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Abstract

We introduce a non-local graph attention network (NL-
GAT), which generates a novel global descriptor through
two sub-networks for robust 3D shape classification. In
the first sub-network, we capture the global relationships
between points (i.e., point-point features) by designing a
global relationship network (GRN). In the second sub-
network, we enhance the local features with a geometric
shape attention map obtained from a global structure net-
work (GSN). To keep rotation invariant and extract more
information from sparse point clouds, all sub-networks use
the Gram matrices with different dimensions as input for
working with robust classification. Additionally, GRN ef-
fectively preserves the low-frequency features and improves
the classification results. Experimental results on various
datasets exhibit that the classification effect of the NLGAT
model is better than other state-of-the-art models. Espe-
cially, in the case of sparse point clouds (64 points) with
noise under arbitrary SO(3) rotation, the classification re-
sult (85.4%) of NLGAT is improved by 39.4% compared
with the best development of other methods.

1. Introduction

3D shape classification is one of the most critical tasks
in 3D computer vision and computer graphics [7,10,18,37].
As 3D point cloud models are more accessible due to the
rapid development of 3D scanning technology, their clas-
sifications have attracted considerable attention in the last
two decades [9, 14, 39].

The essential task for shape classification is to find a
global descriptor for the input point cloud. Mainstream neu-
ral networks have achieved excellent performance in point
cloud classification on manually processed and aligned
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data [15, 20, 25, 27, 35]. However, their performance tends
to drop dramatically for complex real-world point clouds,
which can be rotated (arbitrary orientation), sparse (with
many missing parts), and noisy. Although there are methods
for one or several states of complex point clouds classifica-
tion through hand-crafted features, their global descriptors
depend on the designed features [12, 29, 30, 38].

The reasons why current methods do not work well for
complex point clouds are two folds. First, these methods
tend to adopt aggregation operations of local features, by
stacking hundreds of network layers as those in images [24],
to obtain the global feature. Actually, it is difficult due to the
point cloud network models using the point coordinates as
input, and it will lead to feature homogenization, especially
for the complex point clouds. Second, most of the meth-
ods are not end-to-end and partially rely on the designed
hand-crafted features, which can hardly capture the global
information of the complex point clouds [2,5,31,32,36,41].

To this end, we propose an end-to-end deep learning
network model built on complex point clouds, which con-
sist of two global feature learning sub-networks for robust
classification. In our model, we construct Gram matrices
with different dimensions based on the input point coordi-
nates for keeping rotation invariant, capturing crucial fea-
tures (including local and non-local information with simi-
lar structures) from noisy and sparse point clouds. The first
sub-network based on multi-scale local Gram matrices is to
extract the global relationships of point-point features in a
shallow network layer through the network channel fusion
operation (i.e., channel attention mechanism). The second
sub-network generates an attention map for enhancing the
global relationships, from the global structure of a Gram
matrix constructed by a whole point cloud. Finally, three
fully connected (FC) layers receive the results learned on
two sub-networks to generate a global descriptor for robust
classification tasks.
Contributions. Our contributions are summarized as fol-
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lows.

• The global descriptor obtained by our method can well
capture both the global relationship and global struc-
ture, which outperforms existing methods in the task
of classification for complex point clouds.

• We design an end-to-end deep learning network model,
consisting of specific function modules in two global
feature learning sub-networks. Our proposed modules,
based on multi-scale Gram matrices constructed by the
point coordinates, can gather lots of information for
sparse point clouds, preserve valuable low-frequency
features for noisy point clouds, and guarantee invari-
ance to any rotational transformations.

