
Leapfrog Diffusion Model for Stochastic Trajectory Prediction

Weibo Mao1, Chenxin Xu1, Qi Zhu1, Siheng Chen1,2**, Yanfeng Wang2,1,
1Shanghai Jiao Tong University, 2Shanghai AI Laboratory

{kirino.mao,xcxwakaka,georgezhu,sihengc,wangyanfeng}@sjtu.edu.cn

Abstract

To model the indeterminacy of human behaviors, stochas-
tic trajectory prediction requires a sophisticated multi-modal
distribution of future trajectories. Emerging diffusion models
have revealed their tremendous representation capacities in
numerous generation tasks, showing potential for stochastic
trajectory prediction. However, expensive time consumption
prevents diffusion models from real-time prediction, since
a large number of denoising steps are required to assure
sufficient representation ability. To resolve the dilemma, we
present LEapfrog Diffusion model (LED), a novel diffusion-
based trajectory prediction model, which provides real-time,
precise, and diverse predictions. The core of the proposed
LED is to leverage a trainable leapfrog initializer to directly
learn an expressive multi-modal distribution of future tra-
jectories, which skips a large number of denoising steps,
significantly accelerating inference speed. Moreover, the
leapfrog initializer is trained to appropriately allocate cor-
related samples to provide a diversity of predicted future tra-
jectories, significantly improving prediction performances.
Extensive experiments on four real-world datasets, including
NBA/NFL/SDD/ETH-UCY, show that LED consistently im-
proves performance and achieves 23.7%/21.9% ADE/FDE
improvement on NFL. The proposed LED also speeds up the
inference 19.3/30.8/24.3/25.1 times compared to the stan-
dard diffusion model on NBA/NFL/SDD/ETH-UCY, satisfy-
ing real-time inference needs. Code is available at https:
//github.com/MediaBrain-SJTU/LED.

1. Introduction

Trajectory prediction aims to predict the future trajecto-
ries for one or multiple interacting agents conditioned on
their past movements. This task plays a significant role in
numerous applications, such as autonomous driving [24],
drones [10], surveillance systems [45], human-robot inter-
action systems [5], and interactive robotics [20]. Recently,
lots of fascinating research progresses have been made from

*Corresponding author.

⋯ ⋯

Proposed leapfrog initializerDiffusion step

Denoising step

Sample
prediction

Variance
estimation

Mean
estimation

Predicted
trajectories

Ground-truth
future trajectory

Random
initialization

Traditional denoising steps

Skipped denoising step

Figure 1. Leapfrog diffusion model uses the leapfrog initializer to
estimate the denoised distribution and substitute a long sequence of
traditional denoising steps, accelerating inference and maintaining
representation capacity.

many aspects, including temporal encoding [6, 13, 46, 53],
interaction modeling [1,15,18,43,49], and rasterized predic-
tion [11, 12, 26, 48]. In practice, to capture multiple possi-
bilities of future trajectories, a real-world prediction system
needs to produce multiple future trajectories. This leads to
the emergence of stochastic trajectory prediction, aiming to
precisely model the distribution of future trajectories.

Previous works have proposed a series of deep gen-
erative models for stochastic trajectory prediction. For
example, [15, 18] exploit the generator adversarial net-
works (GANs) to model the future trajectory distribu-
tion; [27, 38, 49] consider the conditional variational auto-
encoders (CVAEs) structure; and [3] uses the conditional
normalizing flow to relax the Gaussian prior in CVAEs and
learn more representative priors. Recently, with the great suc-
cess in image generation [17, 33] and audio synthesis [4, 21],
denoising diffusion probabilistic models have been applied
to time-series analysis and trajectory prediction, and show
promising prediction performances [14, 44]. Compared to
many other generative models, diffusion models have advan-
tages in stable training and modeling sophisticated distribu-
tions through sufficient denoising steps [8].

However, there are two critical problems in diffusion mod-
els for stochastic trajectory prediction. First, the real-time
inference is time-consuming [14]. To ensure the representa-
tion ability and generate high-quality samples, an adequate
number of denoising steps are required in standard diffu-
sion models, which costs more computational time. For

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5517

https://github.com/MediaBrain-SJTU/LED
https://github.com/MediaBrain-SJTU/LED

example, experiments show that on the NBA dataset, dif-
fusion models need about 100 denoising steps to achieve
decent prediction performances, which would take ∼886ms
to predict; while the next frame comes every 200ms. Sec-
ond, as mentioned in [2], a limited number of independent
and identically distributed samples might not be able to cap-
ture sufficient modalities in the underlying distribution of a
generative model. Empirically, a few independent sampled
trajectories could miss some important future possibilities
due to the lack of appropriate sample allocation, significantly
deteriorating prediction performances.

In this work, we propose leapfrog diffusion model (LED),
a novel diffusion-based trajectory prediction model, which
significantly accelerates the inference speed and enables
adaptive and appropriate allocations of multiple correlated
predictions, providing sufficient diversity in predictions. The
core idea of the proposed LED is to learn a rough, yet suffi-
ciently expressive distribution to initialize denoised future
trajectories; instead of using a plain Gaussian distribution
as in standard diffusion models. Specifically, our forward
diffusion process is the same as standard diffusion models,
which assures that the ultimate representation ability is pris-
tine; while in the reverse denoising process, we leverage a
powerful initializer to produce correlated diverse samples
and leapfrog or skip a large number of denoising steps; and
then, use only a few denoising steps to refine the distribution.

To implement such a leapfrog initializer, we consider
a reparameterization to alleviate the learning burden. We
disassemble a denoised distribution into three parts: mean
trajectory, variance, and sample positions under the normal-
ized distribution. To estimate these three, we design three
corresponding trainable modules, each of which leverages
both a social encoder and a temporal encoder to learn the
social-temporal features and produce accurate estimation.
Furthermore, all the sample positions are simultaneously
generated based on the same social-temporal features, en-
abling appropriate sample allocations to provide diversity.

To evaluate the effectiveness of the proposed method, we
conduct experiments on four trajectory prediction datasets:
NBA, NFL Football Dataset, Standford Drones Dataset, and
ETH-UCY. The quantitative results show we outperform the
previous methods and achieve state-of-the-art performance.
Specifically, compared to MID [14], the proposed leapfrog
diffusion model reduces the average prediction time from
∼886ms to ∼46ms on the NBA dataset, while achieving a
15.6%/13.4% ADE/FDE improvement.

The main contributions are concluded as follows,
• We propose a novel LEapfrog Diffusion model (LED),

which is a denoising-diffusion-based stochastic trajectory
prediction model. It achieves precise and diverse predictions
with fast inference speed.

• We propose a novel trainable leapfrog initializer to
directly model sophisticated denoised distributions, acceler-

ating inference speed, and adaptively allocating the sample
diversity, improving prediction performance.

