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Abstract

Deep point cloud registration methods face challenges
to partial overlaps and rely on labeled data. To address
these issues, we propose UDPReg, an unsupervised deep
probabilistic registration framework for point clouds with
partial overlaps. Specifically, we first adopt a network to
learn posterior probability distributions of Gaussian mix-
ture models (GMMs) from point clouds. To handle partial
point cloud registration, we apply the Sinkhorn algorithm
to predict the distribution-level correspondences under the
constraint of the mixing weights of GMMs. To enable unsu-
pervised learning, we design three distribution consistency-
based losses: self-consistency, cross-consistency, and local
contrastive. The self-consistency loss is formulated by en-
couraging GMMs in Euclidean and feature spaces to share
identical posterior distributions. The cross-consistency loss
derives from the fact that the points of two partially over-
lapping point clouds belonging to the same clusters share
the cluster centroids. The cross-consistency loss allows the
network to flexibly learn a transformation-invariant pos-
terior distribution of two aligned point clouds. The lo-
cal contrastive loss facilitates the network to extract dis-
criminative local features. Our UDPReg achieves competi-
tive performance on the 3DMatch/3DLoMatch and Model-
Net/ModelLoNet benchmarks.

1. Introduction

Rigid point cloud registration aims at determining the
optimal transformation to align two partially overlapping
point clouds into one coherent coordinate system [21, 30–
32]. This task dominates the performance of systems in
many areas, such as robotics [57], augmented reality [6],
autonomous driving [35, 42], radiotherapy [27], etc. Re-
cent advances have been monopolized by learning-based
approaches due to the development of 3D point cloud rep-
resentation learning and differentiable optimization [37].

Existing deep learning-based point cloud registration
methods can be broadly categorized as correspondence-

free [2, 21, 30, 32, 47] and correspondence-based [4, 9, 19,
50]. The former minimizes the difference between global
features extracted from two input point clouds. These
global features are typically computed based on all the
points of a point cloud, making correspondence-free ap-
proaches inadequate to handle real scenes with partial over-
lap [9, 55]. Correspondence-based methods first extract lo-
cal features used for the establishment of point-level [9, 17,
19,21] or distribution-level [15,29,39,52] correspondences,
and finally, estimate the pose from those correspondences.
However, point-level registration does not work well un-
der conditions involving varying point densities or repeti-
tive patterns [31]. This issue is especially prominent in in-
door environments, where low-texture regions or repetitive
patterns sometimes dominate the field of view. Distribution-
level registration, which compensates for the shortcomings
of point-level methods, aligns two point clouds without es-
tablishing explicit point correspondences. Unfortunately, to
the best of our knowledge, the existing methods are inflex-
ible and cannot handle point clouds with partial overlaps
in real scenes [28, 31]. Moreover, the success of learning-
based methods mainly depends on large amounts of ground
truth transformations or correspondences as the supervision
signal for model training. Needless to say, the required
ground truth is typically difficult or costly to acquire, thus
hampering their application in the real world [38].

We thus propose an unsupervised deep probabilistic reg-
istration framework to alleviate these limitations. Specif-
ically, we extend the distribution-to-distribution (D2D)
method to solve partial point cloud registration by adopt-
ing the Sinkhorn algorithm [11] to predict correspondences
of distribution. In order to make the network learn ge-
ometrically and semantically consistent features, we de-
sign distribution-consistency losses, i.e., self-consistency
and cross-consistency losses, to train the networks without
using any ground-truth pose or correspondences. Besides,
we also introduce a local contrastive loss to learn more dis-
criminative features by pushing features of points belong-
ing to the same clusters together while pulling dissimilar
features of points coming from different clusters apart.
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Our UDPReg is motivated by OGMM [33] and
UGMM [20] but differs from them in several ways. Firstly,
unlike OGMM, which is a supervised method, our approach
is unsupervised. Secondly, while UGMM [20] treats all
clusters equally in the matching process, our method aligns
different clusters with varying levels of importance. This
enables our approach to handle partial point cloud regis-
tration successfully. To enable unsupervised learning, the
designed self-consistency loss encourages the extracted fea-
tures to be geometrically consistent by compelling the fea-
tures and coordinates to share the posterior probability. The
cross-consistency loss prompts the extracted features to be
geometrically consistent by forcing the partially overlap-
ping point clouds to share the same clusters. We evaluate
our UDPReg on 3DMatch [53], 3DLoMatch [19], Model-
Net [45] and ModelLoNet [19], comparing our approach
against traditional and deep learning-based point cloud reg-
istration approaches. UDPReg achieves state-of-the-art re-
sults and significantly outperforms unsupervised methods
on all the benchmarks.

In summary, the main contributions of this work are:
• We propose an unsupervised learning-based probabilistic

framework to register point clouds with partial overlaps.
• We provide a deep probabilistic framework to solve par-

tial point cloud registration by adopting the Sinkhorn al-
gorithm to predict distribution-level correspondences.

