aligned input images with the same size, which

is beneficial for generating high-quality results. Specifi-

cally, we crop all objects {Crop(Ie)
q
c} from the edited re-

gion based on object masks {Mq
c }. We leverage a two-

way model to handle the different scenarios. One way is

a lightweight inpainting network GOI to complete objects.

GOI is a UNet-like [36] network and its training objective

is: LGI = L1 + λPILP + LGAN . L1, LP, and LGAN

are the same as the terms in Equation 6. The other way is

the proposed Style-Diversity Object Generator GOG for the

multi-modal generation. Note that all categories of objects

share GOI and GOG.

Style-Diversity Object Generator

GOG generates a class-specific image from a one-hot

segmentation map Msem ∈ L
H×W×K created by the cor-

responding object mask Mq
c . K is the number of the pre-

defined foreground class set. Motivated by disentanglement

learning [12, 20, 27], we utilize style information to con-

trol the appearance of results for muti-modal generation.

Specifically, we sample an image from the training set with

the same class label and extract its style code W ∈ R
128

by a style encoder Es. Then we generate a style map

Mstyle ∈ R
H×W×128 via broadcasting the style code ac-

cording to Mq
c , as illustrated in Figure 5(a). At this point,

we have acquired a semantic map Msem and a style map

Mstyle. The next is how to decode them back to a style-

controlled object image. To this end, we design a Semantic-

Style Normalization Module (SSNM) to integrate the style

and semantic information, as shown in Figure 5(b). We first

inject the semantic information into the input feature maps

F ∈ R
H×W×C :

Fsem = ReLU (γc ⊙ IN(Conv(F ))⊕ βc) (4)

Where two normalization parameters, γc ∈ R
H×W×C and

βc ∈ R
H×W×C are learned from Msem. Similarly, the

style information is injected by:

FO = ReLU (γs ⊙ IN(Conv(Fsem))⊕ βs) (5)

Where two normalization parameters γs ∈ R
H×W×C and

βs ∈ R
H×W×C are learned from Mstyle.

During training, for each sample, we take the ground

truth image Igt and a randomly sampled image Is as the

style images to generate two results Rgt and Rs. We em-

ploy the following objective function to optimize GOG:

LGO = L1 + λPOLP + LGAN + LSCC (6)

Here, L1 is only applied to Rgt. LP, LGAN , and LSCC

are imposed on all results. We introduce Style Cycle-

Consistency Loss LSCC to force the generator to produce

style-consistent results with style images.

LSCC = 1− cos

(

E′
S(R)

∥E′
S(R)∥

2

,
E′

s

(

Istyle
)

∥E′
S (Istyle)∥

2

)

(7)

Where Istyle is the style image and R is the generated re-

sult. E′
s(·) is a style encoder with the same structure as Es.

cos(·, ·) represents the cosine similarity of two vectors.

Previous image translation methods [12, 20] achieve

multi-modal generation by adding Gaussian noise during
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Figure 6. Structure of Fusion Network. The red line indicates the

skip connection.

inference. We find that noise leads to low-quality results

and limited diversity. To solve this problem, we replace the

noise with a style bank. Precisely, once training is done, we

extract all style codes from the training set by the trained Es

and save them for building a class-aware style bank. During

inference, we randomly sample different style codes from

the style bank to generate different results. It is worth men-

tioning that our approach does not increase any additional

computational overhead compared to adding noise.

3.3. Fusion Network

After generating all backgrounds and objects, we em-

bed them into their original positions to obtain a compos-

ited image. However, this preliminary result may be discor-

dant since each object is generated independently without

accounting for context. We employ a fusion network F to

harmonize the objects with the surroundings, as shown in

Figure 6. F learns an offset value for each pixel via a skip

connection [7, 36] to produce the final results. We use Per-

ceptual Loss and Adversarial Loss to optimize F :

LF = λPFLP + LGAN (8)

4. Experiments

Datasets. We conduct experiments on two datasets,

Cityscapes and ADE20K-Room, used in [28, 32].