• We conduct extensive experiments on four datasets
including NBA, NFL, SDD, and ETH-UCY. Results show
that i) our approach consistently achieves state-of-the-art
performance on all datasets; and ii) our method speeds up
the inference by around 20 times compared to the standard
diffusion model, satisfying real-time prediction needs.

2. Related Work
Trajectory prediction. Early works on trajectory predic-

tion focus on a deterministic approach by exploring force
models [16, 30], RNNs [1, 32, 47], and frequency analy-
sis [28, 29]. For example, [16] models an agent’s behavior
with attractive and repulsive forces and builds the force equa-
tions for prediction. To capture the multi-modalities and
model future distribution, recent works start to focus on
stochastic trajectory prediction and have proposed a series
of deep generative models. Generative Adversarial Network
(GAN) structures [7,9,15,18,22,36,42] are proposed to gen-
erate multiple future trajectory distribution. [23,27,38,49,51]
use the Variational Auto-Encoder (VAE) structure and learn
the distribution through variational inference. [3] relaxes the
Gaussian prior and proposes to use the normalizing flow.
Heatmap [11,12,26] is used for modeling future trajectories’
distribution on rasterized images. In this work, we propose a
new diffusion-based model for trajectory prediction. Com-
pared to previous generative models, our method has a large
representation capacity and can model sophisticated trajec-
tory distributions by using a number of diffusion steps. We
also enable the correlation between samples to adaptively
adjust sample diversity, improving prediction performance.

Denoising diffusion probabilistic models. Denoising
diffusion probabilistic models (diffusion models) [17,39,41]
have recently achieved significant results in image generation
[8, 33] and audio synthesis [4, 21]. The idea of diffusion
models is first proposed by DPM [39], which imitates the
diffusion process in non-equilibrium statistical physics and
reconstructs the data distribution using the denoising model.
Later, [35,44] propose diffusion models, combining with the
seq-to-seq models, for probabilistic time series forecasting.
MID [14] is the first to build diffusion models for trajectory
prediction in modeling the indeterminacy variation process.

The standard diffusion models use hundreds of denoising
steps, preventing these models from real-time applications.
To accelerate the sampling process, DDIM [40] first pre-
dicts the original data and then estimates the direction to the
next expected timestamp based on the non-Markov process.
PD [37] applies the knowledge distillation on the denoising
steps with a deterministic diffusion sampler, which will be
repeated for times to accelerate the sampling. All these fast
sampling methods start denoising from noise inputs, which
are randomly and independently initialized. In this work, we

5518

use a trainable leapfrog initializer to initialize a sufficiently
expressive distribution, which replaces a large number of
former denoising steps for much faster inference speed.

3. Background

3.1. Problem Formulation

Trajectory prediction aims to predict an agent’s future
trajectory based on the past trajectories of itself and sur-
rounding agents. For a to-be-predicted agent, let X =
[x−Tp+1,x−Tp+2, . . . ,x0] ∈ RTp×2 be the observed past
trajectory over Tp timestamps where xt ∈ R2 records the 2D
spatial coordinate at timestamp t. Let N be the neighbouring
agent set and XN = [XN1

,XN2
, · · · ,XNL

] ∈ RL×Tp×2

be the past trajectories of neighbours, where XNℓ
∈ RTp×2

is the trajectory of the ℓth neighbour. The corresponding
ground-truth future trajectory for the to-be-predicted agent is
Y = [y1,y2, . . . ,yTf] ∈ RTf×2 over Tf timestamps, where
yt ∈ R2 is the 2D coordinate at future timestamp t.

Because of the indeterminacy of future trajectories, it is
usually more reliable to predict more than one trajectory to
capture multiple possibilities. Here we consider stochastic
trajectory prediction, which predicts the distribution of a
future trajectory, instead of a single future trajectory. The
goal of stochastic trajectory prediction is to train a prediction
model gθ(·) with parameters θ to generate a distribution
Pθ = gθ(X,XN). Based on this distribution Pθ, we can
draw K samples, Ŷ = {Ŷ1, Ŷ2, . . . , ŶK}, so that at least
one sample is close to the ground-truth future trajectory. The
overall learning problem is

θ∗ = min
θ

min
Ŷi∈Ŷ

D(Ŷi,Y), s.t. Ŷ ∼ Pθ. (1)

3.2. Diffusion Model for Trajectory Prediction

Here we present a standard diffusion model for trajectory
prediction, which lays a foundation for the proposed method.
The core idea is to learn and refine a sophisticated underly-
ing distribution of trajectories through cascading a series of
simple denoising steps. To implement this, a diffusion model
performs a forward diffusion process to intentionally add a
series of noises to a ground-truth future trajectory; and then,
it uses a conditional denoising process to recover the future
trajectory from noise inputs conditioned on past trajectories.

Mathematically, let X and XN be the past trajectories of
the ego agent and the neighboring agents, respectively, and
Y be the future trajectory of the ego agent. The diffusion
model for trajectory prediction works as follows,
Y0 = Y, (2a)

Yγ = fdiffuse(Y
γ−1), γ = 1, · · · ,Γ, (2b)

ŶΓ
k

i.i.d∼ P(ŶΓ) = N (ŶΓ; 0, I), sample K times, (2c)

Ŷγ
k = fdenoise(Ŷ

γ+1
k ,X,XN), γ=Γ−1,· · ·,0, (2d)

where Yγ is the noisy trajectory at the γth diffusion step
and Ŷγ

k is the kth sample of denoised trajectory at the γth
denoising step. The final K predicted trajectories are Ŷ =
{Ŷ0

1, Ŷ
0
2, . . . , Ŷ

0
K}.

Step (2a) initializes the diffused trajectory; Step (2b)
uses a forward diffusion operation fdiffuse(·) to successively
add noises to Yγ−1 and obtain the diffused trajectory Yγ ;
Step (2c) draws K independent and identically distributed
samples to initialize denoised trajectories ŶΓ

k from a normal
distribution; and Step (2d) iteratively applies a denoising op-
eration fdenoise(·) to obtain the denoised trajectory Ŷγ

k con-
ditioned on past trajectories X,XN . Note that i) Steps (2a)
and (2b) correspond to the forward diffusion process and are
not used in inference; ii) During training, Yγ is naturally
the supervision for Ŷγ

k at the γth step. Conceptually, each
denoising step is the reverse of the diffusion step, and each
pair of Yγ and Ŷγ

k shares the same underlying distribution.
The standard diffusion model is expressively powerful in

learning sophisticated distributions and has achieved great
success in many generation tasks. However, the task of mo-
tion prediction requires real-time inference but the running
time of a diffusion model is constrained by the large number
of denoising steps. Meanwhile, less denoising steps usually
cause a weaker representation ability of future distributions.
To achieve higher efficiency while preserving a promising
representation ability, we propose leapfrog diffusion model,
which uses a trainable initializer to capture sophisticated dis-
tributions and substitute a large number of denoising steps.

