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Abstract

FlowFormer [24] introduces a transformer architecture
into optical flow estimation and achieves state-of-the-art
performance. The core component of FlowFormer is the
transformer-based cost-volume encoder. Inspired by the re-
cent success of masked autoencoding (MAE) pretraining in
unleashing transformers’ capacity of encoding visual rep-
resentation, we propose Masked Cost Volume Autoencod-
ing (MCVA) to enhance FlowFormer by pretraining the
cost-volume encoder with a novel MAE scheme. Firstly,
we introduce a block-sharing masking strategy to prevent
masked information leakage, as the cost maps of neigh-
boring source pixels are highly correlated. Secondly, we
propose a novel pre-text reconstruction task, which encour-
ages the cost-volume encoder to aggregate long-range in-
formation and ensures pretraining-finetuning consistency.
We also show how to modify the FlowFormer architecture
to accommodate masks during pretraining. Pretrained with
MCVA, FlowFormer++ ranks 1st among published meth-
ods on both Sintel and KITTI-2015 benchmarks. Specifi-
cally, FlowFormer++ achieves 1.07 and 1.94 average end-
point error (AEPE) on the clean and final pass of Sintel
benchmark, leading to 7.76% and 7.18% error reductions
from FlowFormer. FlowFormer++ obtains 4.52 F1-all on
the KITTI-2015 test set, improving FlowFormer by 0.16.

1. Introduction
Optical flow is a long-standing vision task, targeting

at estimating per-pixel displacement between consecutive
video frames. It can provide motion and correspondence
information in many downstream video problems, includ-
ing video object detection [65, 81, 82], action recogni-
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Figure 1. Overview of FlowFormer++. The core component of
FlowFormer architecture is the transformer-based cost-volume en-
coder. We propose Masked Cost Volume Autoencoding to pretrain
the cost-volume encoder. During pretraining, a portion of cost val-
ues are masked and the cost-volume encoder is required to recon-
struct masked cost patches.

tion [48, 61, 80], and video restoration [5, 14, 32, 34, 51, 70].
Recently, FlowFormer [24] introduces a transformer ar-

chitecture for optical flow estimation and achieves state-of-
the-art performance. The core of its success lies on two
aspects: the ImageNet-pretrained transformer-based image
encoder and the transformer-based cost-volume encoder.
Notably, adopting an ImageNet-pretrained visual backbone
leads to considerable performance gain over the train-from-
scratch counterpart, indicating that random weight initial-
ization hinders the learning of correspondence estimation.
This naturally begs the question: can we also pretrain the
transformer-based cost-volume encoder and thus further un-
leash its power to achieve more accurate optical flow?

In this paper, we propose masked cost-volume autoen-
coding (MCVA), a self-supervised pretraining scheme to
enhance the cost-volume encoding on top of the Flow-
Former framework. We are inspired by the recent success
of masked autoencoding, such as BERT [11] in NLP and
MAE [20] in computer vision. The key idea of masked au-
toencoding is masking a portion of input data, and requir-
ing networks to learn high-level representation for masked

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.

1599



contents reconstruction. However, it is non-trivial to adapt
the masked autoencoding strategy to learn a better cost vol-
ume encoder for optical flow estimation, because of the
two following reasons. Firstly, the cost volume might con-
tain redundancy and the cost maps (cost values between a
source-image pixel to all target-image pixels) of neighbor-
ing source-image pixels are highly correlated. Randomly
masking cost values, as done in other single-image pre-
training methods [20], leads to information leakage and
makes the model biased towards aggregating local infor-
mation. Secondly, existing masked autoencoding methods
target at reconstructing masked content randomly selected
from fixed locations. This suffices to pretrain general-
purpose single-image encoder in other fields. However, the
cost-volume encoder of FlowFormer is deeply coupled with
the follow-up recurrent decoder, which demands cost infor-
mation of long range at flexible locations.

To tackle the aforementioned issues, we introduce two
task-specific designs. Firstly, instead of randomly masking
the cost volume, we partition source pixels into large varied-
size blocks and let source pixels within the same block
share a common mask pattern on their cost maps. This
strategy, termed block-sharing masking, prevents the cost-
volume encoder from reconstructing masked cost values by
simply copying from neighboring source pixels’ cost maps
Such design enforces the cost-volume encoder to abstract
useful cues from cost maps belonging to far-away source
pixels, which encourages long-range information aggrega-
tion. Secondly, to mimic the decoding process in finetuning
and thus avoid pretraining-finetuning discrepancy, we pro-
pose a novel pre-text reconstruction task as shown in Fig. 3:
small cost patches are randomly cropped from the cost maps
to retrieve features from the cost-volume encoder, aiming
to reconstruct larger cost map patches centered at the same
locations. This is in line with the decoding process of Flow-
Former in the finetuning stage. This pre-text task explicitly
encourages the cost-volume encoder to capture long-range
information for cost-volume encoding, which is critical for
optical flow estimation.