2. Related Works
Point Cloud Classification Network. Since point clouds
are unordered without regular structures, it is impossible
to directly transfer networks from the 2D image to the 3D
point cloud [11]. Qi et al. [14] solve the problem of un-
ordered point clouds by designing a T-Net network by di-
rectly inputting the point cloud. Velickovic et al. [20] pro-
pose a graph attention network (GAT) that computes the
weighting coefficients of points and selectively focuses on
the most relevant neighborhood features of point clouds.
Wang et al. [25] design a EdgeConv module based on the
topology of the graph to get the edge features of neighbor-
hoods points, and these features maintain the alignment in-
variance. Wu et al. [26] encode the point cloud into a series
of parallel sequences, and extract these features based on a
shared recurrent neural network. Zhang et al. [35] develop
a new convolutional method (EAGConv) by combining the
advantages of feature alignment invariance in DGCNN and
computational efficiency in PointNet. The above-designed
networks obtain compelling features to solve the unordered
problem of point clouds. However, it is difficult to obtain
satisfactory classification results for point clouds with arbi-
trary rotation transformation and other complex states.
Rotation-Invariant Network. Aiming to address the ro-
tation invariance challenge, some representative methods
[14,25] train a spatial transformation network (STN) as well
as the data augmentation for normalization, which results in
the computational cost and the degradation of classification
accuracy. Rao et al. [16] propose a spherical fractal convo-
lutional neural network (SFCNN), where point clouds are
projected into an icosahedral lattice. On this basis, SFCNN
can learn a rotation-invariant robust feature. Gu et al. [5]
encode 12 features commonly used in artificial features as
rotation-invariant features of point clouds (named ERI-Net).
The principal component analysis is introduced to refine the
coordinates of points (PCA-RI by Xiao et al. [30]). LGR-
Net is proposed by Zhao et al. [39], with the local rotation-
invariant features constructed by the point-to-point coordi-

nate difference and angle. All of the above methods have a
common problem: either relying on additional information
or manual design, such as normal estimation, angle differ-
ential, etc., weakens the purpose of point cloud input di-
rectly into the neural network.

Sparse-Noisy Point Cloud Learning Network. To over-
come the sparse problem in point cloud classification, many
methods are proposed by solving the point cloud comple-
tion (Yuan et al. [34]) or employing the non-sparse region
features (Uy et al. [19]). Mao et al. [12] consider that the
normal convolution template appears with no corresponding
points in the point cloud convolution, and propose the strat-
egy of interpolating the point features into the neighboring
kernel weight coordinates for convolution. Chen et al. [3]
propose an interpolation operation on point clouds based on
the shortest path between points to achieve data enhance-
ment. However, evaluation results show that their models
are unsuitable when the points are too sparse due to low
correlations between neighboring regions. In addition, none
of the above works consider noisy point clouds, so there is
a potential impact on performance when the point cloud is
not a clean model. Xiao et al. [29] construct a hypergraph
convolution with the information of distance and angle be-
tween points, which applies to both dense and sparse point
clouds with noise. While this method requires incorporat-
ing more artificially designed features, such as the distance
of neighboring points and local patch computation.

3. Our Methodology

3.1. Overview

Our goal is to design a robust global descriptor for the
classification task of complex real-world point clouds. The
designed descriptor can capture the global features from the
shape (i.e., global structure) and fetch the relationship of
point-point from a larger global field (i.e., global relation-
ship). Fig. 1 shows the overall network architecture of our
proposed NLGAT for the point cloud classification task. It
is a non-local graph attention network on point clouds com-
posed of two main networks: a global structure network
(GSN) and a global relationship network (GRN).

In GSN, a shape differential perception (SDP) module is
constructed to capture the geometry shape difference from
a Gram matrix of the point cloud, which can get an atten-
tion coefficient map for consequently enhancing the global
relationship feature. In GRN, due to the limited number of
network layers, we design a network channel fusion mod-
ule to extract the point-point relationships by mixing local
features (learned from the sorted Gram matrix), i.e., global
relationship feature.
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Figure 1. Overall network architecture of NLGAT.