• We formulate self-consistency, cross-consistency, and
local-contrastive losses, to make the posterior probabil-
ity in coordinate and feature spaces consistent so that the
feature extractor can be trained in an unsupervised way.

• We achieve state-of-the-art performance on a compre-
hensive set of experiments, including synthetic and real-
world datasets1.

2. Related Work

Point-Level Methods. Point-level registration approaches
first extract point-wise features, then establish point-to-
point correspondences through feature matching, followed
by outlier rejection and robust estimation of the rigid trans-
formation. Numerous works, such as FCGF [10] and
RGM [17], focus on extracting discriminative features for
geometric correspondences. For the correspondence predic-
tion, DCP [43], RPMNet [49], and REGTR [50] perform
feature matching by integrating the Sinkhorn algorithm or
Transformer [41] into a network to generate soft correspon-
dences from local features. IDAM [25] incorporates both
geometric and distance features into the iterative matching
process. To reject outliers, DGR [9] and 3DRegNet [36]
use networks to estimate the inliers. Predator [19] and PR-
Net [44] focus on detecting points in the overlap region and
utilizing their features to generate matches. Keypoint-free

1https://github.com/gfmei/UDPReg

methods [30, 51, 54] first downsample the point clouds into
super-points and then match them by examining whether
their neighborhoods (patch) overlap. Though achieving re-
markable performance, most of these methods rely on large
amounts of ground-truth transformations, as inaccessible
or expensive as such annotation may get. This said, the
ground-truth geometric labels could potentially be obtained
from full 3D reconstruction pipelines [8], but these require
delicate parameter tuning, partial human supervision, and
extra sensory information such as GPS. As a result, the
success of learning-based techniques has been limited to a
handful of datasets with ground-truth annotations.

Distribution-Level Methods. Distribution-level methods
model the point clouds as probability distributions, often
via the use of GMMs, and perform alignment either by em-
ploying a correlation-based or an EM-based optimization
framework. The correlation-based methods [22, 52] first
build GMM probability distributions for both the source
and target point clouds. Then, the transformation is esti-
mated by minimizing a metric or divergence between the
distributions. However, these methods lead to nonlinear op-
timization problems with nonconvex constraints [24]. Un-
like correlation-based methods, the EM-based approaches,
such as JRMPC [15], CPD [34], and FilterReg [18], repre-
sent the geometry of one point cloud using a GMM distri-
bution over 3D Euclidean space. The transformation is then
calculated by fitting another point cloud to the GMM dis-
tribution under the maximum likelihood estimation (MLE)
framework. These methods are robust to noise and density
variation [52]. Most of them utilize robust discrepancies
to reduce the influence of outliers by greedily aligning the
largest possible fraction of points while being tolerant to a
small number of outliers. However, if outliers dominate, the
greedy behavior of these methods easily emphasizes out-
liers, leading to degraded registration results [15]. Consid-
ering these factors, we formulate registration in a novel par-
tial distribution matching framework, where we only seek
to partially match the distributions.

Unsupervised Point Cloud Registration. To handle
ground-truth labeling issues, great efforts [12,21,23,38,44,
48] have been devoted to unsupervised deep point cloud
registration. The existing methods mainly lie in auto-
encoders [12, 21, 38] with a reconstruction loss or con-
trastive learning [10, 14, 46] with data augmentation. Al-
though encouraging results have been achieved, some lim-
itations remain to be addressed. Firstly, they depend on
the point-level loss, such as Chamfer distance in auto-
encoder [12], finding it difficult to handle large-scale sce-
narios due to computational complexity. Secondly, many
pipelines [44] apply fixed/handcrafted data augmentation
to generate transformations or correspondences, leading to
sub-optimal learning. This is because they cannot fully
use the cross information of partially overlapping point
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Figure 1. UDPReg uses shared weighted network extracts point-level features Fs and F t, overlap scores Os and Ot from point clouds
Ps and Pt, respectively. Cluster head consumes Fs and F t to calculate probability matrices Ss and St, which are applied to estimate the
parameters (πx

j ,µ
x
j ,Σ

x
j ), x∈{s, t, fs, ft}, of GMMs. Next, cluster-level and point-level matching modules estimate the correspondences

M, which are used to estimate the transformation T . The network is trained using local contrastive, self-consistency, and cross-consistency
losses. S is the concatenation of Ss and St. P and F are the concatenation of Ps and Pt, and Fs and F t, respectively.

clouds without geometric labels, and the shape complexity
of the samples is ignored in the fixed augmentation [26].
To overcome these limitations, we provide a distribution
consistency-based unsupervised method, which utilizes the
distribution-level loss to reduce the computational complex-
ity. Even without using any data augmentation, the pro-
posed method is still suitable and available.