In essence, the proposed masked cost-volume autoen-
coding (MCVA) has unique designs compared with conven-
tional MAE methods, which encourages the cost-volume
encoder 1) to construct high-level holistic representation of
the cost volume, more effectively encoding long-range in-
formation, 2) to reason about occluded (i.e., masked) infor-
mation by aggregating faithful unmasked costs, and 3) to
decode task-specific feature (i.e., larger cost patches at re-
quired locations) to better align the pretraining process with
that of the finetuning. These designs contribute to better
handling of hard cases, such as noises, large-displacement
motion and occlusion, for more accurate flow estimation.

To conclude, the contributions of this work are three-
fold: 1) We propose the masked cost-volume autoencod-

ing scheme to better pretrain the cost-volume encoder of
FlowFormer. 2) We propose task-specific masking strat-
egy and reconstruction pre-text task to mitigate pretraining-
finetuning discrepancy, fully taking advantage of the
learned representations from pretraining. 3) With the pro-
posed pretraining technique, our proposed FlowFormer++
obtains all-sided improvements over FlowFormer, setting
new state-of-the-art performance on public benchmarks.

2. Related Work
Optical Flow. Image correspondence is a critical in-
termediate representation for downstream applications [6,
7, 23, 25, 35–37, 46, 53, 76]. Optical flow is defined as
dense image correspondence between consecutive frames
in a video. Compared with traditional optimization-based
optical flow methods [2, 3, 22, 56] empirically formulat-
ing flow estimation, data-driven methods [13, 28] directly
learn to estimate optical flow from labeled data. Since
FlowNet [13, 28], learning optical flow with neural net-
works presents superior performance and is still fast pro-
gressing where network architecture design becomes the
key to improving optical flow accuracy. A series of excel-
lent works [1,21,30,31,49,58,59,62,67,71,75] are devoted
to designing better network modules, which, indeed, intro-
duced better inductive bias to the optical flow formulation.
For example, encoding image feature with CNNs brings lo-
cality prior, and the all-pairs 4D cost volume [30,62] outper-
forms the coarse-to-fine cost volumes [49, 58, 59] in mod-
eling small fast-motion objects. Such a design also brings
benefits to event-based optical flow [16,38] and multi-frame
optical flow [52]. However, the empirical network design
may always ignore some unintended cases. Due to the
success of transformers [10, 11, 39, 64] in image recog-
nition [9, 12, 43], the optical flow community also tries
transformers [24, 46, 55, 68] to further weaken the network-
determined bias and learn feature relationships from data.
By replacing the handcrafted modules, i.e., the CNN image
encoder, the cost pyramid, and the indexing-based costs re-
trieval, in RAFT [62] with transformers, FlowFormer [24]
achieves state-of-the-art accuracy. However, transformers
are known for requiring tremendous training data to capture
feature relationships [12, 20] while collecting ground-truth
flows for supervised optical flow learning is expensive. In-
spired by the emerging pretraining-finetuning paradigm for
vision transformers [15, 20], we explore to pretrain Flow-
Former to capture the feature relationship for optical flow.
Masked Autoencoding (MAE). As a self-supervised learn-
ing technique, MAE, e.g., BERT [11], achieved great suc-
cess in NLP. Based on transformers, they mask a por-
tion of the input tokens and require the models to pre-
dict the missing content from the reserved tokens. Pre-
training with MAE encourages transformers to build effec-
tive long-range feature relationships. Recently, transform-

1600



ers also stream into the computer vision area, such as im-
age recognition [9, 12, 43], video inpainting [40, 41, 74],
point cloud recognition [19, 77]. By breaking the limita-
tions that convolution can only model local features, trans-
formers present a significant performance gap compared to
the previous counterparts. Pretraining with MAE is also
introduced to these modalities, e.g., image [8, 15, 20, 66],
video [63], point cloud [47, 73]. These works show that
MAE effectively releases the transformer power and do not
require extra labeled data. FlowFormer [24] presents a
transformer-based cost volume encoder and achieves state-
of-the-art accuracy. In this paper, we propose the masked
cost-volume autoencoding to pretrain the cost volume en-
coder on a video dataset, which further unleashes the power
of the transformer-based cost-volume encoder.