3.2. Global Structure Network (GSN)

The global structure feature can be essential indicator to
reflect objects’ shape differences. Here, it is computed from
the Gram matrix of a whole input point cloud in the shape
differential perception (SDP) module, as shown in Fig. 1(a).
Gram Matrix. Assuming that a point cloud X ∈ R3×N (3
is the feature dimension of each point, N is the number of
points) is inputted to the GSN, we construct a Gram matrix
G(X) = XTX(G(X) ∈ RN×N ).
SDP Module. As illustrated in Fig. 2, we first get a eigen-
values matrix Λ (Λ ∈ RN×N ) and eigenvectors matrix Q
(Q ∈ RN×N ) through the eigenvalue decomposition of
Gram matrix G(X). In order to save time compared with
the whole feature learning, and learn the category differ-
ences from the geometry structure, we then select three
eigenvectors Qi (Qi ∈ R1×N , i = 1, 2, 3) corresponding
to the most significant three eigenvalues in matrix Λ.

Next, the high-dimensional features are generated after
the eigenvectors Qi are inputted into the multi-layer per-
ception (MLP) and Softmax layer.

Q̂dpi = Softmax(fθ(Qi)) (1)

where Q̂dpi ∈ R1024×N , i = 1, 2, 3. fθ (·) refers to the
feature extraction by the MLP.

Finally, in order to compute the difference between three
feature vectors, which is used to generate the coefficients of
category differences for subsequent weighting operations, a
shape differential coefficient map Adp is computed by the
following equation.

Adp = fθ(|Q̂dp1−Q̂dp2 |	|Q̂dp2−Q̂dp3 |	|Q̂dp3−Q̂dp1 |)
(2)

where Adp ∈ R1024×N (1024 is the number of channels),
fθ (·) represents the MLP, and 	 denotes the subtraction
operation.

3.3. Global Relationship Network (GRN)

We propose a GRN for extracting point-point global re-
lationships from the local features, as shown in Fig. 1(b).

Figure 2. Shape Differential Perception (SDP) Module (Fig. 1(a),
right).

Here the relationship means the point-wise relation (i.e.,
local features), and the global relationship is an attention
mechanism that can fuse the local features on different
channels in a shallow network layer.

3.3.1 GAT-based Sorted Gram Matrix Generation

The local feature learning of a point cloud is realized by
constructing multi-scale sorted Gram matrices consisting
of neighbor points and similar points. To remain rotation-
invariant for arbitrarily rotated point clouds, our constructed
Gram matrix [13] is convenient without requiring the com-
putation of the covariance matrix and redefinition of the
point coordinates in the PCA-RI method [30]. Moreover,
compared with the SGMNet proposed by Xu et al. [31], our
Gram matrix has more dimensions since it is based on co-
ordinates of neighboring and similar points, allowing us to
retain more point relationships, especially for sparse point
clouds. Meanwhile, for noisy point clouds, the construction
of the Gram matrix will bring noise propagation, and we
address the problem in the following section.

We assume a point cloud model withN points labeled as
X = {x1, x2, . . . , xN} ∈ R3×N . The local information en-
tropy [22] are used to construct the multi-scale sorted Gram
matrices for giving a sufficient dimensional size of Gram
matrices, and the graph attention network (GAT [20]) for
guaranteeing the arrangement of points is ordered, as shown
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Figure 3. A diagram of GAT-based Sorted Gram Matrix Genera-
tion (Fig. 1(b), left).

in Fig. 3.
Local Gram Matrix. We find k points xij (1 ≤ j ≤ k)
within the first-order neighborhoodNi of the point xi based
on the KNN algorithm, and then construct a Gram ma-
trix G(Xis) = XT

isXis based on point cloud coordinates
as the network input, where G(Xis) ∈ Rk×k, Xis =
{xi, xi1, · · · , xik−1} ∈ R3×k.

For a given point in the point cloud model, we can find
similar points according to the local Gram matrix and fol-
lowing Theorem 1.

