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Abstract
The inverted index is a widely used data structure to

avoid the infeasible exhaustive search. It accelerates re-
trieval significantly by splitting the database into multiple
disjoint sets and restricts distance computation to a small
fraction of the database. Moreover, it even improves search
quality by allowing quantizers to exploit the compact distri-
bution of residual vector space. However, we firstly point
out a problem that an existing deep learning-based quan-
tizer hardly benefits from the residual vector space, unlike
conventional shallow quantizers. To cope with this problem,
we introduce a novel disentangled representation learning
for unsupervised neural quantization. Similar to the con-
cept of residual vector space, the proposed method enables
more compact latent space by disentangling information of
the inverted index from the vectors. Experimental results on
large-scale datasets confirm that our method outperforms
the state-of-the-art retrieval systems by a large margin.

1. Introduction

Measuring the distances among feature vectors is a fun-

damental requirement in various fields of computer vision.

One of the tasks most relevant to distance measurement is

the nearest neighbor search, which finds the closest data

in the database from a query. The task is especially chal-

lenging in high-dimensional and large-scale databases due

to huge computational costs and memory overhead.

By relaxing the complexity, Approximate Nearest

Neighbor (ANN) search is popular in practice. Recent ap-

proaches for ANN typically learn the compact representa-

tion by exploiting Multi-Codebook Quantization (MCQ) [2,

9, 16]. Compared to hashing-based approaches [1, 10, 12],

the MCQ provides a more informative asymmetric distance

estimator where the query side is not compressed. More-

over, all possible distances between the query and code-

words can be stored in a lookup table for efficiency.

Although the MCQ accelerates the distance computation

with the lookup table, exhaustive search on the large-scale
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dataset is still prohibited. The Inverted File with Asym-

metric Distance Computation (IVFADC) [16] is proposed

for non-exhaustive ANN search by cooperating with the in-

verted index [30]. It splits the database into multiple disjoint

sets and restricts distance computations to small portions

close to the query to accelerate the retrieval speed. More-

over, the compactness of residual vector space between data

points and inverted indices substantially enhances the quan-

tization quality.

Thanks to the rapid advances in deep learning, most ar-

eas of computer vision benefit from its great learning capac-

ity compared to shallow methods. However, the state-of-

the-art methods of unsupervised quantization remain shal-

low for a long time because selecting the maximum value

(i.e. argmax), which is an essential operation of quanti-

zation, is not differentiable. Inspired by a recent gener-

ative model with discrete hidden variables [35], the Un-

supervised Neural Quantization (UNQ) [23] introduced an

encoder-decoder-based architecture for ANN search. The

large learning capacity of deep neural architecture signifi-

cantly improves the retrieval quality compared to conven-

tional shallow methods.

Despite the outperforming performance of the UNQ, its

superiority is validated only on the exhaustive search. To

verify its effectiveness on non-exhaustive search, we con-

duct an experiment of non-exhaustive UNQ with an inverted

index. Interestingly, we observe that this deep architecture

does not benefit from the residual vector space and it even

harms the search quality as reported in Table 1. We hypoth-

esize the reasons for this performance degradation from two

perspectives. First, both the residual vector space and la-

tent space of the neural network transform the data into a

quantization-friendly distribution, thus deep quantizer has

a scant margin to be improved by the residual space. Sec-

ond, residual space sacrifices the distributional characteris-

tics of each cluster, since the information of cluster center

in the original space is removed. For conventional shallow

quantizers, the drawback of residual space is obscured by

its huge advantage of making a compact distribution. How-

ever, deep quantizer only takes the disadvantages (informa-

tion loss) from residual space without leveraging the effec-
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tiveness such as compactness of residuals.

In this paper, we focus on extending the application

of deep architectures for non-exhaustive search. To this

end, we learn a disentangled representation to harmonize

a deep architecture with the inverted index, inspired by re-

cent representation learning techniques for generative mod-

els [8,34]. In our disentangled representation learning, both

encoder and decoder get information of cluster center as an

additional input. Since the information of cluster center is

redundant to decoder if latent feature contains information

of cluster center, the encoder is trained to remove the infor-

mation of cluster centers from the latent embedding. The

disentangled representation learning is similar to concept of

the residual vector space that provides more compact dis-

tribution by taking out the information of cluster centers.

The experimental results verify that the learning disentan-

gled representation enables the neural quantization to col-

laborate with inverted index and outperforms the state-of-

the-art methods.