4. Leapfrog Diffusion Model
4.1. System Architecture

In this section, we propose the leapfrog diffusion model.
Here leapfrog means that a large number of small denois-
ing steps can be replaced by a single, yet powerful leapfrog
initializer, which can significantly accelerate the inference
speed without losing representation ability. Let X and XN
be the past trajectories of the ego agent and its neighboring
agents, and Y be the future trajectory of the ego agent. De-
note τ as the leapfrog step. The overall procedure of the
proposed leapfrog diffusion model is formulated as follows,

Y0 = Y, (3a)

Yγ = fdiffuse(Y
γ−1), γ = 1, · · · ,Γ, (3b)

Ŷτ K∼ P(Ŷτ) = fLSG(X,XN), (3c)

Ŷγ
k = fdenoise(Ŷ

γ+1
k ,X,XN), γ = τ−1, · · · , 0. (3d)

Compared to the standard diffusion model (2), the main
difference lies in Step (3c). The standard diffusion initial-
izes the Γth denoised distribution P(ŶΓ) by a plain nor-
mal distribution (2c) and requires a lot of denoising steps
to enrich the expressiveness of the denoised distribution;
while in Step (3c), we propose a novel leapfrog initial-

5519

⋯
Denoising
Module

Past
Trajectories

Leapfrog Initializer

Past Trajectory
Predicted Trajectory

Social
Encoder

Mean Estimation Predicted
Trajectories

Denoised
Trajectories

Initialized
Trajectories

Fusion

𝑓!(⋅)

𝑓"(⋅)
𝑓𝕊$(⋅)

Variance Estimation

Sample Prediction

Temporal
Encoder

Concatenate

Multiply

Add

Legend:

PastTrajectories

Figure 2. Proposed leapfrog diffusion model (LED) in inference phase. The red agent is the to-be-predicted agent. LED first predicts K
initialized trajectories at τ th denoised step through a trainable leapfrog initializer. Then, followed by a few denoising steps, LED obtains the
final predictions. In leapfrog initializer, LED learns statistics and generates correlated samples with the reparameterization.

izer fLSG(·) to directly model the τ th denoised distribution
P(Ŷτ), which is hypothetically equivalent to the output of
executing (Γ− τ) denoising steps (2d). We then draw sam-
ples from the distribution P(Ŷτ) and obtain K future trajec-
tories Ŷτ = {Ŷτ

1 , Ŷ
τ
2 , . . . , Ŷ

τ
K}, where K∼ in (3d) means K

samples are dependent to intentionally allocate appropriate
sample diversity. Then, in Step (3d), we only need to apply
the remaining τ denoising steps for each trajectory Ŷγ

k to
obtain the final prediction Ŷ = {Ŷ0

1, Ŷ
0
2, . . . , Ŷ

0
K}.

Note that i) the proposed leapfrog diffusion model re-
duces the denoising steps from Γ to τ(≪ Γ) in Step (3d)
as the leapfrog initializer directly provides the trajectories
at denoising step τ , accelerating the inference; ii) instead
of taking independent and identically distributed samples
in Step (2c), the proposed leapfrog initializer generates K
trajectories Ŷτ simultaneously in Step (3c), allowing K sam-
ples to be aware of each other; and iii) the standard diffusion
model and the proposed leapfrog diffusion model share the
same forward diffusion process, assuring that the representa-
tion capacity is not reduced.

4.2. Leapfrog Initializer

We now dive into the design details of the proposed
leapfrog initializer, which leapfrogs (Γ− τ) denoising steps.
In leapfrog initializer, we model the τ th denoised distribution
P(Ŷτ) through learning models. However, it is nontrivial
for a learning model to directly capture the sophisticated
distribution, which usually causes unstable training. To ease
the learning burden of the model, we disassemble the dis-
tribution P(Ŷτ) into three representative parts: the mean,
global variance and sample prediction. For each part, we
design trainable modules correspondingly. Mathematically,
let X and XN be the past trajectories of the ego agent and
the neighboring agents, respectively. The proposed leapfrog
initializer generates K samples as follows,

µθ = fµ(X,XN) ∈ RTf×2,

σθ = fσ(X,XN) ∈ R,
Ŝθ = [Ŝθ,1, · · · , Ŝθ,K] = fŜ(X,XN , σθ) ∈ RTf×2×K ,

Ŷτ
k = µθ + σθ · Ŝθ,k ∈ RTf×2, (4)

where fµ(·), fσ(·), fŜ(·) are three trainable modules, µθ, σθ

are the mean and standard deviation of P(Ŷτ), respectively,
and Ŝθ,k is the normalized positions for the kth sample.

To be specific, the mean estimate module fµ(·) infers
the mean trajectory of the τ th denoised distribution P̂(Ŷτ)
with past trajectories (X,XN). The mean trajectory µθ is
shared across all the K samples. The variance estimate mod-
ule fσ(·) infers the standard deviation of the τ th denoised
distribution P̂(Ŷτ), reflecting the overall uncertainty of the
trajectory, which is also shared across all the K samples. The
sample prediction module fŜ(·) takes the past trajectories
(X,XN) and the predicted uncertainty σθ as the input and
predicts K normalized positions where each Ŝθ,k ∈ RTf×2.

Note that i) the reparameterization in Eq. (4) allows us to
avoid learning a raw sophisticated distribution, making the
training much easier; and ii) K normalized predictions are
generated simultaneously from the same underlying feature,
assuring appropriately allocated trajectories with variance
estimation and better capturing the multi-modalities.

To implement the three trainable modules: fµ(·), fσ(·),
fŜ(·), we consider a similar network design: a social en-
coder to capture social influence, a temporal encoder to learn
temporal embedding, and an aggregation layer to fuse both
social and temporal information; see Figure 2. Here we take
the mean estimation module fµ(·) as an example. The mean
trajectory is obtained as follows,

esocialµθ
= softmax

(fq(X)fk(XN)T√
d

)
fv(XN), (5a)

etemp
µθ

= fGRU(fconv1D(X)), (5b)

µθ = ffusion([e
social
µθ

: etemp
µθ

]). (5c)

Step (5a) obtains the social embedding esocialµθ
based on the

multi-head attention with d the embedding dimension and
fq(·), fk(·), fv(·) the query/key/value embedding functions.
Step (5b) obtains the temporal embedding through the fea-
ture encoder fconv1D(·), mapping the raw coordinates into
the high-dimensional feature, followed by the gated recur-
rent units fGRU(·), capturing the temporal dependence in
the high dimensional sequence. Step (5c) concatenates both
social and temporal embeddings and uses a multi-layer per-
ceptron ffusion(·) to obtain the final mean estimation. Note

5520

that the sample prediction module fŜ(·) also takes the esti-
mated standard deviation as the input, working as

eσŜθ
= fencode(σθ),

Ŝθ = ffusion([e
social
Ŝθ

: etemp

Ŝθ
: eσŜθ

]),

where an encoder fencode(·) operates on the estimated vari-
ance σθ and generates high dimensional embedding eσ

Ŝθ
. By

this, the variance estimation also involves in the sample
prediction process, instead of just scaling these prediction.