Theorem 1. For any two points xi and xj on the point
cloud model, their neighborhood matrices are Xis, Xjs,
and their Gram matrices areG(Xis), G(Xjs), respectively.
If G(Xis) and G(Xjs) is close, which ensures that the dif-
ference of their F -norms is equal to or less than a fixed
value, i.e.,

‖G (Xis)−G (Xjs) ‖F ≤
σ2
C(Xis)

2
(3)

then there exists a rotation matrix R such that the below
inequality also holds.

min
R
‖Xis −RXjs‖F ≤

√
2σC(Xis)

2
(4)

Namely, the minimal F -norm difference between Xis and
rotated Xjs is also equal to or less than a value related to
σC . Here, σC is the minimum singular value of the matrix
Xis, ‖X‖F =

√
Tr (XTX).

Please refer to Appendix 1 of Supplementary Materials
for the detailed proof, and its geometric interpretation of
Theorem 1 is explained in Appendix 2 of Supplementary
Materials.

For the points whose Gram matrices satisfy Theorem 1,
we collect them and obtain k−1 points xit (1 ≤ t ≤ k−1)
with similar structures to the point xi. Accordingly, we ob-
tain a new Gram matrixG(Xil) (Xil ∈ R3×(2k)) consisting
of point xi, its first-order neighborhood points xij and its
similar geometric structures points xit of point xi.
Multi-Scale Gram Matrices. We find the above con-
structed Gram matrix depends on a parameter k, and its
dimension will affect the classification performance of the

Figure 4. Local Feature Learning based on MLP-ST (Fig. 1(b),
middle).

sparse point cloud. Therefore, we compute the minimum
neighborhood range of curved surfaces based on the lo-
cal information entropy [22] to construct three multi-scale
Gram matrices. The detailed steps of multi-scale Gram ma-
trices construction are described as algorithm 1 in Appendix
3 of Supplementary Materials.
Multi-Scale Sorted Gram Matrices. Because the un-
ordered point cloud arrangement keeps difficulties in lo-
cal feature learning. Here, the sorted Gram matrix (SG)
is constructed based on a sorting function fsort(G(Xil)),
where fsort(·) is a row sorting function (i.e., the points
are sorted according to the attention coefficients learned by
GAT (please refer to the operation in Appendix 4 of Sup-
plementary Materials). The sorted Gram matrix SG(Xil)
still satisfies with the properties of rotation invariance and
permutation invariance [13, 31].

3.3.2 Local Feature Learning based on MLP-ST

During the local feature learning of point clouds, we con-
sider that feature activation via the ReLU function would
filter some compelling features at low frequencies and cause
the problem of feature homogenization [23]. But the soft
thresholding [8] can retain negative, useful low-frequency
features, instead of setting the negative features to zero as
ReLU does. Here, we propose a shared multi-layer percep-
tion module based on the soft thresholding learning (MLP-
ST) for local feature extraction of the sorted Gram matrix
SGi(Xil), as shown in Fig. 4.

We suppose that there are N sorted Gram matri-
ces SGi(Xil) (SGi(Xil) ∈ RM×M , M = 2k, k ∈{
k1op, k

2
op, k

3
op

}
computed in algorithm 1, i = 1, 2, ...N).
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N sorted Gram matrices SGi(Xil) are fed into an MLP
module without the ReLU function (MLP\ReLU) for ex-
tracting a local feature X̃(X̃ ∈ RM×M×N ). Subsequently,
a feature map X̃∗(X̃∗ ∈ RM×M×N ) is obtained through
the local feature X̃ after two convolutions and batch nor-
malization (BN) layers. The feature X̃∗ is used to generate
a series of threshold values by the soft thresholding mod-
ule [40].
Soft Thresholding Module. The feature map X̃∗ is com-
pressed into a one-dimensional vector X̃∗

gap (X̃∗
gap ∈

R1×1×N ) by the absolute value operation and global av-
erage pooling. And the threshold value is computed as fol-
lows.