The contributions of our paper include:

• We point out that the residual encoding of the inverted

index is incompatible with the neural multi-codebook

quantization method.

• We propose a novel disentangled representation learn-

ing for neural multi-codebook quantization to combine

deep quantization and inverted index.

• The experimental results show that the proposed

method outperforms the state-of-the-art retrieval sys-

tems by a large margin.

2. Related Work
2.1. Multi-codebook Quantization for ANN

Vector quantization [11] maps a vector to its nearest

codeword within a learned codebook. Specifically, a high-

dimensional real-valued vector can be efficiently repre-

sented by an integer index of its corresponding cluster. To

ensure a high search accuracy, the vector quantization re-

quires a codebook with an extremely large number of code-

words. However, enlarging the number of codewords is far

from efficiency because the cost of assigning the nearest

codeword is proportionally increased with codebook sizes.

Product Quanztiaton (PQ) [16] decomposes the space

into a Cartesian product of lower-dimensional subspaces.

By quantizing each subspace separately, multiple code-

books are produced and they enable better search quality

with a manageable number of codewords. Optimized Prod-

uct Quantization (OPQ) [9] and Cartesian K-means [25] in-

troduced to learn transformation to optimize the decompo-

sition step in PQ according to the data distribution.

While the PQ encodes a vector into a concatenation of

assigned codewords, a number of methods [2, 6, 20, 21, 26,

36] approximated a vector by a sum of assigned codewords.

These addition-based methods have a higher degree of free-

dom than the concatenation-based methods, since the con-

catenation is a special case of addition where components

of addition are mutually orthogonal.

The state-of-the-art methods of such multi-codebook

quantization remain shallow for a long time, while most

areas of computer vision benefit from rapid advances in

deep learning. The non-differentiability of codeword as-

signment operation makes the multi-codebook quantization

hard to collaborate with deep learning. Vector-Quantized

Variational Autoencoder (VQ-VAE) [35] in the area of the

generative model proposed a gradient estimation to prop-

agate gradient through discrete variables. Inspired by the

VQ-VAE, Unsupervised Neural Quantization (UNQ) [23]

introduces a deep neural network for multi-codebook quan-

tization. The much larger learning capacity of UNQ signif-

icantly improves the conventional shallow methods.

2.2. Non-exhaustive ANN Search

While the quantization techniques accelerate the dis-

tance computation, the search is still exhaustive. IV-

FADC [16] proposed a non-exhaustive approximate nearest

neighbor search by cooperating with the inverted index [30].

In addition to the significant acceleration of retrieval speed,

the non-exhaustive manner even improves the search qual-

ity by allowing more compact residual vector space. The

Inverted Multi-Index (IMI) [3] extends the IVFADC by de-

composing data space into two sub-spaces and applying the

inverted index independently. Similar to the idea of PQ, the

decomposed data space of IMI enables much finer partition

with a manageable number of indices. Several subsequent

non-exhaustive ANN techniques are proposed to improve

the data partitioning rather than the quantization [4, 5, 7].

2.3. Disentangled Representation Learning

In the context of the generative model, disentangled rep-

resentation is introduced to analyze and utilize the indepen-

dent effects of latent factors. One straightforward exam-

ple can be found in conditional generative models [22, 32].

They decompose the conditional information from the oth-

ers so that they can control the specific conditions of gen-

erated images such as spatial layout [8] or class informa-

tion [22]. For instance, variational U-Net [8] disentan-

gles the shape and appearance representations to synthe-

size human images of diverse poses with a shared appear-

ance. Similarly, VarSR [13] builds the latent space of high-

resolution information disentangled from the low-resolution

images. Hence, they can synthesize diverse high-resolution

images corresponding to the given low-resolution image.

The aforementioned examples mainly focus on the con-

trollable generation by disentangling conditional informa-

tion. However, in this paper, we concentrate on the maxi-

mization of the representation capability of the latent space
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Method R@1 R@10 R@100

PQ 0.228 0.653 0.953

+IVF (w/o residual) 0.228 0.653 0.950

+IVF (with residual) 0.272 0.735 0.969
UNQ 0.346 0.828 0.990
+IVF (w/o residual) 0.331 0.798 0.939

+IVF (with residual) 0.272 0.718 0.867

Table 1. Comparison of retrieval performances between the PQ

and the UNQ on SIFT-1M. The residual vector space improves the

performance with the PQ, but does not work with the UNQ.

by disentanglement. Specifically, we build a compact latent

space by disentangling the cluster center similar to residual

encoding but compatible with the neural multi-codebook

quantization method.