After obtaining K samples Ŷτ = {Ŷτ
1 , Ŷ

τ
2 , . . . , Ŷ

τ
K}

from leapfrog initializer, we execute the remaining τ denois-
ing steps to iteratively refine those predicted trajectories (3d).

4.3. Denoising Module

Here we elaborate the design of a denoising module
fdenoise(·), which denoises the trajectory Ŷγ+1

k conditioned
on past trajectories (X,XN). In a denoising module, two
parts are trainable: a transformer-based context encoder
fcontext(·) to learn a social-temporal embedding and a noise
estimation module fϵ(·) to estimate the noise to reduce.
Mathematically, the γth denoising step works as follows,

C = fcontext(X,XN), (6a)

ϵγθ = fϵ(Ŷ
γ+1
k ,C, γ + 1), (6b)

Ŷγ
k =

1
√
αγ

(Ŷγ+1
k − 1− αγ√

1− ᾱγ

ϵγθ)+
√
1−αγz, (6c)

where αγ and ᾱγ =
∏γ

i=1 αi are parameters in the diffu-
sion process and z ∼ N (z;0, I) is a noise. Step (6a) uses a
context encoder fcontext(·) on past trajectories (X,XN) to
obtain the context condition C, which shares a similar struc-
ture to mean estimation module fµ(·); Step (6b) estimates
the noise ϵγθ in the noisy trajectory Ŷγ+1

k through noise
estimation fϵ(·) implemented by multi-layer perceptions
with the context C; Step (6c) provides a standard denoising
step [17]; see more details in the supplementary material.

4.4. Training Objective

To train a leapfrog diffusion model, we consider a two-
stage training strategy, where the first stage trains a denoising
module and the second stage focuses on a leapfrog initial-
izer. The reason to use two stages is because the training
of leapfrog initializer is more stable given fixed distribution
P(Ŷτ), avoiding non-convergent training.

Concretely, the first stage trains a denoising module
fdenoise(·) in Step (3d) based on a standard training schedule
of a diffusion model [14, 17] through noise estimation loss:

LNE = ∥ϵ− fϵ(Y
γ+1, fcontext(X,XN), γ + 1)∥2,

where γ ∼ U{1, 2, · · · ,Γ}, ϵ ∼ N (ϵ;0, I) and the diffused
trajectory Yγ+1 =

√
ᾱγ Y0 +

√
1− ᾱγϵ. We then back-

Algorithm 1 Leapfrog Diffusion Model in Inference

Input: Observed trajectories X,XN , Leapfrog step τ

Output: Predicted trajectories Ŷ
1: µθ = fµ(X,XN) ▷ Mean estimation
2: σθ = fσ(X,XN) ▷ Variance estimation
3: Ŝθ = fŜ(X,XN , σθ) ▷ Sample prediction
4: Ŷτ

k = µθ+σθ ·Ŝθ,k, k = 1,· · ·,K ▷ Reparameterization
5: for γ = τ − 1, ..., 0 do
6: Ŷγ

k = fdenoise(Ŷ
γ+1
k ,X,XN) ▷ Denoising step

7: end for
8: Ŷ = Ŷ0 = {Ŷ0

1, · · · , Ŷ0
K}

9: return Ŷ

propagate this loss and train the parameters in the context
encoder fcontext(·) and the noise estimation module fϵ(·).

In the second stage, we optimize a leapfrog diffusion
model with a trainable leapfrog initializer and frozen denois-
ing modules. For each sample, the loss function is

L = Ldistance + Luncertainty

= w ·min
k

∥Y−Ŷk∥2 +
(∑

k ∥Y−Ŷk∥2
σ2
θK

+ log σ2
θ

)
,

where w ∈ R is a hyperparameter weight. The first term con-
strains the minimum distance in K predictions. Intuitively,
if a leapfrog initializer generates high-quality estimations
for distribution P(Ŷτ), then one of the K predictions in
Ŷ should be close to the ground-truth trajectory Y. The
second term normalizes the variance estimation σθ in repa-
rameterization (4) through an uncertainty loss, balancing
the prediction diversity and mean accuracy. Note that the
variance estimation controls the dispersion of the predictions,
bridging scenery complexity and prediction diversity. The

first part
∑

k ∥Y−̂Yk∥2

σ2
θK

makes the value of σθ proportional

to the complexity of the scenario. The second part log σ2
θ

is a regulariser used to avoid a trivial solution for σθ, i.e.,
generating high variance for all predictions.

Technically, we can also explicitly supervise the estima-
tion of leapfrog initializer in stage two, since the distribution
P(Ŷτ) can be denoised from a normal distribution. For the
explicit supervision, we draw M ≫ K samples from P(ŶΓ)
under the normal distribution and iteratively denoise these
samples through Step (2d) until we get expected denoised
trajectories Ŷτ . And then, we calculate the statistics of the
denoised distribution P(Ŷτ) using these M samples, serv-
ing as explicit supervisions for mean estimation fµ(·) and
variance estimation fσ(·). However, since τ ≪ Γ, we need
to run (Γ − τ) ≈ Γ-steps denoising for M ≫ K samples
to get statistics, resulting in unacceptable time and storage
consumption for training (e.g. ∼ 6 days per epoch on NBA

5521

Table 1. Comparison with baseline models on NBA dataset. minADE20 /minFDE20 (meters) are reported. Bold/underlined fonts represent
the best/second-best result. Compared to the previous SOTA method, MID, our method achieves a 15.6%/13.4% ADE/FDE improvement.

Time
Social-

GAN [15]
STGAT [19]

Social-
STGCNN [31]

PECNet [27] STAR [52]
Trajectron++

[38]
MemoNet

[50]
NPSN [2]

GroupNet
[49]

MID
[14] Ours

CVPR’18 ICCV’19 CVPR’20 ECCV’20 ECCV’20 ECCV’20 CVPR’22 CVPR’22 CVPR’22 CVPR’22
1.0s 0.41/0.62 0.35/0.51 0.34/0.48 0.40/0.71 0.43/0.66 0.30/0.38 0.38/0.56 0.35/0.58 0.26/0.34 0.28/0.37 0.18/0.27
2.0s 0.81/1.32 0.73/1.10 0.71/0.94 0.83/1.61 0.75/1.24 0.59/0.82 0.71/1.14 0.68/1.23 0.49/0.70 0.51/0.72 0.37/0.56
3.0s 1.19/1.94 1.04/1.75 1.09/1.77 1.27/2.44 1.03/1.51 0.85/1.24 1.00/1.57 1.01/1.76 0.73/1.02 0.71/0.98 0.58/0.84
Total(4.0s) 1.59/2.41 1.40/2.18 1.53/2.26 1.69/2.95 1.13/2.01 1.15/1.57 1.25/1.47 1.31/1.79 0.96/1.30 0.96/1.27 0.81/1.10

Table 2. Comparison with baseline models on NFL dataset. minADE20/minFDE20 (meters) are reported. Bold/underlined fonts represent
the best/second-best result. Compared to the previous SOTA method, MID, our method achieves a 23.7%/21.9% improvement.