Cityscapes [3] contains complex street scene images in

German cities. ADE20K-Room is a subset of ADE20K [50]

consisting of indoor scene images. We train and test our

model at 256× 256 resolution.

Implementation Details. We use free-form, extension, and

outpainting masks following [28]. Similar to the previous

work [22], we choose those frequently-appearing categories

as the foreground class set, (car, person) for Cityscapes and

(bed, chest, lamp, chair, table) for ADE20K-Room. All

sub-networks are independently trained using ADAM op-

timizers [19] for both the generator and the discriminators

with momentum β1 = 0.5 and β2 = 0.999, and the learn-

ing rates for the generator and the discriminators are set

to 0.0001 and 0.0004, respectively. For training DBAP ,

we randomly crop 4 square patches with the size ranging

from 96 × 96 to 160 × 160. We set balance coefficients:
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Figure 7. Visual comparisons with state-of-the-art methods. Our

method is effective in generating texture-consistent backgrounds

and photo-realistic objects.

λPB = λPI = λPO = λPF = 10 and λL
GAN = 0.2. The

proposed method is implemented with Pytorch 1.10 [34],

and all experiments are performed on a single NVIDIA

RTX 3090 GPU.

Baselines. We compare the proposed methods with the

state-of-the-art semantic image editing methods, including

HIM [10], SESAME [32], ASSET [23], SPMPGAN [28].

We also introduce two additional methods [40, 48] as base-

lines to investigate related work more widely. LGGAN [40]

learns a map from segmentation maps to photo-realistic im-

ages using global image-level and class-specific generators.

Co-Mod [48] demonstrates impressive results in semantic

image generation and image inpainting. We change their

input to be the same as our task.

4.1. Qualitative evaluation

We demonstrate a visual comparison of the competing

methods, as shown in Figure 7. We observe that the re-

sults produced by the proposed SIEDOB are visually better

than existing methods in two aspects: (1) Our method can

well handle dense objects overlapping each other, e.g., in

the second and third rows. However, other methods pro-

duce distorted and inseparable results. (2) Our method gen-

erate texture-consistent content between edited regions and

known regions both on background and objects, e.g., the red

cars in the first row and the curtain in the fourth row. The

performance improvement benefits from our disentangling

generation strategy and carefully designed sub-networks.

4.2. Quantitative evaluation

Table 1 lists the quantitative results with three differ-

ent mask types. Following previous works, we use three

metrics: FID [8], LPIPS [47], and mean Intersection-over-

Union (mIoU). FID is introduced to assess the fidelity of the
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M. Method
Cityscapes ADE20K-Room

FID↓ LPIPS↓ mIoU↑ FID↓ LPIPS↓ mIoU↑

F.

LGGAN 15.29 0.094 58.62 24.74 0.097 27.68

Co-Mod 15.88 0.097 56.50 27.37 0.111 27.52

HIM 15.58 0.093 58.99 28.64 0.133 28.04

SESAME 12.89 0.082 58.88 21.73 0.101 27.50

ASSET 13.67 0.098 58.12 30.63 0.126 26.02

SPMPGAN 11.90 0.084 58.80 18.83 0.090 28.22

SIEDOB 11.07 0.077 59.41 17.61 0.089 29.72

E.

LGGAN 26.01 0.175 58.37 37.09 0.213 27.91

Co-Mod 29.27 0.188 56.44 38.61 0.231 27.13

HIM 25.20 0.180 58.91 40.69 0.239 27.61

SESAME 20.30 0.168 59.08 36.43 0.211 27.62

ASSET 21.99 0.186 58.01 38.17 0.261 27.03

SPMPGAN 19.46 0.167 59.10 32.92 0.199 27.73

SIEDOB 19.20 0.159 59.63 31.66 0.191 29.52

O.