3. Background
Let us briefly introduce the ANN task, the MCQ ap-

proach, and the residual vector space. With D-dimensional

database X = {xn}Nn=1, xn ∈ R
D and query y ∈ R

D, the

nearest neighbor of query y is defined as follows:

NN(y) = argmin
n∈{1,...,N}

||y − xn||2. (1)

To alleviate time and memory costs of Eq. 1, the MCQ

quantizer qMCQ encodes the database X = {xn}Nn=1 utiliz-

ing M number of multi-codebooks Cm = {cmk }Kk=1, c
m
k ∈

R
D where each codebook has K number of codewords.

Then, a vector xn is represented as M number of indices

[i1n, ..., i
M
n ] and reconstructed by referring the codebooks:

xn ≈ qMCQ(xn) =

M∑
m=1

cmimn . (2)

The goal of this lossy compression process is to learn code-

books that minimize quantization distortion E defined as:

E(xn, C) =
M∑

m=1

||xm
n − cmimn ||2, (3)

where xn =
∑

xm
n , and xm

n is a subvector of xn corre-

sponding to index imn . The PQ belongs to the MCQ ap-

proach where xm
n are mutually orthogonal.

The IVFADC [16] further accelerates ANN search by

collaborating with an inverted index. The inverted index

qIVF splits database X into K ′ number of disjoint subsets,

and the ANN search is then restricted to w number of near-

est subsets from query y, where w is much smaller than

K ′. For a given data point xn, the inverted index qIVF(·)
quantize it to its nearest cluster center qIVF(xn), and the

data points belong to the same cluster are stored adjacently.

Moreover, the IVFADC suggested learning codebooks that

Method Compression ratio Distortion

PQ
128× 0.8368

+IVF (with residual) 0.7208
PQ

64× 0.6252

+IVF (with residual) 0.5846
PQ

32× 0.4127
+IVF (with residual) 0.4220

PQ
16× 0.2438

+IVF (with residual) 0.2604

PQ
4× 0.0212

+IVF (with residual) 0.0257

Table 2. Quantization distortions of the database with varying

compression ratios. The residual vector space is profitable with

a large compression ratio, but it leads performance drop with a

small compression ratio.

encode residual vector r(xn) = xn − qIVF(xn) rather than

the original vector as follows:

xn ≈ x̃n = qMCQ(xn − qIVF(xn)) + qIVF(xn). (4)

Then the distance between query y and target data xn is

estimated as follows:

d(y, xn) ≈ d(y − qIVF(xn), qMCQ(xn − qIVF(xn))). (5)

where the d(·, ·) is the Euclidean distance between two vec-

tors. The IVFADC accelerates the search speed by reducing

the number of distance estimations and improves the quan-

tization distortion (Eq. 3) thanks to the compact distribution

of the residual vector space.

4. Proposed Method
4.1. Motivation

Recently, the UNQ [23] introduced a deep architecture

for MCQ learning and improves conventional shallow MCQ

methods by a large margin. However, its effectiveness is

only validated by an exhaustive ANN search. To exam-

ine the performance of UNQ on non-exhaustive search, we

test the retrieval performances of PQ and UNQ with an in-

verted index on exhaustive and non-exhaustive settings. As

reported in Table. 1, the residual encoding (Eq. 4) provides

better search quality with the PQ, while it makes the search

quality of UNQ even worse.

To investigate the reasons why residual encoding does

not help the UNQ, we need to analyze the mechanism of

residual encoding in PQ. To this end, we hypothesize the

effect of residual representation in two aspects. First, the

advantage of residuals in PQ comes from the transforma-

tion of data space into compact and quantization-friendly

distribution. Second, the residual encoding is not always

beneficial, since they sacrifice the information of the clus-

ter center so that the distributional characteristics of each

cluster are suppressed.
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Figure 1. By providing additional input of qIVF(xn) to both encoder and decoder, the encoder is not necessary to learn features to reconstruct

qIVF(xn) since it is redundant information for the decoder. Thus the information of the cluster center is disentangled from the latent vectors

and codebooks. The disentangling enables the quantizer to learn compact representation while preserving the original distribution.