Time
Social-

GAN [15]
STGAT [19]

Social-
STGCNN [31]

PECNet [27] STAR [52]
Trajectron++

[38]
LB-EBM

[34]
NPSN [2]

GroupNet
[49]

MID [14] Ours
CVPR’18 ICCV’19 CVPR’20 ECCV’20 ECCV’20 ECCV’20 CVPR’21 CVPR’22 CVPR’22 CVPR’22

1.0s 0.37/0.68 0.35/0.64 0.45/0.64 0.52/0.97 0.49/0.84 0.41/0.65 0.75/1.05 0.43/0.64 0.32/0.57 0.30/0.58 0.21/0.34
2.0s 0.83/1.53 0.82/1.60 1.06/1.87 1.19/2.47 1.02/1.84 0.93/1.65 1.26/2.28 0.83/1.52 0.73/1.39 0.71/1.31 0.49/0.91
Total(3.2s) 1.44/2.51 1.39/2.48 1.82/3.18 1.99/3.84 1.51/2.97 1.54/2.58 1.90/3.25 1.32/2.27 1.21/2.15 1.14/1.92 0.87/1.50

dataset). We thus do not use explicit supervision.

4.5. Inference Phase

During the inference, instead of the Γ-steps’ denoising,
leapfrog diffusion model only takes τ -steps, accelerating
the inference. To be specific, we first generate K correlated
samples to model the distribution P(Ŷτ) using the trained
leapfrog initializer. Then, these samples will be fed into the
denoising process and iteratively fine-tuned to produce the
final predictions; see Algorithm 1.

5. Experiments
5.1. Datasets

We evaluate our method on four trajectory prediction
datasets, including two sports datasets (NBA SportVU
Dataset, NFL Football Dataset) and two pedestrian datasets
(Stanford Drone Dataset, ETH-UCY).

NBA SportVU Dataset (NBA): NBA trajectory dataset
is collected by NBA using the SportVU tracking system,
which records the trajectories of the 10 players and the ball
in real basketball games. In this task, we predict the future
4.0s (20 frames) using the 2.0s (10 frames) past trajectory.

NFL Football Dataset (NFL): NFL Football Dataset
records the position of every player on the field during each
play in the 2017 year. We predict the 22 players’ (11 players
per team) and the ball’s future 3.2s (16 frames) trajectory
using the historical 1.6s (8 frames) trajectory.

Stanford Drone Dataset (SDD): SDD is a large-scale
pedestrian dataset collected from a university campus in
bird’s eye view. Following previous works [27, 50], we use
the standard train-test split and predict the future 4.8s (12
frames) using 3.2s (8 frames) past.

ETH-UCY: ETH-UCY dataset contains 5 subsets: ETH,
HOTEL, UNIV, ZARA1, and ZARA2, containing various
motion scenes. We use same segment length of 8s as SDD
following previous works [18, 27] and use the leave-one-out
approach with four sets for training and a left set for testing.

5.2. Implementation Details

In the leapfrog diffusion model, we set the diffusion step
Γ = 100 for all four datasets and the leapfrog step τ = 5
on the NBA dataset. In the leapfrog initializer, we build a
transformer-based social encoder where the feed-forward
dimension is set to 256, the number of heads is 2, and 2
encoder layers are applied; we apply the temporal encoder
with 1D convolution kernel being 3, and output channel
setting to 32, and we also build a GRU with the hidden
size of 256. In the denoising module, we apply the same
parameters transformer to extract the context information,
and we build the core denoising module with a hidden size
of 256. To train the leapfrog diffusion model, we train the
denoising module for 100 epochs with an initial learning rate
of 10−2 and decay to half every 16 epochs. With a frozen
denoising module, we then train the leapfrog initializer for
200 epochs with an initial learning rate of 10−4, decaying
by 0.9 every 32 epochs. We set weight parameter w1 = 50
to emphasize the distance loss. The entire framework is
trained with the Adam optimizer on one GTX-3090 GPU.
All models are implemented with PyTorch 1.7.1. See more
details in the supplementary material.

5.3. Comparison with SOTA Methods

We measure the performance of different trajectory
prediction methods using two metrics: minADEK and
minFDEK , following previous work [27, 49]. 1) minADEK

calculates the minimum time-averaged distance among
K predictions and the ground-truth future trajectory; 2)
minFDEK measures the minimum distance among the K
predicted endpoints and the ground-truth endpoints. We cal-
culate these two metrics at different timestamps on sports
datasets to better evaluate the performance.

NBA dataset. We compare our method with the cur-
rent 10 state-of-the-art prediction methods at different times-
tamps; see Table 1. We see that i) our method significantly
outperforms all baselines in ADE and FDE at all timestamps.
Our method reduces the ADE/FDE at 4.0s from 0.96/1.27

5522

Table 3. Comparison with baseline models on SDD dataset. minADE20/minFDE20 (meters) are reported. Bold/underlined fonts represent
the best/second-best result. Our method achieves the best performance in ADE/FDE. ∗ represents the reproduced results from open source.

Time
Social-

GAN [15]
SOPHIE [36]

Trajectron++
[38]

NMMP [18]
Evolve-

Graph [25]
PECNet [27]

MemoNet
[50]

NPSN [2]
GroupNet

[49]
MID∗ [14] Ours

CVPR’18 CVPR’19 ECCV’20 CVPR’20 NIPS’20 ECCV’20 CVPR’22 CVPR’22 CVPR’22 CVPR’22

4.8s 27.23/41.44 16.27/29.38 19.30/32.70 14.67/26.72 13.90/22.90 9.96/15.88 8.56/12.66 8.56/11.85 9.31/16.11 9.73/15.32 8.48/11.66

Table 4. Comparison with baseline models on ETH-UCY dataset. minADE20/minFDE20 (meters) are reported. Bold/underlined fonts
represent the best/second-best result. In most subsets, our method achieves the best or second-best performance in ADE/FDE.