3. Method

3.1. Problem Formulation

Point cloud registration aims to seek a transforma-
tion T∈SE(3) that optimally aligns the source point
cloud Ps={ps

i∈R3
∣∣i=1, 2, ..., Ns} to the target point

cloud Pt={pt
j∈R3

∣∣j=1, 2, ..., Nt}. Ps and Pt contain
Ns and Nt points, respectively. T consists of rotation
R∈SO(3) and translation t∈R3. Instead of directly em-
ploying the point-level solution, we apply the distribution-
to-distribution (D2D) approach to fit these two point clouds
and obtain individual potential GMMs, where each compo-
nent represents the density of the spatial coordinates and
features in a local region. The transformation is then recov-
ered from the learned GMMs. Our goal is to learn GMMs of
point clouds for registration without any ground-truth geo-
metric labels. Our UDPReg framework is conceptually sim-
ple and is illustrated in Fig. 1. The shared weighted feature
extractor consisting of an encoder, Transformer (self- and
cross-attention), and decoder first extracts point-wise fea-

tures Fs and F t, overlap scores Os and Ot from point
clouds Ps and Pt, respectively. Fs and F t are then fed
to cluster head to estimate the distributions (GMMs) of Ps

and Pt in both coordinate and feature spaces. After that, the
correspondences M are estimated by performing cluster-
level and point-level matching based on the Sinkhorn algo-
rithm [11]. Finally, a variant of RANSAC [16] specialized
to 3D registration is adopted to calculate T based on the
estimated correspondences. The network is trained using
the proposed self-consistency, cross-consistency, and local
contrastive losses in an unsupervised manner.

3.2. The Proposed GMM-Based Registration

Feature Extraction. Following [19, 31, 37], a shared
encoder KPConv-FPN [40], which is composed of
a series of ResNet-like blocks and stridden convolu-
tions, simultaneously downsamples the raw point clouds
Ps and Pt into superpoints P̄s and P̄t and ex-
tracts associated features F̄s

={f̄s
i ∈Rb|i=1, 2, ..., N̄s} and

F̄ t
={f̄ t

j∈Rb|j=1, 2, ..., N̄t}, respectively. b is dimension.
Then, self- and cross-attention are applied to encode contex-
tual information of two point clouds with partial overlaps,
which outputs conditioned features F̄s and F̄ t. Finally, the
shared decoder starts with conditioned features F̄s and F̄ t,
and outputs the point-wise feature descriptor Fs∈RNs×d

and F t∈RNt×d and overlap scores Os={osi}∈R
Ns
+ and

Ot={otj}∈R
Nt
+ . d is the dimension of features. The de-
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coder combines NN-upsampling with linear layers and in-
cludes skip connections from the corresponding encoder
layers. For more details on feature extraction, please refer
to the supplementary material.

Learning Posterior. Different from the previous works [13,
52] only considering the spatial coordinates of the points in
the probabilistic registration model, we propose a method
to learn the joint distribution over the spatial coordinate and
feature spaces. Specifically, we apply a multi-layer percep-
tron (MLP), i.e., cluster head ψ, that takes as input Fs and
F t and outputs joint log probabilities and a Softmax opera-
tor that acts on log probabilities to generate probability ma-
trices Ss={ssij}

Ns,L−1
i,j=1 and St={stij}

Nt,L−1
i,j=1 , respectively.

To deal with outliers, it is straightforward to add a Gaus-
sian kernel density. We define Ŝx={sxij}

Nx,L
i,j=1 (x∈{s, t})

with elements satisfying ŝxiL=1.0−oxi and ŝxiL=o
x
i s

x
ij , 1 ≤

j < L. UDPReg assumes that coordinate and feature spaces
share the same probability matrix (posterior distribution).
The GMM parameters Θx for point cloud Px, in 3D coor-
dinate space, consists ofL triples (πx

j ,µ
x
j ,Σ

x
j ), where πx

j is
the mixing weight of component j satisfying

∑L
j=1 π

x
j = 1,

µx
j is a 3×1 mean vector and Σx

j is a 3×3 covariance matrix
of the j-th component. Given the outputs Sx of ψ together
with the point coordinates Px, the GMMs are calculated as:

πx
j =

1

Nx

∑
i=1

ŝxij ,µ
x
j=

1

Nxπx
j

∑
i=1

ŝxijp
x
i ,

Σx
j=

∑
i=1

ŝxij
(
px
i −µx

j

) (
px
i −µx

j

)⊤
,

Gx (x)=
∑
j=1

πx
j N

(
x|µx

j ,Σ
x
j

)
, x ∈ {s, t}.