To validate these hypotheses, we observe the perfor-

mance variation of PQ with residual encoding by varying

compression ratios. The compression ratios are controlled

by adjusting the number of codebooks M . As reported

in Table. 2, the residual encoding is profitable with large

compression ratios, since the sparse original distribution is

hard to quantize with the deficient bit-budget. On the other

hand, the residual encoding leads to performance drops with

small compression ratios, because it is not necessary to rep-

resent the data compactly thanks to sufficient numbers of

codewords, but the information loss of cluster-wise distri-

butional characteristics still exists.

Based on these observations, we explain the reasons for

UNQ’s performance drop with residual encoding. Firstly,

UNQ does not benefit from the compact representation of

residual encoding. The deep encoder transforms the data

into latent space with a reconstruction objective function.

That is, the objective of UNQ also encourages to transform

the data into compact latent space, so the residual encod-

ing and UNQ affect the model in a similar way. Hence,

the residual representation is hardly beneficial to the neural

quantizer. Secondly, UNQ takes the disadvantage of resid-

ual encoding, the information loss of distributional charac-

teristics of each cluster.

These interpretations motivate us to come up with a

method that only takes the advantage of residual represen-

tation. That is, we aim to make the latent space more com-

pact without the information loss of distributional charac-

teristics of each cluster. To this end, we introduce a dis-

entangled representation learning for unsupervised neural

quantization in the following sections.

4.2. Disentangled Neural Quantization

Inspired by the disentangled representation of condi-

tional generative models [22, 32], we propose disentangled

neural quantization. The previous methods exploit the dis-

entanglement for a controllable generation. However, we

propose to learn a disentangled representation to reduce

the quantization distortion. Specifically, a latent feature

(ln) of UNQ contains information of its input vector xn

where xn consists of qIVF(xn) and xn − qIVF(xn). How-

ever, the qIVF(xn) can be restored without any information

loss thanks to the data structure of the inverted index. Thus,

encoding the qIVF(xn) is quite wasteful because the MCQ

approach has a scarce bit budget in practice. In this paper,

we suggest disentangling the qIVF(xn) from ln to provide

more compact information.

To disentangle the qIVF(xn) from ln, we feed additional

input of qIVF(xn) to encoder E(·) and decoder D(·). Then

the qIVF(xn) is redundant information for D(·) if ln con-

tains information of qIVF(xn). Thus, the E(·) is trained to

embed as little information of qIVF(xn) as possible in ln to

fully exploit the network capacity. The disentangled repre-

sentation learning is similar to the concept of the residual

encoding of PQ (Eq. 4) in terms of taking out the informa-

tion of the cluster center. However, there is no information

loss because the cluster center qIVF(xn) is provided to D(·).
Figure. 1 describes the proposed disentangled represen-

tation learning. The cluster center of input data is provided

to the encoder and decoder, and the scarce resource of finite

codewords can be fully utilized to quantize the compact la-

tent feature where the information of the cluster center is

disentangled. Not only the compact information, but the

decoder also preserves the original distribution by recon-

structing the original space in an end-to-end manner.

4.3. Network Structure

We adopt the network structure of [23] except our

disentangling module. The network consists of encoder

E(·), decoder D(·), and learnable codebook parameters

[C1, ..., CM ], Cm = {cmk }Kk=1. Both encoder E(·) and

decoder D(·) are a concatenation of two fully-connected

layers with Batch Normalization [14] and ReLU activa-

tion function. We feed separate information of cluster cen-

ter qIVF(xn) to the encoder for the disentanglement. Then

the encoder E(·) embeds the given concatenated inputs

12004



Search manner Method
64bits encoding 128bits encoding

R@1 R@10 R@100 R@1 R@10 R@100

Exhaustive

OPQ 0.208 0.643 0.953 0.409 0.898 0.999

Catalyst + Lattice 0.289 0.758 0.979 0.491 0.941 1.
LSQ 0.292 0.777 0.987 0.571 0.975 1.
UNQ 0.346 0.828 0.990 0.593 0.980 1.