τk = αk · average
i,j

∣∣x̃∗i,j,k∣∣ (5)

where τk is the threshold of the kth channel of the feature
map, αk denotes the kth scaling factor learned after by X̃∗

gap

input into two FC layers, and x̃∗i,j,k ∈ X̃∗
gap, where i, j, k are

the width, height, and channel indexes of the feature map
X̃∗.
Local Feature Activation. The local features X̃ are acti-
vated by the thresholds and an identity shortcut.

X̃
′
= sign(x̃∗l ) (|x̃∗l | − τk)+ ⊕ X̃ (6)

where x̃∗l ∈ X̃∗ and sign(·) is a sign function. When
(|x̃| − τk) > 0, (|x̃| − τk)+ reduces to |x̃| − τk, otherwise,
it equals to 0. ⊕ represents the element-wise summation.
Local Feature Enhancement. The noise may propagate to
other non-noise points during the Gram matrix construction.
We first extract the original data (i.e., diagonal data) X̃diag

(X̃diag ∈ RM×M×N ) from the local feature X̃ . Then, the
diagonal data X̃diag is updated by the thresholds computed
by Eq. (5) and an identity shortcut.

X̃
′

diag = sign (x̃d) (|x̃d| − τk)+ ⊕ X̃diag (7)

where x̃d ∈ X̃diag and the definitions of other symbols are
represented in Eq. (6).

Finally, the local feature representation is enhanced
based on the following Equation.

X̂ = X̃
′

diag ~ X̃
′

(8)

where X̂ ∈ RM×M×N , and ~ represents the diagonal
element-wise multiplication.
Max Pooling and Concatenation. The three local features
X̂j (X̂j ∈ R64×N , j = 1, 2, 3) are learned by the sorted
Gram matrices SGi(Xil). And a 3 × N matrix X̂local is
concatenated by three local features X̂j after a max pooling
operation.

Figure 5. Network Channels Fusion Module (Fig. 1(b), right).

3.3.3 Network Channel Fusion Module

Considering the limitation of shallow network layers when
capturing the global relationships between points, we pro-
pose a network channel fusion module in the local features
learning, as shown in Fig. 5.

First, a feature representation in the last network layer is
denoted as X̂

′
(X̂

′ ∈ R1024×N ). It is obtained from local
feature X̂local after a series of MLPs.

Next, we generate an attention coefficient map Acf
(Acf∈R1024×N ) based on a Gram matrix between points
from any positions on different channels.

Acf = fθ

(
G(X̂

′
)
)

(9)

where fθ is a multilayer perceptron, θ is a shared parameter
and G(X̂

′
) = X̂

′TX̂
′
(G(X̂

′
) ∈ RN×N ).

Last, the channel attention features X̂
′

g are obtained by
an element-wise product operation of the attention coeffi-
cient map and the input feature.

X̂
′

g = Acf · X̂
′
⇔ x̂

′

gki
= aki · x

′

ki, k ∈ K, i ∈ N. (10)

where aki ∈ Acf denotes the degree to which x
′

ki ∈ X̂
′

is
activated,K is the number of channels, andN is the number
of point clouds.

3.4. Global descriptor

Through GRN, we capture global relationships among
points. However, due to the shallow layers of the network,
the drawback of without considering the global perception
field (e.g., whole point cloud) still exists. Here, we fur-
ther weigh them X̂

′

g by the shape differential coefficient
map Adp computed in the GSN (Eq. (2)) to generate a
global descriptor Xg(Xg ∈ R1×c, where c is the number
of categories).

Xg = FC(Adp ◦ X̂
′

g) (11)

where FC represents three MLPs and a max pooling opera-
tion, the symbol ”◦” is the Hadamard product, which is an
element-wise multiplication.

In short, when the current network layers cannot be
stacked up to tens or hundreds, the above two sub-networks
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Figure 6. Classification results (cylinders) for different points
with no-rotation or rotation cases under various neighborhoods k.
Where the prefix is the number of points, and the suffix SO(3)
denotes the point clouds with SO(3) rotation.

on point clouds guarantee that they capture the global rela-
tionships by fusing local features and enhance the geometric
representation from the global perceptual field.