LGGAN 39.12 0.254 58.77 49.07 0.334 27.69

Co-Mod 50.29 0.264 55.39 51.45 0.325 26.54

HIM 36.27 0.252 58.99 54.51 0.337 28.19

SESAME 28.27 0.237 58.75 47.72 0.305 27.40

ASSET 30.60 0.240 58.91 57.28 0.331 27.18

SPMPGAN 27.63 0.233 58.53 41.52 0.288 27.85

SIEDOB 27.90 0.221 59.37 41.07 0.275 28.94

Table 1. Quantitative comparison with other methods. M., F., E.,

and O. represent Mask Type, Free-Form Mask, Extension Mask,

and Outpainting Mask, respectively. (↑: Higher is better; ↓: Lower

is better)

Ground TruthSPMPGANASSET SIEDOB Input Co-ModLGGAN HIM SESAME

Figure 8. Visual results of addition objects.

Input & Edit ASSETCo-Mod SIEDOB

Figure 9. Multi-modal generation results.

results by computing the Wasserstein-2 distance between

the distributions of the synthesized and real images. LPIPS

evaluates the similarity between the generated image and

the ground truth in a pairwise manner. mIoU measures the

alignment of semantic labels between the generated results

and input segmentation maps. We use solid models to ob-

tain segmentation maps: HRNet [41] for ADE20K-Room,

and DRN-D-105 [44] for Cityscapes. Our method outper-

forms the other methods under different metrics and mask

settings.

Edit-1Original Image Edit-2 Result-2Result-1

Figure 10. Out-of-distribution editing. Our method can add cars

in the middle of the road or on the sidewalk, which do not exist in

the training dataset.

Cityscapes ADE20K-Room

FID↓ LPIPS↓ mIoU↑ Div↑ FID↓ LPIPS↓ mIoU↑ Div↑

LGGAN 7.69 0.027 57.01 - 24.49 0.171 30.05 -

Co-Mod 7.79 0.029 56.29 0.0030 21.09 0.118 30.63 0.0145

HIM 6.92 0.028 58.71 - 29.10 0.232 30.58 -

SESAME 6.67 0.024 58.79 - 18.01 0.117 30.89 -

ASSET 6.74 0.025 56.02 0.0052 27.68 0.209 29.79 0.0337

SPMPGAN 6.59 0.021 58.60 - 17.21 0.115 30.58 -

SIEDOB 6.29 0.020 58.88 0.0055 16.32 0.110 31.04 0.0362

Table 2. Quantitative results of object addition.

Cityscapes ADE20K-Room

FID↓ LPIPS↓ mIoU↑ FID↓ LPIPS↓ mIoU↑

w/o SASPM 14.11 0.085 59.43 20.03 0.091 29.02

w/o DBAP 12.68 0.081 59.49 19.14 0.083 29.21

Full model 12.15 0.079 59.51 18.72 0.081 29.30

Table 3. Quantitative study on SASPM and DBAP .

4.3. Addition Object

Adding a new object to the given image is an essential

ability of semantic image editing. The visual results are

shown in Figure 8. In this experiment, we randomly se-

lect an instance of each test image and create a rectangular

mask encircling the object. The proposed method can gen-

erate realistic objects with crisp edges. Adding an object

to the edited area that does not exist originally should have

diverse results. Some previous methods [23,48] have multi-

modal generation capabilities. We sample two results from

all methods, as shown in Figure 9. Our method achieves

a higher diversity than other models because the previous

methods only exert a global influence on the generation pro-

cess; in contrast, our model independently generates each

object using different class-aware style codes. The quanti-

tative results listed in Table 2 also indicate the superiority

of our method. Here, the Diversity score (Div) is calculated

as the average LPIPS distance between pairs of randomly

sampled results for all test images, as also done in [25, 49].

Moreover, our model can hallucinate images that do not ex-

ist in the dataset’s distribution, as shown in Figure 10.

4.4. Ablation Study

Effectiveness of SASPM and Boundary-Anchored Patch

Discriminator. We investigate the contributions of the pro-

posed SASPM and DBAP to the generation of texture-

consistent background. To exclude the interference of the

foreground, we create mask maps that only include back-
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Ground TruthFull model Input w/o DBAPw/o SASPM

Figure 11. Ablation analysis on SASPM and DBAP for synthesiz-

ing texture-consistent backgrounds.