Non-Exhaustive

IVFADC (210) 0.296 0.704 0.957 0.471 0.903 0.993

IVFADC + QAI (210) 0.311 0.730 0.965 0.496 0.928 0.992

IVFOADC (210) 0.295 0.719 0.963 0.475 0.913 0.995

IVFOADC + QAI (210) 0.321 0.756 0.972 0.500 0.931 0.993

Multi-D-ADC (28 × 28) 0.303 0.729 0.967 0.484 0.924 0.998

Multi-D-ADC + QAI (28 × 28) 0.318 0.748 0.977 0.513 0.939 0.997

UNQ+IVF (210) 0.331 0.798 0.939 0.548 0.963 0.994

Ours (210) 0.398 0.877 0.971 0.600 0.974 0.990

Table 3. Experimental result on the SIFT-1M dataset. All the quantities except Ours and UNQ+IVF are taken from [23, 24]

[xn, qIVF(xn)] to M number of latent features as follows:

E([xn, qIVF(xn)]) = [l1n, ..., l
M
n ]. (6)

The embedded feature lmn is quantized to index imn of the

codeword that has the biggest dot-product with lmn as fol-

lows:

imn = argmax
k∈{1,...,K}

lmn · cmk . (7)

Because the argmax function is not differentiable, we fol-

low [23] that exploits the Gumbel trick [15]. The Gum-

bel trick provides a differentiable approximation of Eq. 7

by substituting the argmax with softmax during back-

propagation. Then, the sum of assigned codewords cmimn be-

comes the input for the decoder D(·). Likewise, we con-

catenate it with the cluster center qIVF(xn) for the disentan-

glement. The approximated vector x̃n of original vector xn

is obtained as follows:

x̃n = D

([
M∑

m=1

cmimn , qIVF(xn)

])
. (8)

The model is trained with two losses. The first one is a

reconstruction loss which directly minimizes the quantiza-

tion distortion as follows:

L1 =
N∑

n=1

||xn − x̃n||2. (9)

Similar to [23], we adopt the square Coefficient Variation

regularizer [29] to encourage the codewords to be evenly

selected:

L2 =

M∑
m=1

∑N
n=1 (p

m
n − pmavg)

2

pmavg
2 , (10)

where pmn is the softmax probability of imn by the Gumbel

approximation in Eq. 7, and pmavg is the average of pmn along

N . The final loss of the model is described as follows:

L = L1 + λ ∗ L2 (11)

The loss ratio λ starts from 1.0 and decreases to 0.05 during

the training. For a fair comparison, we adopt other details

of [23] including Quasi-Hyperbolic Adam algorithm [19],

and One Cycle learning rate schedule [31].

4.4. Retrieval Procedure

Firstly, each database vector xn is encoded into M num-

ber of indices ln = [i1n, ..., i
M
n ] by Eq. 7. Because the

codebooks have K number of codewords, the required bit-

budget for the indices ln is M ∗ �log2K�. Moreover, the

data points that belong to the same inverted index are stored

adjacently, and the size of each cluster is stored. Thanks to

this data structure of the inverted index, we can identify the

qIVF(xn) without any additional costs in the retrieval stage.

Secondly, a given query y is embedded into latent fea-

tures ly , and the cluster center of the target is concatenated.

[l1y, ..., l
M
y ] = E( [ y , qIVF(xn) ] ). (12)

Then the symmetric distance between encoded query ly and

encoded target [i1n, ..., i
M
n ] is computed by the cosine simi-

larity as follows:

Dsym(y, xn) =

M∑
m=1

lmy · cmimn
||lmy || ||cmimn || . (13)

Note that, Eq. 13 can be efficiently computed by a lookup

table storing precomputed all possible symmetric distances.

Finally, the R top-ranked retrieved data according to the

symmetric distance are then re-ranked by the more accurate

asymmetric distances between uncompressed query y and

x̃n, as follows:

Dasym(y, xn) = ||y − x̃n||2. (14)

We set the hyper-parameter R = 200, and we conduct an

ablation study of R in Table. 7.
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Search type Method
64bits encoding 128bits encoding

R@1 R@10 R@100 R@1 R@10 R@100

Exhaustive

OPQ 0.159 0.513 0.886 0.350 0.825 0.991

Catalyst + Lattice 0.246 0.683 0.961 0.448 0.908 0.998
LSQ 0.217 0.640 0.945 0.411 0.886 0.995

UNQ 0.267 0.726 0.973 0.479 0.930 0.998

Non-exhaustive

IVFADC (210) 0.210 0.616 0.925 0.418 0.890 0.995

IVFOADC (210) 0.227 0.659 0.950 0.416 0.897 0.996

Multi-D-ADC (28 × 28) 0.200 0.613 0.929 0.398 0.883 0.995

UNQ+IVF (210) 0.250 0.688 0.910 0.440 0.907 0.996

Ours (210) 0.329 0.799 0.932 0.491 0.929 0.970

Table 4. Experimental results on DEEP-1M dataset. The quantities of Exhaustive methods are taken from [23]

5. Evaluation
5.1. Protocol

We evaluate our method on three datasets:

• SIFT-1M, SIFT-1B [16]: 128-dimensional SIFT de-

scriptor vectors [18]. The training set includes {500k,

108} vectors for 1M and 1B, respectively. Sets for

evaluation have 104 queries and {106, 109} number

of database for 1M and 1B, respectively.