Subset
Social-

GAN [15]
NMMP [18] STAR [52] PECNet [27]

Trajectron++
[38]

Agentformer
[53]

MemoNet
[50]

NPSN [2]
GroupNet

[49]
MID [14] Ours

CVPR’18 CVPR’20 ECCV’20 ECCV’20 ECCV’20 ICCV’21 CVPR’22 CVPR’22 CVPR’22 CVPR’22
ETH 0.87/1.62 0.61/1.08 0.36/0.65 0.54/0.87 0.61/1.02 0.45/0.75 0.40/0.61 0.40/0.76 0.46/0.73 0.39/0.66 0.39/0.58
Hotel 0.67/1.37 0.33/0.63 0.17/0.36 0.18/0.24 0.19/0.28 0.14/0.22 0.11/0.17 0.12/0.18 0.15/0.25 0.13/0.22 0.11/0.17
Univ 0.76/1.52 0.52/1.11 0.31/0.62 0.35/0.60 0.30/0.54 0.25/0.45 0.24/0.43 0.22/0.41 0.26/0.49 0.22/0.45 0.26/0.43
Zara1 0.35/0.68 0.32/0.66 0.29/0.52 0.22/0.39 0.24/0.42 0.18/0.30 0.18/0.32 0.17/0.31 0.21/0.39 0.17/0.30 0.18/0.26
Zara2 0.42/0.84 0.43/0.85 0.22/0.46 0.17/0.30 0.18/0.32 0.14/0.24 0.14/0.24 0.12/0.24 0.17/0.33 0.13/0.27 0.13/0.22
AVG 0.61/1.21 0.41/0.82 0.26/0.53 0.29/0.48 0.30/0.51 0.23/0.39 0.21/0.35 0.21/0.38 0.25/0.44 0.21/0.38 0.21/0.33

Table 5. Ablation of leapfrog initializer in the leapfrog diffusion
model on NFL with various prediction numbers K. Each module
in the leapfrog initializer is beneficial.

Mean
µθ

Variance
σθ

Sample
Ŝθ

K=2 K=4

✓ correlated 2.04±0.18/4.08±0.48 1.63±0.13/3.05±0.16

✓ correlated 1.95±0.08/3.90±0.22 1.49±0.01/2.86±0.02

✓ ✓ i.i.d 2.36±0.13/4.31±0.22 1.90±0.07/3.31±0.05

✓ ✓ correlated 1.84±0.05/3.61±0.11 1.47±0.01/2.83±0.02

Mean
µθ

Variance
σθ

Sample
Ŝθ

K=8 K=20

✓ correlated 1.25±0.02/2.31±0.04 0.99±0.03/1.68±0.04

✓ correlated 1.23±0.01/2.20±0.01 0.95±0.01/1.54±0.02

✓ ✓ i.i.d 1.51±0.04/2.67±0.07 1.18±0.02/1.90±0.03

✓ ✓ correlated 1.18±0.01/2.19±0.01 0.89±0.01/1.51±0.02

to 0.81/1.10 compared to the current state-of-the-art meth-
ods, MID, achieving 15.6%/13.4% improvement; and ii)
performance improvement over previous methods increases
with timestamps, reflecting the proposed method can capture
more sophisticated distributions at further timestamps.

NFL dataset. We compare our method with the cur-
rent 10 state-of-the-art prediction methods at different times-
tamps; see Table 2. We see that our model significantly
outperforms all baselines in ADE and FDE at all timestamps.
Our method reduces the ADE/FDE at 3.2s from 1.14/1.92 to
0.87/1.50 compared to the current state-of-the-art methods,
MID, achieving 23.7%/21.9% improvement.

SDD dataset. We compare our method with the current
10 state-of-the-art prediction methods; see Table 3. We see
that our method reduces FDE from 11.85 to 11.66 compared
to the current state-of-the-art method, NPSN. Notably, the
original MID [14] uses a different protocol from all the other
methods, we update its code for a fair comparison.

ETH-UCY dataset. We compare our method with 10
state-of-the-art prediction methods; see Table 4. We see that
i) our method reduces FDE from 0.35 to 0.33 compared to
the current state-of-the-art method, MemoNet, achieving a
5.7% improvement; and ii) our method achieves the best or
second best to the best performance on most of the subsets.

Table 6. Different steps Γ/τ in the standard/leapfrog diffusion
model on NBA. τ = 5 provides the best performance.

Method Steps 1.0s 2.0s 3.0s Total(4.0s)
Inference

(ms)

Standard
Diffusion

(Γ)

10 0.45/0.51 0.98/1.55 1.62/2.56 2.21/2.77 ∼87
50 0.26/0.36 0.56/0.91 0.89/1.42 1.21/1.73 ∼446
100 0.21/0.28 0.44/0.64 0.69/0.95 0.94/1.21 ∼886
200 0.21/0.29 0.44/0.65 0.69/0.97 0.94/1.21 >1s
500 0.21/0.30 0.45/0.68 0.70/0.99 0.95/1.23 >1s

Leapfrog
Diffusion

(τ)

3 0.20/0.31 0.40/0.62 0.62/0.88 0.84/1.10 ∼30
5 0.18/0.27 0.37/0.56 0.58/0.84 0.81/1.10 ∼46
10 0.17/0.27 0.37/0.58 0.59/0.85 0.82/1.08 ∼89

5.4. Ablation Studies

Effect of components in leapfrog initializer. We explore
the effect of three key components in leapfrog initializer,
including mean estimation, variance estimation, and sam-
ple prediction. Table 5 presents the results with mean and
variance based on 5 experimental trials. We see that i) the
leapfrog initializer achieves stable results with better perfor-
mance even when prediction number K is small; and ii) the
proposed mean estimation, variance estimation, and sample
prediction all contribute to promoting prediction accuracy.

Effect of leapfrog step τ . Table 6 reports the influence of
different leapfrog steps in LED. We see that i) under similar
inference time, our method significantly outperforms the
standard diffusion model with better representation ability;
ii) when τ is too small, leapfrog initializer targets to learn
more sophisticated distribution, causing worse prediction
performance; and iii) when τ is too large, leapfrog initializer
has already captured the denoised distribution, encountering
performance bottleneck and wasting inference time.

Comparison to other fast sampling methods. Table 7
compares the performance of our method and the other two
fast sampling methods: PD [37] and DDIM [40]. We see
that our method significantly outperforms two fast sampling
methods under similar inference time since the proposed
LED promotes the correlation between predictions.

5523

(a) PECNet (b) GroupNet (c) Ours (d) GT
Figure 3. Visualization comparison on NBA. We compare the best-of-20 predictions by our method and two previous methods. Our method
generates a more precise trajectory prediction. (Light color: past trajectory; blue/red/green color: two teams and the basketball.)

Table 7. Comparison to other fast sampling methods on NBA.
η = 1 in DDIM. Our method achieves the best performance.