(1)

Similar in the coordinate space, based on probability matri-
ces Ss and St, the GMM parameters of point clouds Ps

and Pt in feature space are also computed as:

µfx
j =

Nx∑
i=1

ŝxijf
x
i

Nxπx
j

,Σfx
j =

Nx∑
i=1

ŝxij

(
fx
i −µfx

j

)(
fx
i −µfx

j

)⊤
,

where subscript x∈{s, t}. Note that the GMMs in co-
ordinate and feature spaces share mixing coefficients.
For simplify, we denote Φfx

k (x)=N
(
x|µfx

k ,Σ
fx
k

)
with

k∈{1, · · · , L}. The GMMs of point clouds Ps and Pt in
feature space are then given as:

Gfs (x)=

L∑
j=1

πs
jΦ

fs
j (x), Gft (x)=

L∑
j=1

πt
jΦ

ft
j (x). (2)

Cluster-Level Matching. Instead of indirectly perform-
ing the maximum likelihood estimation between Gs and
Gt, weighted distribution-level correspondences are repre-
sented as soft assignments to the components based on the
mixing weights of GMMs and the L2 distance [22] of dis-
tribution in the feature space. This is because (πs

j ,µ
s
j ,Σ

s
j)

and (πt
j ,µ

t
j ,Σ

t
j) are not wholly matched when two point

clouds are partially overlapped. Moreover, the aligned com-
ponents should have similar mixing weights and small dis-
tances. To estimate the correspondences, we first calculate
the distance between two GMMs as follows:

D(Φfs
i ,Φft

j ) =

∫
R

(
Φfs

i (x)− Φft
j (x)

)2

dx. (3)

We denote rx=
∑L−1

i=1 max(
πx
i

1−πx
L
− πy

i

1−πy
L
, 0) and cost ma-

trix D with elements satisfying Dij=D(Φfs
i ,Φ

ft
j ). x =

s, y = t or x = t, y = s. In partially overlapping regis-
tration, some components are occluded in the other frame.
Similar to [51], we propose here to solve it directly by
changing the cost matrix as D̂ with elements satisfying, if
i, j<L, D̂ij=Dij otherwise Dij=z. z is a learnable pa-
rameter. The extended assignment matrix Γ∈RL×L can be
estimated by solving the following optimization problem:

min
Γ

∑
ij

ΓijD̂ij ,

s.t., Γ1L=π̂s,Γ⊤1L=π̂t,Γij ∈ [0, 1],

(4)

where π̂x= 1
1+rx−πx

L
(πx

1 , π
x
2 , · · · , πx

L−1, r
x), x∈{s, t}. We

run the Sinkhorn Algorithm [11] to seek an optimal solu-
tion. After that, each entry (i, j) of Γ implies the match-
ing confidence between components. Following [51], we
pick correspondences whose confidence scores are above a
threshold τ = 0.1. We define the picked distribution-level
correspondence set as C̄={(µ̄s

i , µ̄
t
i)}.

Point-Level Registration. We first partition the points into
clusters by assigning each point to its closest centroid in
the geometric space. Once grouped, we obtain 3D patches
comprised of points along with their corresponding clus-
tering scores and descriptors. These patches enable us to
extract point correspondences. For a centroid µs

i , its asso-
ciated point set Cs

i and feature set Fs
i are denoted as:

Cs
i = {ps ∈ Ps

∣∣∥ps − µs
i∥2 ≤ ∥ps − µ̄s

j∥2, i ̸= j},
Fs

i = {fs
j ∈ Fs

∣∣ps
j ∈ Cs

i},
Ss
i = {ss

ji ∈ ss
i

∣∣ps
j ∈ Cs

i}.
The same operator is also performed for µt

j and we get Ct
i,

Ft
i, and Sti. The cluster-level correspondence set M′ are

expanded to its corresponding 3D patch, both in geometry
space MC={(Cs

i ,C
t
i)}, feature space MF={(Fs

i ,F
t
i)},

and normalized clustering scores MS={(Ssi ,Sti)}. For
computational efficiency, every patch samples the K num-
ber of points based on the probability. Similar to
cluster-level prediction, given a pair of overlapped patches
(Cs

i ,F
s
i ,S

s
i ) and (Ct

i,F
t
i,S

t
i), extracting point correspon-

dences is to match two smaller corresponded scale point
clouds (Cs

i ,C
t
i) by solving an optimization problem:

min
Γi

〈
Di,Γi

〉
, s.t., Γi⊤1K = Sti,Γ

i1K = Ssi , (5)

where each Γi=[Γi]K×K
kl represents an assignment matrix

and Di=[Di]kl with Di
kl=∥ Fs

i (k)
∥Fs

i (k)∥2
− Ft

i(l)
∥Ft

i(l)∥2
∥2. After
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reaching Γi, we select correspondences from (Cs
i ,C

t
i) with

maximum confidence score for each row of Γi. We denote
each correspondence set extracted from a pair of patches as
Mi={(ps

î
∈Cs

i ,p
t
ĵ
∈Ct

i), î=1, 2, · · · ,K
∣∣ĵ=argmaxk Γ

i
î,k

}.
The final point correspondence set M consists of the union
of all the obtained patch-level correspondence sets Mi.
Following [4, 51], a variant of RANSAC [16] that is spe-
cialized to 3D registration takes M as an input to estimate
the transformation.