• DEEP-1M [4]: 96-dimensional DNN features ex-

tracted from the last fully-connected layer of

GoogLeNet [33]. It also includes 500k training data,

104 queries, and 106 database.

The ground truth of a given query is defined as the top-

1 nearest neighbor from an uncompressed database. Then,

the retrieval performance in compressed space is measured

by average recall@R for R = {1, 10, 100}. The recall@R
represents the ratio of queries that contains the ground truth

in top-R retrieved vectors.

Unless specified, we consistently use the following

hyper-parameters. We set K ′ = 210 for inverted index on

million-scale datasets, and K ′ = 212 × 212 for inverted

multi-index on billion-scale dataset. The bit budget is con-

trolled by the number of codebooks M and the number of

codewords K. We fix the K as 256, and control the bit-

budgets by changing M = {8, 16} for 64bits and 128bits,

respectively. We follow the setting of w from [7, 24] for a

fair comparison. For each query, it visits w inverted indices

that guarantee at least {50k, 105} candidates for million-

scale datasets and billion-scale datasets, respectively.

We compare the proposed method with two sets of state-

of-the-arts that are exhaustive and non-exhaustive methods.

In particular, exhaustive methods include the followings:

• OPQ [9, 25]: Product Quantization [16] with opti-

mized space decomposition.

• Catalyst + Lattice [28]: Learning spreaded space that

fits with pre-defined lattice.

• LSQ [20]: The state-of-the-art of shallow MCQ.

• UNQ [23]: A deep generalization of MCQ.

Plus, the non-exhaustive methods include the followings:

• IVFADC [16]: Product Quantization [16] with the In-

verted index [30] and the residual encoding.

• IVFOADC [9, 25]: OPQ with the inverted index [30]

and the residual encoding.

• Multi-D-ADC [3]: The Inverted Multi-Index (IMI).

• OMulti-D-OADC [9, 25]: The IMI with the OPQ.

• QAI [24]: Jointly optimized inverted index and quan-

tizer.

• IVFOADC + GP [5]: IVFOADC with grouping and

pruning algorithm of [5].

• UNQ + IVF: Inverted file system with the UNQ. We

omit the residual encoding because it is incompatible

with the deep MCQ algorithm (Table. 1).

• Ours: Proposed disentangled representation learning.

We select a single index for the million-scale datasets

and a multi-index for the billion-scale dataset.

5.2. Result on Million-Scale Dataset

Table. 3 and Table. 4 report the recall@R scores of

exhaustive and non-exhaustive ANN search methods with

{64, 128}bits encoding. For all combinations of the dataset

and bit budget, the proposed method outperforms the non-

exhaustive baselines by a large margin. For example, Ours
improves the R@1 score of Multi-D-ADC+QAI about

25% and 17% for 64 and 128bits encoding respectively on

the SIFT-1M dataset. On the DEEP-1M dataset, the perfor-

mance gains between Ours and Multi-D-ADC are much

larger than the gains on the SIFT-1M, where the gaps are

about 65% and 23% for 64 and 128bits encoding, respec-

tively.

Notably, the proposed method even outperforms the ex-

haustive ANN methods while the proposed method is a non-

exhaustive search where only 5% of the database is con-

sidered for the distance computation. For instance, Ours
improves the R@1 score of the exhaustive UNQ by about
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Method R@1 R@10 R@100

Exhaustive Search

Catalyst + Lattice 0.311 0.778 0.983

LSQ 0.380 0.856 0.993

UNQ 0.383 0.868 0.994
Non-Exhaustive Search

IVFADC (220) 0.351 0.786 0.918

Multi-D-ADC (214 × 214) 0.344 0.809 0.960

OMulti-D-OADC (214 × 214) 0.373 0.841 0.973

IVFOADC+GP (220) 0.405 0.851 0.957

Ours (212 × 212) 0.458 0.859 0.903

Table 5. Experimental results on the SIFT-1B dataset and 128bits

bit-budget. All the quantities except Ours are taken from [5,9,23].