4. Experimental Results and Analysis
4.1. Datasets and Experimental settings

The experiments are implemented using the CAD dataset
ModelNet40 [28] and the real scene dataset ScanObjectNN
[19] (objects may exist inconsistencies with rotation trans-
formations, noise, and sparsity). Note that there is a one-to-
many mapping relationship between the ModelNet40 and
ScanObjectNN datasets, e.g., the chair subset of ScanOb-
jectNN corresponds to the bench, chair and stool subsets of
ModelNet40. And the main experimental settings and con-
volution kernels in NLGAT are set as shown in Appendix 5
of Supplementary Materials.

4.2. Ablation Studies

The following ablation experiments are validated on the
ModelNet40 dataset and its variants.
Analysis of the Size of the Neighboring Range. Fig. 6
shows that the parameter k affects the classification perfor-
mance. Regardless of the number of points, the classifica-
tion keeps satisfactory results when k is set as 16, and the
second-best parameter is set as 32. With these two param-
eters, only models with 64 points have the 1% drop in the
classification results when SO(3) rotation occurs, and the
drops of the classification results in other cases are negli-
gible. We conclude that, in general, reliable classification
results can be maintained when the number of local neigh-
borhood points is between 16 and 32.
Analysis of Point Clouds with Arbitrary Orientations.
The experimental results are shown in Tab. 1, where method
A is the result of NLGAT, method B is the result of remov-

Modules z/z SO3/SO3 z/SO3
A 94.0 92.2 92.4
B 91.3 89.7 89.2
C 89.8 88.6 87.5

Accuracy drops(A-B) 2.7 2.5 3.2
Accuracy drops(A-C) 4.2 3.6 4.9

Table 1. Point cloud classification results (accuracy (%)) based
on arbitrary orientations with different modules (There are three
cases: (1) training and test datasets are rotated by the z-axis (z/z);
(2) training and test datasets are arbitrarily rotated according to a
SO(3) matrix (SO3/SO3); (3) it combines with the above two
cases (z/SO3) [2]).

Figure 7. Classification results of different modules under point
clouds with noise. (a) The dense model with 1024 points. (b− c)
The sparse model with 64, 16, and 8 points. Where the x-axis
of each figure represents the standard deviations of Gauss noise
varied with a growth step of 0.02 and the y-axis of each figure
indicates the classification accuracy.

ing the GRN from NLGAT (input the point cloud into the
MLPs), and method C is the result of removing the GRN
and GSN. When the point cloud is not encoded by the multi-
scale Gram matrices, the classification accuracy decreases
in varying degrees according to the rotation (with a max-
imum drop of 3.2%). In the last row of Tab. 1, the clas-
sification results are worse when the GSN is additionally
removed (with a maximum drop of 4.9%). In conclusion,
the GRN effectively classifies point clouds with arbitrary
orientations. The GSN improves the overall classification
results more significantly.
Analysis of Sparse and Noisy Point Clouds. We per-
form the noise injection experiment under the ModelNet40
dataset, where the training set is not added with any noise,
and the point clouds of the test set are injected with Gaus-
sian noise (details are shown in Appendix 6 of Supplemen-
tary Materials). Fig. 7 gives the experiment results, where
notations A, B, and C are the same as in Tab. 1. Com-
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Figure 8. Comparison of classification performance (accuracy
(%)) on ModelNet40 under different rotation transformations.
The black points in the line figure are the results of max drops,
indicating the difference between the highest and lowest classifi-
cation results in the same method.

pared with method B, the classification results of method
A are improved by 6.49% on 16 points and 3.28% on 1024
points, indicating that the module MLP-ST in GRN is ad-
equate for classifying noisy point clouds. Compared with
method C, the results of method A are improved by 10.48%
on 8 points and 6.67% on 64 points. The effects of method
B are also enhanced by 4.50% relative to method C at 16
points, indicating that the GSN is significantly helpful for
the classification of sparse point clouds with noise.
Analysis of Model and Time Complexity. We compare
the parameter size and inference times of various network
models, with a list of network design considerations. Con-
sidering the generalization ability of complex point clouds,
our NLGAT is designed with many matrix calculation and
feature extraction modules, resulting in more network pa-
rameters and a longer reasoning time. Please refer to Table
2 in Appendix 7 of Supplementary Materials for the detailed
results.