Method 1.0s 2.0s 3.0s Total(4.0s)
Inference

(ms)
PD (K=1) 0.20/0.33 0.45/0.75 0.72/1.13 0.98/1.39 ∼ 452
PD (K=2) 0.21/0.34 0.46/0.78 0.73/1.15 0.98/1.41 ∼230
PD (K=3) 0.23/0.37 0.48/0.79 0.73/1.15 0.98/1.43 ∼121
PD (K=4) 0.25/0.38 0.50/0.80 0.75/1.16 0.99/1.44 ∼64

DDIM (S=2) 0.20/0.29 0.42/0.65 0.66/0.96 0.91/1.21 ∼530
DDIM (S=10) 0.22/0.32 0.44/0.71 0.69/1.04 0.93/1.31 ∼107
DDIM (S=20) 0.24/0.35 0.49/0.81 0.76/1.21 1.02/1.51 ∼54

Ours 0.18/0.27 0.37/0.56 0.58/0.84 0.81/1.10 ∼46

Past trajectory Mean estimation Our prediction Ground-truth

𝜎! = 0.321

𝜎! = 0.438

𝜎! = 0.386

𝜎! = 0.551

Figure 4. Mean and variance estimation in leapfrog initializer on
NBA with K=20. The estimated variance can reflect the scene
complexity of the current agent and produce diverse predictions.

5.5. Qualitative Results
Visualization of predicted trajectory. Figure 3 com-

pares the predicted trajectories of two baselines PECNet and
GroupNet, our LED (Ours), and the ground-truth (GT) trajec-
tories on the NBA dataset. We see that our method produces
more accurate predictions than the previous methods.

Visualization of estimated mean and variance. Figure
4 illustrates the mean and variance estimation in the leapfrog
initializer under four scenes on the NBA dataset. We see
that the variance estimation can well describe the scene
complexity for the current agent by the learned variance,
showing the rationality of our variance estimation.

Visualization of different sampling mechanisms. Fig-
ure 5 compares two sampling mechanisms: I.I.D sampling
and correlated sampling in the leapfrog initializer. We see

Scene 1

Scene 3 Scene 4

Scene 2

Past trajectory GT future trajectory I.I.D predictions Correlated predictions

Figure 5. Comparison between I.I.D and correlated sampling mech-
anisms in NFL with K=4. Correlated samples appropriately capture
multi-modalities, significantly improving prediction performances.

that the proposed correlated sampling can appropriately allo-
cate sample diversity and capture more modalities when the
number of trials K is small.

6. Conclusion
This paper proposes the leapfrog diffusion model (LED),

a diffusion-based trajectory prediction model, which signif-
icantly accelerates the overall inference speed and enables
appropriate allocations of multiple correlated predictions.
During the inference, LED directly models and samples from
the denoised distribution through a novel leapfrog initializer
with reparameterization. Extensive experiments show that
our method achieves state-of-the-art performance on four
real-world datasets and satisfies real-time inference needs.

Limitation and future work. This work achieves in-
ference acceleration for trajectory prediction tasks partially
because the dimension of trajectory data is relatively small
and the corresponding distribution is much easier to learn
compared with those of image/video data. A possible fu-
ture work is to explore diffusion models and fast sampling
methods for higher-dimensional tasks.

Acknowledgements
This research is partially supported by National Natural

Science Foundation of China under Grant 62171276 and the
Science and Technology Commission of Shanghai Municipal
under Grant 21511100900 and 22DZ2229005.

5524

References
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,

Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. Social
lstm: Human trajectory prediction in crowded spaces. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 961–971, 2016. 1, 2

[2] Inhwan Bae, Jin-Hwi Park, and Hae-Gon Jeon. Non-
probability sampling network for stochastic human trajectory
prediction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6477–6487,
2022. 2, 6, 7

[3] Apratim Bhattacharyya, Michael Hanselmann, Mario Fritz,
Bernt Schiele, and Christoph-Nikolas Straehle. Conditional
flow variational autoencoders for structured sequence predic-
tion. arXiv preprint arXiv:1908.09008, 2019. 1, 2

[4] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Moham-
mad Norouzi, and William Chan. Wavegrad: Estimating
gradients for waveform generation. In International Confer-
ence on Learning Representations, 2020. 1, 2

[5] Yujiao Cheng, Liting Sun, Changliu Liu, and Masayoshi
Tomizuka. Towards efficient human-robot collaboration with
robust plan recognition and trajectory prediction. IEEE
Robotics and Automation Letters, 5(2):2602–2609, 2020. 1

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and
Yoshua Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014. 1

[7] Patrick Dendorfer, Sven Elflein, and Laura Leal-Taixé. Mg-
gan: A multi-generator model preventing out-of-distribution
samples in pedestrian trajectory prediction. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 13158–13167, 2021. 2

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794, 2021. 1, 2

[9] Liangji Fang, Qinhong Jiang, Jianping Shi, and Bolei Zhou.
Tpnet: Trajectory proposal network for motion prediction.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6797–6806, 2020. 2

[10] Dario Floreano and Robert J Wood. Science, technol-
ogy and the future of small autonomous drones. Nature,
521(7553):460–466, 2015. 1

[11] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan
Stanciulescu, and Fabien Moutarde. Home: Heatmap output
for future motion estimation. In 2021 IEEE International
Intelligent Transportation Systems Conference, pages 500–
507, 2021. 1, 2

[12] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan
Stanciulescu, and Fabien Moutarde. Gohome: Graph-oriented
heatmap output for future motion estimation. In International
Conference on Robotics and Automation, pages 9107–9114,
2022. 1, 2

[13] Francesco Giuliari, Irtiza Hasan, Marco Cristani, and Fabio
Galasso. Transformer networks for trajectory forecasting.
In International Conference on Pattern Recognition, pages
10335–10342. IEEE, 2021. 1

[14] Tianpei Gu, Guangyi Chen, Junlong Li, Chunze Lin, Yong-
ming Rao, Jie Zhou, and Jiwen Lu. Stochastic trajectory
prediction via motion indeterminacy diffusion. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 17113–17122, 2022. 1, 2, 5, 6, 7

[15] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and
Alexandre Alahi. Social gan: Socially acceptable trajectories
with generative adversarial networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2255–2264, 2018. 1, 2, 6, 7

[16] Dirk Helbing and Peter Molnar. Social force model for pedes-
trian dynamics. Physical review E, 51(5):4282, 1995. 2

[17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In Advances in Neural Information
Processing Systems, volume 33, pages 6840–6851, 2020. 1,
2, 5

[18] Yue Hu, Siheng Chen, Ya Zhang, and Xiao Gu. Collaborative
motion prediction via neural motion message passing. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6319–6328, 2020. 1, 2, 6, 7

[19] Yingfan Huang, Huikun Bi, Zhaoxin Li, Tianlu Mao, and
Zhaoqi Wang. Stgat: Modeling spatial-temporal interac-
tions for human trajectory prediction. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 6272–6281, 2019. 6