15% on the SIFT-1M and 23% on the DEEP-1M dataset

with 64bits bit budget.

As our motivation, a naive combination of the UNQ and

the inverted index does not improve the performance of

the exhaustive UNQ. For example, the UNQ+IVF drops

the R@1 score of the exhaustive UNQ about 5% and 7%

for SIFT-1M and DEEP-1M with 64bits bit budget, respec-

tively. The disentangled representation of Ours improves

the R@1 scores of UNQ+IVF about 20% and 32% on SIFT-

1M and DEEP-1M with 64bits bit budget, respectively.

5.3. Result on Billion-Scale Dataset

We conduct an experiment on a billion-scale dataset to

verify the scalability of the proposed method. Table. 5 re-

ports the experimental results on the SIFT-1B dataset with

128bit budget. The improvement in the R@1 score of Ours
over IVFOADC+GP is about 13%. Moreover, Ours shows

20% of improvement compared to the UNQ while Ours is a

non-exhaustive search and the UNQ is an exhaustive search.

Notably, the margin of improvement is much larger with

the SIFT-1B dataset than the SIFT-1M dataset with 128bits

encoding. Because the billion-scale task is a much more

challenging task than the million-scale task with an identi-

cal bit budget, the billion-scale task has much more room

for performance gain.

Furthermore, we choose a conventional Multi-D-ADC

algorithm with 212 × 212 number of indices for learning

the inverted index because our contribution is not about the

inverted index. However, the experimental results demon-

strate the superiority of Ours compared to methods with

much finer inverted index (214 × 214) and a sophisticated

inverted indexing algorithm (IVFOADC+GP).

5.4. Ablation Study

We validate our method with ablation study on two

hyper-parameters. First, Table. 6 shows ablation study

about the number of visited inverted indices w on the SIFT-

1M with 64bits encoding. Ours consistently improves

Method w R@1 R@10 R@100

UNQ+IVF (w/o residual)
1

0.216 0.412 0.442
Ours 0.253 0.430 0.442
UNQ+IVF (w/o residual)

2
0.272 0.556 0.612

Ours 0.317 0.588 0.613
UNQ+IVF (w/o residual)

4
0.305 0.674 0.763

Ours 0.361 0.720 0.765
UNQ+IVF (w/o residual)

8
0.322 0.753 0.877

Ours 0.387 0.809 0.880
UNQ+IVF (w/o residual)

16
0.331 0.791 0.945

Ours 0.397 0.857 0.947
UNQ+IVF (w/o residual)

32
0.332 0.804 0.977

Ours 0.399 0.876 0.979
UNQ+IVF (w/o residual)

64
0.332 0.806 0.985

Ours 0.399 0.880 0.987

Table 6. Ablation study about the number of visited inverted in-

dices on the SIFT-1M dataset with 64bits bit budget.

UNQ+IVF regardless of the number of w. For example,

the performance gain of the R@1 score is about 17% with

w = 1 and 20% with w = 64. Moreover, these experimen-

tal results also highlight that the R@1 score of Ours with

only w = 4 (out of 1024) is even superior to the exhaustive

UNQ in Table. 3.

Second, we verify with various numbers of re-reranking

candidates R = {1, 10, 100, 1000}. It is identical to ex-

clude the re-ranking if R = 1. Table. 7 shows the experi-

mental results on the SIFT-1M and the DEEP-1M datasets

with 64bits encoding. For the SIFT-1M dataset, Ours im-

proves the more performance with the fewer number of

re-ranking. For example, the performance gains of the

R@1 score are about {62%, 28%, 21%, 20%} with R =
{1, 10, 100, 1000}, respectively. On the other hand, Ours
improves the more performance with the larger number of

re-ranking for the DEEP-1M dataset where the performance

gains of the R@1 score are about {17%, 29%, 32%, 32%}.