4.3. Classification on CAD Data - ModelNet40

Classification Results under Rotation Transformation.
Fig. 8 gives the performance of NLGAT and other state-of-
art methods [2, 4, 9–11, 14, 16–18, 25, 30–32, 36, 38, 39] on
the classification results with arbitrary orientations of point
clouds. It can be seen that NLGAT outperforms the GLR-
Net method (90.2% [39]) with a 2% improvement in terms
of classification accuracy in the third case (z/SO3). Fur-
thermore, the proposed NLGAT is more stable (smaller max
drops) than other methods in the classification task under
different rotation variations.
Classification Results for Sparse Point Clouds. Tab. 2
presents the results of sparse point clouds and dense point
cloud performance in classification. We find NLGAT still
has more than 90% accuracy at 128 points. The classifi-

Figure 9. Classification results under point clouds with Gaussian
noise on different standard deviations (x-axis), where the solid
lines are the results of the proposed NLGAT, and the dotted lines
are the results of the Triangle-Net.

cation accuracy is only 1.3% of drops when the number
of points changes. In the case of sparse point clouds, the
accuracy is close to 90% at 64 points. Overall, the varia-
tion of classification accuracy is only 15%, which is much
lower than other methods, showing a more stable classifica-
tion performance. As a result, the method in this study is
relatively robust for sparse point clouds.
Classification Results for Point Clouds with Noise. The
classification results of most methods [6, 21, 33] are below
80% (please refer to Appendix 8 (Fig. 4) of Supplementary
Materials for the detailed results), while Triangle-Net [29]
and our NLGAT achieve a classification performance above
90%. Accordingly, Fig. 9 gives a comparison of robust-
ness of the two networks under different Gaussian noise
parameters and different numbers of points. The classifi-
cation accuracy of NLGAT is improved by 39.99% relative
to Triangle-Net for a dense point cloud with the parameter σ
(0.1). Particularly, NLGAT improves the classification ac-
curacy by 62.58% relative to Triangle-Net for a sparse point
cloud (8 points) with the parameter σ (0.1). As the param-
eters change, the NLGAT is more stable, e.g., the classifi-
cation accuracy of 64 points in NLGAT fluctuates between
85% and 92%, while the results of the Triangle-Net fluctu-
ate between 37% to 86%. In summary, NLGAT is stable in
the task of classifying noisy point clouds and has a signifi-
cant improvement compared with existing methods.

4.4. Classification on ScanObjectNN Dataset

Generalization between ScanObjectNN and Model-
Net40. We give two comparisons of generalization ability
of the network based on the classification accuracy: training
on CAD and testing on ScanObjectNN (i.e., mode 1), train-
ing on ScanObjectNN and testing on CAD (i.e., mode 2).
Details of the experiments on the two modes are shown in
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Methods
Dense Sparse

Max Drops
in All1024 512 256 128

Max
Drops 64 32 16 8

Max
Drops

PointNet1[14] 73.09 72.67 64.48 39.93 33.16 21.08 9.79 2.65 2.07 19.01 71.02
PointNet2[14] 79.08 75.14 72.01 72.64 7.07 56.79 48.34 35.28 23.91 32.88 55.17

PointNet++ [15] 84.76 83.87 83.31 78.60 6.16 / / / / / /
3DmFV [1] 86.63 85.69 84.70 82.32 4.31 76.56 63.45 42.36 23.68 52.88 62.95

RI-Conv [38] 86.50 84.40 80.80 76.00 10.50 / / / / / /
Triangle-Net [29] 86.66 85.73 85.32 83.41 3.25 81.53 79.28 70.35 48.19 33.34 38.47

NLGAT
92.20

(5.54 ↑)
92.20

(6.47 ↑)
91.58

(6.26 ↑)
90.90

(7.49 ↑) 1.30
89.78

(8.25 ↑)
87.70

(8.42 ↑)
84.10

(13.75 ↑)
77.20

(20.01 ↑) 12.58 15.00

PointNet1 is trained with random input dropout. PointNet2 is trained and tested using the same number of points.