3.3. Consistency-Based Unsupervised Learning

Self-Consistency Loss. Our self-consistency loss encour-
ages point clouds to share an identical posterior distribution
in coordinate and feature spaces. It can be directly used
without using any data augmentation. Because training the
network parameters is equivalent to optimizing the Θs and
Θt, the GMMs parameters can be fitted to the observed data
points via maximizing the log-likelihood of samples to Θs

and Θt. However, the log-likelihood function is unstable in
the training processing since its value goes to infinity for a
specific combination of means and some degenerating co-
variance matrices. To avoid covariance degeneration, we
approximate the probabilities of points belonging to each
cluster based on their distance to the centroids estimated by
Eq. (1) under the constraints of the mixture weights. We
denote the empirical distribution matrices of Ps and Pt as
γs = {γs

ij} and γt = {γt
ij}. This results in the following

optimization objective:

min
γx

∑
i,j

γx
ij∥px

i − µx
j ∥22,

s.t.,
∑
i

γx
ij=Nxπ

x
j ,
∑
j

γx
ij=1,γij ∈ [0, 1],

(6)

where x ∈ {s, t}.
∑

j γ
x
ij=1 is based on the property of the

probability that the sum of all the probabilities for all possi-
ble events is equal to one.

∑
i γ

x
ij=Nxπ

x
j is the constraints

of the mixture weights. We address the minimization of
Eq. (6) by adopting an efficient version of the Sinkhorn al-
gorithm [11]. Coordinate and feature spaces share an iden-
tical posterior distribution means that Sx and γx should
be equal, which leads to a cross-entropy loss. Our self-
consistency loss is thus formulated as follows:

Lsc = −
∑
ij

γs
ij log s

t
ij −

∑
ij

γt
ij log s

t
ij . (7)

Cross-Consistency Loss. The described self-consistency
loss only encourages the learned representation to be spa-
tially sensitive, but it cannot ensure that the learned fea-
tures be transformation invariant. Therefore, we intro-
duce a cross-consistency loss to encourage the network to
learn transformation-invariant feature representations. Our
cross-consistency loss is based on the fact that the clus-
ter labeling should not change if the points are rigidly
transformed. This fact means that if points ps∈Ps and

pt∈Pt belong to the same cluster, they should share the
same cluster centroid. Therefore, the cross-consistency loss
can make full use of the information from both aligned
point clouds. Concretely, for two input features sets(
Fs,F t

)
, and two probability matrices (Ss,St), we ob-

tain a new feature set F=cat
(
Fs,F t

)
and a probability

matrix S=cat (Ss,St). cat(·, ·) means concatenation. We
assume the current estimated rotation and translation are R
and t. We define P̄s

=RPs+t and P=cat(P̄s
,Pt). Then,

we calculate the parameters of global GMMs in both feature
and euclidean spaces as:

πj =

∑
i sij
N

, µf
j =

∑
i sijfi

πjN
, µe

j =

∑
i sijpi

πjN
,

whereN=Ns+Nt. To avoid two aligned point clouds being
grouped into separate clusters, we assume that clustering
satisfies two constraints:
• GMMs are coupled with approximate uniform mixing

weights in coordinate and feature spaces.
• If a point pi belongs to partition j, point pi and its cou-

pled centroid should have the shortest distance.
Let γ={γij} to be the empirical probability matrix. The
two constraints can then be ensured by minimizing the fol-
lowing objective:

min
γ

∑
ij

(
λ1∥pi − µe

j∥22 + λ2∥fi − µf
j ∥

2
2

)
γij ,

s.t.,
∑
i

γij = 1,
∑
j

γij =
N

L
, γij ∈ [0, 1],

(8)

where λi∈[0, 1] are learned parameters. After solving
Eq. (8), we then infer our cross-consistency loss as:

Lcc(γ,S) = −
∑
ij

γij log sij , (9)

which corresponds to the minimization of the standard
cross-entropy loss between γ and predictions S.

Local Contrastive Loss. The local neighbors provide es-
sential information for feature learning on the objects of the
point clouds [26]. For instance, occlusions and holes al-
ways occur in objects in indoor and outdoor scenes [26]. If
the network captures the local structure information from
other complete objects, it can boost the model robustness
on incomplete objects during training. While the local de-
scriptors of the point clouds mainly derive from the points
and their neighbors [26], which motivates us to model the
local information of the point cloud by introducing local
contrastive loss. Specifically, given a centroid µx

i of point
cloud Px with x∈{s, t}, we search its nearest point px

i and
associated feature vector fx

i by the point-wise Euclidean
distance. Based on this, we construct the local contrastive
loss Llc following InfoNCE [46] by pulling fx

i close to µx
i ,

while pushing it away from the neighbor vector of other
points. We also encourage µfs

i and µft
i to be similar:
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Llc=− 1

L

L∑
i=1

log
exp

(
µfs

i µft
i

⊤)
∑L

j=1 exp
(
µfs

i µft
j

⊤)−
1

L

L∑
i=1

log
exp

(
µfs

i fs
i
⊤
)
exp

(
µft

i f t
i
⊤
)

∑L
j=1 exp

(
µfs

i fs
j
⊤
)∑L

j=1 exp
(
µft

i f t
j
⊤
) .