5.5. Validation of Disentanglement

We validate disentangled representation of the proposed

method by generating new data points. Likewise disentan-

glement methods for generative models, we generate data

points that have desired characteristics by controlling the

input of the decoder. In detail, a reconstructed data point

x̃n should belong to a specific cluster by substituting the

qIVF(xn) by a desired cluster center T . We randomly sam-

ple 104 data points from the database and generate about

107 new data points by concatenating K ′ = 1024 num-

ber of cluster centers to each ln. Table. 8 reports the ratio

of generated data points that belong to the desired cluster

within top-R nearest clusters. The R@1 score of SIFT-1M

and DEEP-1M datasets are 0.709 and 0.827, respectively
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Method # of re-rank R@1

SIFT-1M 64bits

UNQ+IVF (w/o residual)
w/o re-rank

0.146

Ours 0.236
UNQ+IVF (w/o residual)

10
0.292

Ours 0.375
UNQ+IVF (w/o residual)

100
0.329

Ours 0.397
UNQ+IVF (w/o residual)

1000
0.332

Ours 0.399
DEEP-1M 64bits

UNQ+IVF (w/o residual)
w/o re-rank

0.134

Ours 0.157
UNQ+IVF (w/o residual)

10
0.228

Ours 0.295
UNQ+IVF (w/o residual)

100
0.248

Ours 0.328
UNQ+IVF (w/o residual)

1000
0.249

Ours 0.329

Table 7. Ablation study about the number of re-ranked candidates

on million-scale datasets with 64bits bit budget.

while the probability of belonging to the desired cluster of

a randomly generated vector is 0.001. The experimental

results confirm that the proposed representation is well dis-

entangled as we intended.

5.6. Overhead Analysis

Finally, we analyze the search time overhead of the pro-

posed method. Table. 9 demonstrates the average search

time of Multi-D-ADC and Ours with identical cluster cen-

ters of the inverted index. The retrieval procedure of Ours
is similar to the Multi-D-ADC except the additional encod-

ing (Eq. 12) and decoding (Eq. 8) steps. In encoding query

(Eq. 12), a query y should be concatenated with w num-

ber of cluster centers and embedded w times to builds the

lookup table. To accelerate the encoding query, we pro-

pose batch-forwarding w number of lookup tables at once

while the Multi-D-ADC build the lookup table in sequence.

Similarly, the decoding top-R (Eq. 8) also can be sim-

ply accelerated by batch-forwarding. The re-ranking time

(Eq. 14) is neglectable because the number of re-ranked

data (R = 200) is small. The overall search time of Ours
is about 12% slower than the Multi-D-ADC, but we be-

lieve it is permissible compared to the performance gain of

Ours. Nevertheless, Ours speeds up the search procedure

of the UNQ, which requires more than a minute in an ex-

haustive search. The experimental results are obtained in a

single-CPU mode of a 2.2 GHz Intel Xeon processor with

Faiss [17], and the encoding and decoding times are mea-

sured in a single Nvidia Tesla V100 GPU with Pytorch [27].

The proposed method requires {21, 32}MB for {64,

Dataset Method R@1 R@3 R@5

SIFT-1M D( [ ln, T ] ) 0.709 0.923 0.968

DEEP-1M D( [ ln, T ] ) 0.827 0.965 0.987

- Random 0.001 0.003 0.005

Table 8. Experiment to validate disentanglement of proposed

method with 64bits bit-budget. The score represents the ratio of

generated data points that belong to desired cluster within top-R

nearest clusters.

Method Time (ms)

Multi-D-ADC (212 × 212) 16.89
Ours (212 × 212) 18.88

1. encoding query (Eq. 12) 1.27

2. symmetric search (Eq. 13) 16.86

3. decoding top-R (Eq. 8) 0.70

4. asymmetric re-ranking (Eq. 14) 0.04

Table 9. Search time analysis on the SIFT-1B dataset and 128bits

bit-budget.

128} bits encoding where the UNQ requires {20, 30}MB

for the same budget. Note that those additional memory us-

age is not proportional to the database size, thus it is same

for 1M and 1B database.

6. Conclusion

In this paper, we propose a novel disentangled represen-

tation learning for unsupervised neural quantization. We

firstly discover the cause of limited application of the deep

quantization (UNQ [23]) on non-exhaustive search with the

inverted index. Specifically, the deep quantizer is hard to

exploit the compact representation of residual vector space

and even takes disadvantages such as loss of cluster cen-

ter information. To address the problem, we disentangle

the information of the cluster center and the latent space by

feeding the center to both the encoder and decoder to make

center information redundant for the decoder. Similar to

residual encoding, this disentanglement encourages the la-

tent space compact and quantization-friendly by taking out

the center information from latent space, so the quantization

distortion is significantly reduced with disentangled repre-

sentation. Extensive experiments on various datasets from

million to billion scales validate the superiority of the pro-

posed method over state-of-the-art retrieval systems.
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