3. Method
As presented in Fig. 2, we propose a masked cost-

volume autoencoding (MCVA) scheme to pretrain the cost-
volume encoder of FlowFormer framework for better per-
formance. The key of general masked autoencoding meth-
ods is to mask a portion of data and encourage the net-
work to reconstruct the masked tokens from visible ones.
Due to the redundant nature of the cost volume and the
original FlowFormer architecture being incompatible with
masks, naively adopting this paradigm to pretrain the cost-
volume encoder leads to inferior performance. Our pro-
posed MCVA tackles the challenge and conducts masked
autoencoding with three key components: a proper masking
strategy on the cost volume, modifying FlowFormer archi-
tecture to accommodate masks, and a novel pre-text recon-
struction task supervising the pretraining process.

In this section, we first revisit the FlowFormer architec-
ture, and then elaborate the proposed three key designs.
We first introduce the masking strategy, dubbed as block-
sharing masking, and then show the masked cost-volume
tokenization that makes the cost-volume encoder compati-
ble with masks. Coupling these two designs prevents the
masked autoencoding from being hindered by information
leakage in pretraining. Finally, we present the pre-text cost
reconstruction task, mimicing the decoding process in fine-
tuning to pretrain the cost-volume encoder .

3.1. A Revisit of FlowFormer

Given a pair of source and target images, optical
flow aims at recovering pixel-level correspondences for all
source pixels. FlowFormer encodes the pair of images’
features with an ImageNet-pretrained Twins-SVT [9] as
RHI×WI×3 → RH×W×D, and creates a 4D cost volume of
size H×W ×H×W by computing all-pairs feature corre-
lations. HI ,WI and H,W respectively indicate the height
and width of the images and the visual feature maps. The
cost volume can also be viewed as a series of cost maps of

size RH×W , each of which measures the similarity between
one source pixel and all target pixels.

The 4D cost volume contains abundant but redundant in-
formation for optical flow estimation. FlowFormer projects
it into a latent space of size RH×W×K×D with a cost to-
kenizer. In the latent space, each source pixel’s cost map
is transformed into cost memory consisting of K tokens
of dimension D, which is a more compact representation
and is further processed by a transformer-based cost en-
coder, dubbed as alternate-group transformer (AGT). Fi-
nally, FlowFormer recurrently decodes the flow estimation
from the cost memory with cross-attention.

FlowFormer is the first transformer architecture specif-
ically designed for optical flow estimation, which enjoys
the benefits of long-range information encoding via self-
attention, but also encounters the similar problem to gen-
eral vision transformers: it needs large-scale training data to
model unbiased representations. The FlowFormer with the
ImageNet-pretrained Twins-SVT backbone leads to boosted
accuracy, while the same model with a train-from-scratch
Twins-SVT or a shallow CNN achieve similar degraded
performances, demonstrating the necessity of pretraining
transformers for optical flow estimation. However, the Im-
ageNet can only be used for pretraining the single-image
encoder and the cost-volume encoder in FlowFormer is still
trained from scratch and might not converge to the optimal
point. To enable the pretraining of the cost-volume encoder
to further enhance optical flow estimation, we propose the
masked cost-volume autoencoding scheme.

3.2. Block-sharing Cost Volume Masking

A properly designed masking scheme is required to con-
duct autoencoding of the masked cost volume. For each
source pixel x, we need to create a binary mask Mx ∈
{0, 1}H×W to its cost map Cx ∈ RH×W , where 0 indicates
masking (i.e., removing) cost values from the masked loca-
tions. Naturally, neighboring source pixels’ cost maps are
highly correlated. Randomly masking neighboring pixels’
cost maps might cause information leakage, i.e., masked
cost values might be easily reconstructed by copying the
cost values from neighboring source pixels’ cost maps.

To prevent such an over-simplified learning process, we
propose a block-sharing masking strategy. We partition
source pixels into non-overlapping blocks in each iteration.
All source pixels belonging to the same block share a com-
mon mask for masked region reconstruction. In this way,
neighboring source pixels are unlikely to copy each other’s
cost maps to over-simplify the autoencoding process. Be-
sides, the size of block is designed to be large (height and
width of blocks are of 32 ∼ 120 pixels) and randomly
changes in each iteration, and thus encouraging the cost-
volume encoder to aggregate information from long-range
context and to filter noises of cost values. The details of the
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Figure 2. Architecture of FlowFormer++. During pertaining, FlowFormer++ freezes the image and context encoders, block-wisely masks
the cost volume, and learns to reconstruct larger cost patches from small cost patches to pretrain cost-volume encoder. In fine-tuning,
FlowFormer++ uses the full cost volume, removes the reconstruction decoder, and adds the cost memory decoder to learn optical flow,
which naturally falls back to the FlowFormer architecture but inherits the pretrained parameters in the cost-volume encoder.

mask generation algorithm are provided in supplementary.
Specifically, for each source pixel’s cost map, we first

generate the mask map M3
x ∈ {0, 1}H

8 ×W
8 at 1

8 resolution,
and then up-sample it 2× for three times to obtain a pyramid
of mask maps Mi

x ∈ {0, 1}
H

2i
×W

2i , where i ∈ {0, 1, 2},
which are used for the down-sampling encoding process and
will be discussed later in Sec. 3.3.