Table 2. Classification accuracy of dense and sparse point clouds under arbitrary SO(3) rotation (unit: %).

Num of Points
w/o SO(3) SO(3)

32 256 2048 32 256 2048
PointNet [14] 69.91 73.73 74.40 54.85 64.92 67.38
DGCNN [25] 70.70 78.70 81.50 55.40 69.60 71.58

Triangle-Net [29] 70.16 71.82 73.77 70.16 71.82 73.77

NLGAT
77.56

(6.86 ↑)
83.21

(4.51 ↑)
83.62

(2.12 ↑)
76.84

(6.68 ↑)
81.25

(9.43 ↑)
83.30

(9.53 ↑)

Table 3. Classification accuracy comparison (unit: %) of point clouds with different densities in dataset PB T50 RS.

Appendix 9 of Supplementary Materials. We find the data
mapping relationship between the training dataset and the
test dataset significantly impacts the network training and
the classification performance will be enhanced when there
is a more relevant mapping relationship between the data
in the training and test datasets, e.g., compared with the re-
sults (47.0%) of mode 1, the classification results (73.9%)
of NLGAT are improved by 26.9% in mode 2. Therefore,
we train and test the real-world dataset ScanObjectNN to
validate the network classification ability of NLGAT.
Comparison on a Severe Condition. Tab. 3 shows the
classification ability of the network models under more se-
vere conditions by applying rotational and sparse opera-
tions to the point clouds in the complex (unorderedness,
rotation, scale, translation, sparsity (including partial miss-
ing), noise) dataset PB T50 RS. It can be seen that our NL-
GAT shows advantages in all point densities. Especially,
when SO(3) rotation is applied to point clouds, NLGAT im-
proves by 9.53% compared with the second-best classifica-
tion result (Triangle-Net, 71.92%) at 2048 points, improves
by 6.69% compared with the result of Triangle-Net at 32
points, and improves by 21.99% compared with the result
of PointNet at 32 points. When SO(3) rotation is not ap-
plied to the dataset PB T50 RS (w/o SO(3)), NLGAT has
a 6.86% improvement compared with the second-best result
(DGCNN) on the sparse point clouds (32 points). It also has
a better performance on the dense point clouds (256 points),
which has an improvement of 4.51% compared to DGCNN.
The other comparisons of subsets of ScanObjectNN are de-
scribed in Appendix 10 of Supplementary Materials.

5. Conclusion

This paper proposes a non-local graph attention network
(NLGAT) for robust 3D shape classification. NLGAT takes
multi-scale Gram matrices as input and captures their global
relationship by a network channel fusion module. Fur-
thermore, the global relationship features are enhanced by
a shape differential coefficient map computed by a global
structure network. The above operation generates a robust
global descriptor for classification. Our experiments verify
that it maintains a good generalization ability for the com-
plex real-world point clouds, and can obtain better classifi-
cation results than other state-of-art methods.

Limitation and future work. We require encoding multi-
scale Gram matrices, which leads to many computations. In
addition, several feature extraction modules are combined
for the network design due to considering different point
cloud states, resulting in many network parameters. To ad-
dress these challenges, we will attempt to prune the train-
ing network parameters to speed up the training and testing
process. Moreover, it can be seen from the experiment of
the model generalization ability that NLGAT is also sensi-
tive to the data mapping relationship between training and
test datasets. To solve the problem, we can perform tar-
geted data augmentation based on real-world datasets, or
give more training weights to loss function for complex
classification categories, which will be our future work.
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