[20] Takayuki Kanda, Hiroshi Ishiguro, Tetsuo Ono, Michita Imai,
and Ryohei Nakatsu. Development and evaluation of an
interactive humanoid robot" robovie". In IEEE International
Conference on Robotics and Automation, pages 1848–1855,
2002. 1

[21] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan
Catanzaro. Diffwave: A versatile diffusion model for audio
synthesis. In International Conference on Learning Repre-
sentations, 2020. 1, 2

[22] Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín,
Ian Reid, Hamid Rezatofighi, and Silvio Savarese. Social-
bigat: Multimodal trajectory forecasting using bicycle-gan
and graph attention networks. In Advances in Neural Infor-
mation Processing Systems, volume 32, 2019. 2

[23] Mihee Lee, Samuel S Sohn, Seonghyeon Moon, Sejong Yoon,
Mubbasir Kapadia, and Vladimir Pavlovic. Muse-vae: Multi-
scale vae for environment-aware long term trajectory pre-
diction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2221–2230,
2022. 2

[24] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson,
David Held, Soeren Kammel, J Zico Kolter, Dirk Langer,
Oliver Pink, Vaughan Pratt, et al. Towards fully autonomous
driving: Systems and algorithms. In IEEE Intelligent Vehicles
symposium, pages 163–168. IEEE, 2011. 1

[25] Jiachen Li, Fan Yang, Masayoshi Tomizuka, and Chiho Choi.
Evolvegraph: Multi-agent trajectory prediction with dynamic
relational reasoning. In Proceedings of the Neural Informa-
tion Processing Systems, 2020. 7

[26] Karttikeya Mangalam, Yang An, Harshayu Girase, and Jiten-
dra Malik. From goals, waypoints & paths to long term hu-
man trajectory forecasting. In Proceedings of the IEEE/CVF

5525

International Conference on Computer Vision, pages 15233–
15242, 2021. 1, 2

[27] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal,
Kuan-Hui Lee, Ehsan Adeli, Jitendra Malik, and Adrien
Gaidon. It is not the journey but the destination: Endpoint
conditioned trajectory prediction. In European Conference
on Computer Vision, pages 759–776, 2020. 1, 2, 6, 7

[28] Wei Mao, Miaomiao Liu, and Mathieu Salzmann. History
repeats itself: Human motion prediction via motion attention.
In European Conference on Computer Vision, pages 474–489,
2020. 2

[29] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong
Li. Learning trajectory dependencies for human motion pre-
diction. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 9489–9497, 2019. 2

[30] Ramin Mehran, Alexis Oyama, and Mubarak Shah. Abnormal
crowd behavior detection using social force model. In 2009
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 935–942. IEEE, 2009. 2

[31] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and
Christian Claudel. Social-stgcnn: A social spatio-temporal
graph convolutional neural network for human trajectory pre-
diction. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14424–14432,
2020. 6

[32] Jeremy Morton, Tim A Wheeler, and Mykel J Kochenderfer.
Analysis of recurrent neural networks for probabilistic mod-
eling of driver behavior. IEEE Transactions on Intelligent
Transportation Systems, 18(5):1289–1298, 2016. 2

[33] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171, 2021.
1, 2

[34] Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Tra-
jectory prediction with latent belief energy-based model. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 11814–11824, 2021. 6

[35] Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland
Vollgraf. Autoregressive denoising diffusion models for mul-
tivariate probabilistic time series forecasting. In International
Conference on Machine Learning, pages 8857–8868, 2021. 2

[36] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki
Hirose, Hamid Rezatofighi, and Silvio Savarese. Sophie: An
attentive gan for predicting paths compliant to social and
physical constraints. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1349–1358, 2019. 2, 7

[37] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In International Confer-
ence on Learning Representations, 2021. 2, 7

[38] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and
Marco Pavone. Trajectron++: Dynamically-feasible trajectory
forecasting with heterogeneous data. In European Conference
on Computer Vision, pages 683–700, 2020. 1, 2, 6, 7

[39] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Conference
on Machine Learning, pages 2256–2265, 2015. 2

[40] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. In International Conference on
Learning Representations, 2020. 2, 7

[41] Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. In Advances in
Neural Information Processing Systems, volume 32, 2019. 2

[42] Hao Sun, Zhiqun Zhao, and Zhihai He. Reciprocal learning
networks for human trajectory prediction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7416–7425, 2020. 2

[43] Bohan Tang, Yiqi Zhong, Ulrich Neumann, Gang Wang, Ya
Zhang, and Siheng Chen. Collaborative uncertainty in multi-
agent trajectory forecasting. Advances in Neural Information
Processing Systems, 34, 2021. 1

[44] Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Er-
mon. Csdi: Conditional score-based diffusion models for
probabilistic time series imputation. In Advances in Neural
Information Processing Systems, pages 24804–24816, 2021.
1, 2

[45] Maria Valera and Sergio A Velastin. Intelligent distributed
surveillance systems: a review. IEE Proceedings-Vision, Im-
age and Signal Processing, 152(2):192–204, 2005. 1

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, 2017. 1

[47] Anirudh Vemula, Katharina Muelling, and Jean Oh. Social
attention: Modeling attention in human crowds. In 2018 IEEE
international Conference on Robotics and Automation, pages
4601–4607, 2018. 2

[48] Pengxiang Wu, Siheng Chen, and Dimitris N Metaxas. Mo-
tionnet: Joint perception and motion prediction for au-
tonomous driving based on bird’s eye view maps. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11385–11395, 2020. 1

[49] Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, and Siheng
Chen. Groupnet: Multiscale hypergraph neural networks for
trajectory prediction with relational reasoning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6498–6507, 2022. 1, 2, 6, 7

[50] Chenxin Xu, Weibo Mao, Wenjun Zhang, and Siheng Chen.
Remember intentions: Retrospective-memory-based trajec-
tory prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6488–
6497, 2022. 6, 7

[51] Chenxin Xu, Yuxi Wei, Bohan Tang, Sheng Yin, Ya Zhang,
and Siheng Chen. Dynamic-group-aware networks for multi-
agent trajectory prediction with relational reasoning. arXiv
preprint arXiv:2206.13114, 2022. 2

[52] Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi.
Spatio-temporal graph transformer networks for pedestrian
trajectory prediction. In European Conference on Computer
Vision, pages 507–523, 2020. 6, 7

[53] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris M Kitani.
Agentformer: Agent-aware transformers for socio-temporal
multi-agent forecasting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9813–
9823, 2021. 1, 7

5526

	. Introduction
	. Related Work
	. Background
	. Problem Formulation
	. Diffusion Model for Trajectory Prediction

	. Leapfrog Diffusion Model
	. System Architecture
	. Leapfrog Initializer
	. Denoising Module
	. Training Objective
	. Inference Phase

	. Experiments
	. Datasets
	. Implementation Details
	. Comparison with SOTA Methods
	. Ablation Studies
	. Qualitative Results

	. Conclusion