Thus, the final loss is the combination of self-consistency
loss, cross-consistency loss, and local contrastive loss as:

L = Lsc + Lcc + Llc. (10)

In particular, different from most existing methods, the
correspondence or pose between two partially overlapping
point clouds is unknown in our training processing.

4. Experiments
We conduct extensive experiments to evaluate the per-

formance of our method on the real datasets 3DMatch [53]
and 3DLoMatch [19], as well as on the synthetic datasets
ModelNet [45] and ModelLoNet [19].

4.1. Implementation Details

Our method is implemented in PyTorch and was trained
on one Quadro GV100 GPU (32G) and two Intel(R)
Xeon(R) Gold 6226 CPUs. We used the AdamW optimizer
with an initial learning rate of 1e−4 and a weight decay of
1e−6. We adopted the similar encoder and decoder archi-
tectures used in [37]. For the 3DMatch dataset, we trained
for 200 epochs with a batch size of 1, halving the learning
rate every 70 epochs. We trained on the ModelNet for 400
epochs with a batch size of 1, halving the learning rate every
100 epochs. On 3DMatch and 3DLoMatch, we set L=128
with truncated patch size K=64. On ModelNet and Model-
LoNet, we set L=64 with truncated patch size K=32. The
cluster head MLP consists of 3 fully connected layers. Each
layer is composed of a linear layer followed by batch nor-
malization. The hidden layer and the final linear layer out-
put dimension are 512 and clusters, respectively. Except for
the final layer, each layer has a LeakyReLU activation.

4.2. Evaluation on 3DMatch and 3DLoMatch

Datasets and Metrics. 3DMatch [53] and 3DLoMatch [19]
are two widely used indoor datasets with more than 30%
and 10%∼30% partially overlapping scene pairs, respec-
tively. 3DMatch contains 62 scenes, from which we use
46 for training, 8 for validation, and 8 for testing. The test
set contains 1,623 partially overlapping point cloud frag-
ments and their corresponding transformation matrices. We
used training data preprocessed by [19] and evaluated with
both the 3DMatch and 3DLoMatch protocols. Each input
point cloud contains an average of about 20,000 points. We
performed training data augmentation by applying small
rigid perturbations, jittering the point locations, and shuf-
fling points. Following REGTR [50] and SGP [48], we
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Figure 2. Example qualitative registration results for 3DMatch.
The unsuccessful cases are enclosed in red boxes.

Table 1. Results on both 3DMatch and 3DLoMatch datasets. The
best results for each criterion are labeled in bold, and the best re-
sults of unsupervised methods are underlined.

3DMatch 3DLoMatch
Method RR↑ RRE ↓ RTE ↓ RR ↑ RRE ↓ RTE ↓

Supervised Methods

FCGF [10] 85.1% 1.949 0.066 40.1% 3.147 0.100
D3Feat [3] 81.6% 2.161 0.067 37.2% 3.361 0.103

OMNet [47] 35.9% 4.166 0.105 8.4% 7.299 0.151
DGR [9] 85.3% 2.103 0.067 48.7% 3.954 0.113

Predator1K [19] 90.5% 2.062 0.068 62.5% 3.159 0.096
CoFiNet [51] 89.7% 2.147 0.067 67.2% 3.271 0.090

GeoTrans [37] 92.0% 1.808 0.063 74.0% 2.934 0.089
REGTR [50] 92.0% 1.567 0.049 64.8% 2.827 0.077

Unsupervised Methods

PPFFoldNet [12] 69.3% 3.021 0.089 24.8% 7.527 1.884
SGP + R10K [48] 85.5% 1.986 0.079 39.4% 3.529 0.099

UDPReg (Ours) 91.4% 1.642 0.064 64.3% 2.951 0.086

evaluated the Relative Rotation Errors (RRE) and Relative
Translation Errors (RTE) that measure the accuracy of suc-
cessful registrations. We also assessed Registration Recall
(RR), the fraction of point cloud pairs whose transformation
error is smaller than a threshold (i.e., 0.2m).

Baselines. We chose supervised state-of-the-art (SOTA)
methods: OMNet [47], FCGF [10], D3Feat [3], SpinNet
[1], Predator [19], REGTR [50], CoFiNet [51], and Geo-
Transformer [37], as well as unsupervised PPFFoldNet [12]
and SGP [48] as our baselines.

Registration Results. The results of various methods are
shown in Table 1, where the best performance is highlighted
in bold while the best-unsupervised results are marked with
an underline. For both 3DMatch and 3DLoMatch, our
method outperforms all unsupervised methods and achieves
the lowest average rotation (RRE) and translation (RTE) er-
rors across scenes. Our method also achieves the highest
average registration recall, which reflects the final perfor-
mance on point cloud registration (91.4% on 3DMatch and
64.3% on 3DLoMatch). Specifically, UDPReg largely ex-
ceeds the previous winner and our closest competitor, SGP,
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Figure 3. Example qualitative registration results for 3DLoMatch.
The unsuccessful cases are enclosed in red boxes.