Our GeneratorMask Style Image w/o LSCC w Noise

Figure 12. Ablation study of object generation.

ground regions in this study. We remove all SASPM (ºw/o

SASPMº) or DBAP (ºw/o DBAP º) from our model as two

baselines. The visual results are shown in Figure 11 and

prove that SASPM and DBAP can help the background gen-

erator effectively alleviate texture inconsistencies. Vanilla

convolutional layers have limited receptive fields and no

ability to locate where edited or known regions are. SASPM

explicitly transfers features from known regions to edited

regions with the same semantic labels across distant spatial

distances. DBAP forces the generator to pay more atten-

tion to local textures on editing boundaries rather than just

global images. Quantitative results are listed in Table 3.

Effectiveness of Style-Diversity Object Generator. To

verify the benefit of LSCC and the style bank, we set up

two baselines: (1) Dropping out LSCC (ºw/o LSCCº). (2)

Replacing the style codes with noise vectors (ºw Noiseº).

Figure 12 shows some visual results. If we drop out LSCC,

the generated image’s style may not be consistent with the

style image. If we produce multi-modal results by injecting

noise, it leads to a loss of fidelity and diversity. This is be-

cause Gaussian noise is semantics-free, while style code is

category-specific and provides controllability. The quanti-

tative results are listed in Table 4.

Effectiveness of Separate Generation. We remove the ob-

ject generator and the fusion network but keep other compo-

nents unchanged to obtain a baseline (w/o Separation) and

increase its channel number for a fair comparison. Quali-

tative and quantitative comparisons can be found in Figure

13 and Table 5, respectively. In this experiment, we em-

ploy the masks used in object addition. The visual com-

parison shows that the separate generation paradigm signif-

icantly improves performance for objects with complicated

surroundings.

Effectiveness of Fusion Network. Fusion network can

Ground TruthFull model Input w/o Fusion w/o Skipw/o Separation

Figure 13. Visual analysis on disentangled generation and fusion

network.

class
w/o LSCC w Noise GOG

FID↓ Div↑ FID↓ Div↑ FID↓ Div↑

car 123.82 0.103 173.57 0.090 118.32 0.115

person 238.10 0.079 307.11 0.052 219.20 0.098

bed 227.18 0.303 395.33 0.210 239.78 0.372

chest 192.12 0.217 273.10 0.113 149.29 0.229

lamp 121.01 0.195 153.94 0.129 112.50 0.218

chair 168.01 0.274 207.35 0.177 163.14 0.289

table 211.39 0.141 289.55 0.091 201.32 0.143

Table 4. Quantitative results of different objects.

Cityscapes ADE20K-Room

FID↓ LPIPS↓ mIoU↑ FID↓ LPIPS↓ mIoU↑

w/o Separation 6.78 0.029 56.43 21.97 0.180 30.32

w/o Fusion 6.73 0.027 58.68 19.19 0.131 30.80

w/o Skip 6.41 0.022 58.76 17.89 0.118 30.96

Full model 6.29 0.020 58.88 16.32 0.110 31.04

Table 5. Quantitative studies of separate generation paradigm and

fusion network.

eliminate abrupt boundaries between generated objects and

backgrounds. Removing the fusion network (w/o Fusion)

or not using the skip connection (w/o Skip) will degrade

the performance, which are qualitatively and quantitatively

demonstrated in Figure 13 and Table 5.

5. Conclusion and Limitations

This paper proposes a novel paradigm for semantic im-

age editing, named SIEDOB. Its core idea is that since the

characteristics of foreground objects and backgrounds are

dramatically different, we design a heterogeneous model to

handle them separately. To this end, we present SASPM

and Boundary-Anchored Patch Discriminator to facilitate

the generation of texture-consistent backgrounds and em-

ploy a Style-Diversity Object Generator to produce high-

quality and diverse objects. Extensive experimental results

demonstrate the superiority of our method. However, our

method has some limitations. Some foreground categories

are very rare in the dataset, so we cannot obtain enough data

for training. In addition, object generation is hard to pro-

duce satisfactory results when an object is with an extreme

pose or large-scale occlusion.
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