(85.5% RR on 3DMatch) by about 5.9% and (39.4% RR
on 3DLoMatch) by 24.9%. Interestingly, our method also
exceeds some supervised methods, e.g. OGMM, FCGF,
D3Feat, DGR, and Predator1K, showing its efficacy in both
high- and low-overlap scenarios. Even compared with re-
cent supervised SOTA methods, our method achieves com-
petitive results. Figs. 2 and 3 show examples of qualitative
results on both 3DMatch and 3DLoMatch. GT indicates
ground truth. SGP failed in one case of Fig. 2 on 3DMatch
and failed in two cases of Fig. 3 on 3DLoMatch, but our
method succeeded in all cases. This is because our unsu-
pervised method can learn more discriminative features and
our matching strategy can deal with partial overlap registra-
tion, which further shows the effectiveness of UDPReg.

4.3. Evaluation on ModelNet40

Datasets and Metrics. ModelNet40 [45] contains 12,311
meshed CAD models from 40 categories. Following the
data setup in [19, 50], each point cloud is sampled from
ModelNet40 with 1,024 points followed by cropping and
sub-sampling into two partial overlap settings: ModelNet
has 73.5% pairwise overlap on average, and ModelLoNet
contains a lower 53.6% average overlap. We train only on
ModelNet and generalize to ModelLoNet. We follow [50]
and measure the performance using Relative Rotation Er-
ror (RRE) and Relative Translation Error (RTE) on all point
clouds and as Chamfer distance (CD) between scans.
Baselines. We chose recent supervised SOTA methods:
DCP-v2 [43], OMNet [47], RPM-Net [49], Predator [19],
REGTR [50], CoFiNet [51], and GeoTransformer [37], as
well as unsupervised method RIENet [38] and UGMM [20]
as our baselines. For traditional methods, we choose point-
level methods ICP [5] and FGR [56], as well as proba-
bilistic methods CPD [34], GMMReg [22], SVR [7], and
FilterReg [18] as baselines. For Predator, RPM-Net, OM-
Net, and REGTR, we use the results provided in REGTR.
In REGTR, Predator samples 450 points in the experiment,
and OMNet obtained a slightly improved result in all cat-

Table 2. Results on both ModelNet and ModelLoNet datasets. The
best results for each criterion are labeled in bold, and the best re-
sults of unsupervised methods are underlined.

ModelNet ModelLoNet
Method RRE ↓ RTE ↓ CD ↓ RRE ↓ RTE ↓ CD ↓

Traditional Methods

ICP [5] 13.74 0.132 0.1225 24.13 0.224 0.1289
FGR [56] 28.68 0.160 0.1290 34.39 0.244 0.1339
CPD [34] 14.17 0.139 0.1277 28.78 0.253 0.1320

GMMReg [22] 16.41 0.163 0.1304 24.03 0.243 0.1298
SVR [7] 14.40 0.140 0.1279 23.45 0.222 0.1322

FilterReg [18] 24.07 0.193 0.1336 37.28 0.298 0.1367

Supervised Methods

DCP-v2 [43] 11.98 0.171 0.0117 16.50 0.300 0.0268
DeepGMR [52] 7.871 0.108 0.0056 9.867 0.117 0.0064

OMNet [47] 2.947 0.032 0.0015 6.517 0.129 0.0074
RPM-Net [49] 1.712 0.018 0.0009 7.342 0.124 0.0050

Predator [19] 1.739 0.019 0.0009 5.235 0.132 0.0083
GeoTrans [37] 2.145 0.020 0.0003 4.741 0.103 0.0143

REGTR [50] 1.473 0.014 0.0008 3.930 0.087 0.0037

Unsupervised Methods

CEMNet [23] 2.575 0.019 0.0368 9.417 0.151 0.0861
RIENet [38] 2.447 0.018 0.0365 14.49 0.105 0.0828
UGMM [20] 13.65 0.124 0.0753 17.39 0.161 0.0745

UDPReg (Ours) 1.331 0.011 0.0306 3.578 0.069 0.0416

Table 3. The results of different combinations of loss functions
in both ModelNet and ModelLoNet datasets. The best results for
each criterion are labeled in bold.

ModelNet ModelLoNet
Method RRE ↓ RTE ↓ CD ↓ RRE ↓ RTE ↓ CD ↓

CC 6.985 0.087 0.0357 8.176 0.084 0.0483
SC 5.898 0.045 0.0314 8.104 0.081 0.0470
LC 7.871 0.046 0.0393 8.790 0.091 0.0482

SC + LC 3.742 0.062 0.0324 5.835 0.084 0.0334
CC + LC 3.867 0.059 0.0314 5.256 0.061 0.0422
CC + SC 3.421 0.048 0.0360 5.229 0.064 0.0423

CC + SC + LC 1.331 0.011 0.0306 3.578 0.069 0.0416

egories. We utilize the codes provided by the authors for
probabilistic methods. To improve the results for partial
registration, we replace PointNet with DGCNN in Deep-
GMR. Additionally, we use Open3D for ICP and FGR.
Registration Results. Table 2 reports registration results on
ModelNet40, in which the best results for each criterion are
labeled in bold, and the best results by unsupervised meth-
ods are underlined. We compare against the recent unsuper-
vised [38] and supervised [19, 37, 43, 47, 50, 51] methods.
When compared with unsupervised methods, our UDPReg
outperforms the correspondence-based CEMNet, RIENet
and GMM-based UGMM [20] in all metrics under both
normal overlap (ModelNet) and low overlap (ModelLoNet)
regimes. Compared with supervised methods, our approach
also achieves competitive results. Specifically, our UDPReg
outperforms all previous methods regarding rotation and
translation criteria. It is worth noting that RPM-Net [49]
additionally uses surface normals and is trained with trans-
formation information. Despite this, the UDPReg still per-
forms better. In addition to the quantitative results, Fig. 4
shows results on ModelNet with more than 70.0% partial
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Figure 4. Registration results of different methods on ModelNet
with more than 70% partial overlaps.
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Figure 5. Registration results of different methods on ModelLoNet
with more than 50% partial overlaps.

overlap. We also offer registration results for ModelLoNet
with more than 50.0% partial overlap in Fig. 5. Compared
with the recent SOTA unsupervised method RIENet, our
UDPReg recovers the transformation more accurately on
the challenging dataset ModelLoNet.

Loss Functions. We trained our model with different com-
binations of the local contrastive loss (LC), cross consis-
tency loss (CC), and self-consistency loss (SC), where the
experiments were conducted on both ModelNet and Mod-
elLoNet. Table 3 shows that the cross-consistency, self-
consistency, and local contrastive losses can boost reg-
istration precision. Specifically, for a single loss, self-
consistency loss archives the best results, and local con-
trastive loss performs worse on all metrics on both datasets.

Influence of the Number of Clusters. We assess the effect

Table 4. Ablation study results of UDPReg on ModelNet40 with
different number of clusters L. The best results for each criterion
are labeled in bold.

ModelNet ModelLoNet
Clusters RRE ↓ RTE ↓ CD ↓ RRE ↓ RTE ↓ CD ↓

4 1.504 0.009 0.0366 4.348 0.068 0.0452
16 1.439 0.007 0.0334 3.713 0.057 0.0424
32 1.305 0.014 0.0339 3.659 0.058 0.0419
64 1.331 0.011 0.0306 3.578 0.069 0.0416
96 1.454 0.021 0.0367 3.598 0.070 0.0428

128 1.468 0.009 0.0310 4.440 0.057 0.0399
160 1.530 0.009 0.0338 4.564 0.059 0.0422

Table 5. Ablation study of individual modules on ModelNet and
ModelLoNet. The best performance is highlighted in bold.

ModelNet ModelLoNet
Method RRE ↓ RTE ↓ CD ↓ RRE ↓ RTE ↓ CD ↓
Cluster 3.932 0.033 0.0330 6.018 0.182 0.0463

Point 2.505 0.014 0.0311 4.264 0.096 0.0431
Cluster-Point 1.331 0.011 0.0306 3.578 0.069 0.0416

of the number of clusters L for ModelNet and ModelLoNet.
We trained UDPReg with different values of L, from 4 to
160, and report the results in Table 4. UDPReg achieves the
best results with L=64 on both benchmarks. The results
are stable for 16≤L≤96. This suggests that the number of
clusters has little influence as long as there are “enough”.
Importance of Individual Modules. In the registration
process, UDPReg extracts hierarchical correspondences
from clusters to points. Therefore, we further explore the
efficiency of the hierarchical registration strategy. Table 5
reports the results on ModelNet and ModelLoNet, where
Cluster, Point, and Cluster-point indicate distribution-level,
point-level, and distribution-based point-level correspon-
dences, respectively. In the first experiment, we only used
distribution-level correspondences for point cloud registra-
tion. Unsurprisingly, it performs worse on all metrics, in-
dicating UDPReg benefits from point-level matching. In
the second experiment, we directly predict the point-level
correspondences to estimate transformation by performing
feature matching. Its performance is still worse than that
of the hierarchical registration strategy, further showing the
effectiveness of our correspondence prediction strategy.

5. Conclusion
This paper presents a distribution consistency-based un-

supervised deep probabilistic registration framework. One
of the advantages of this method is that it extends the prob-
abilistic registration to handle point cloud registration with
partial overlaps by adopting the Sinkhorn algorithm to pre-
dict distribution-level correspondences. Moreover, we pro-
pose self-consistent, cross-consistent, and local-contrastive
losses to train feature extractors in an unsupervised man-
ner. Experiments demonstrate that the proposed algorithm
achieves the best performance.
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