Another key design is that, in pretraining, we freeze the
ImageNet-pretrained Twins-SVT backbone to build the cost
volume from the pair of input images. Freezing the image
encoder ensures the reconstruction targets (i.e., raw cost val-
ues) to maintain static and avoids training collapse.

3.3. Masked Cost-volume Tokenization

Given the above generated mask for each source pixel
x’s cost map, FlowFormer adopts a two-step cost-volume
tokenization before the cost encoder. To prevent the masked
costs from leaking into subsequent cost aggregation layers,
the intermediate embeddings of the cost map need to be
properly masked in the cost-volume tokenization process.
We propose the masked cost-volume tokenization, which
prevents mixing up masked and visible features. Firstly,
FlowFormer patchifies the raw cost map Cx ∈ RH×W of
each source pixel x (which is obtained by computing dot-
product similarities between the source pixel x and all target
pixels) via 3 stacked stride-2 convolutions. We denote the
feature maps after each of the 3 convolutions as Fi

x, which
have spatial sizes of H

2i ×
W
2i for i ∈ {0, 1, 2}. We propose

to replace the vanilla convolutions used in the FlowFormer
with masked convolutions [15, 18, 50]:

Fi+1
x = Convstride2

(
ReLU(Fi

x ⊙Mi
x)
)
, (1)

where ⊙ indicates element-wise multiplication, i ∈
{0, 1, 2}, and F0

x is the raw cost map Cx. The masked

convolutions with the three binary mask maps remove all
cost features in the masked regions in pretraining. Sec-
ondly, FlowFormer further projects the patchified cost-map
features into the latent space via cross-attention. We thus
remove the tokens in F3

x indicated by the mask map M3
x

and then only project the remaining tokens into the latent
space via the same cross-attention. During finetuning, the
mask maps are removed to utilize all cost features, which
converts the masked convolution to the vanilla convolution
but the pretrained parameters in the convolution kernels and
cross-attention layer are maintained.

The masked cost-volume tokenization completes two
tasks. Firstly, it ensures the subsequent cost-volume en-
coder only processes visible features in pertaining. Sec-
ondly, the network structure is consistent with the standard
tokenization of FlowFormer and can directly be used for
finetuning so that the pretrained parameters have the same
semantic meanings. After the masked cost-volume tok-
enization, the cost aggregation layers (i.e., AGT layers) take
visible features as input which also don’t need to be mod-
ified in finetuning. The latent features interact with those
of other source pixels in AGT layers and are transformed to
the cost memory Tx. We explain how to decode the cost
memory to estimate flows in following section.

3.4. Reconstruction Target for Cost Memory De-
coding

With the masked cost-volume tokenization, the cost en-
coder encodes the unmasked cost volume into the cost
memory. The next step is decoding and reconstructing the
masked regions from the cost memory.

In this section, we formulate the pre-text reconstruction
targets, which supervises the decoding process as well as
aformentioned embedding and aggregation layers. We start
by revisiting the dynamic positional decoding scheme of
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Figure 3. Pre-text reconstruction for cost memory decoding.
For each source pixel x and its corresponding cost map Cx, a
small cost patch qS

x is randomly cropped from the cost map to
retrieve features from the cost memory Tx, aiming to reconstruct
larger cost patch qL

x centered at the same location. The superscript
“S” and “L” of qx denote “small” and “large” respectively.

FlowFormer, and present our reconstruction targets which
are highly consistent with the finetuning tasks. FlowFormer
adopts recurrent flow prediction. In each iteration of the re-
current process, the flow of source pixel x is decoded from
cost memory Tx, conditioned on current predicted flow, to
update the flow prediction. Specifically, current predicted
corresponding location in the target image px is computed
as px = x+ f(x), where f(x) is current predicted flow. A
local cost patch qx is then cropped from the 9 × 9 win-
dow centered at px on the raw cost map Cx. FlowFormer
utilizes this local cost patch (with positional encoding) as
the query feature to retrieve aggregated cost feature cx via
cross-attention operation:

Qx = FFN (FFN(qx) + PE(p)) ,

Kx = FFN (Tx) , Vx = FFN (Tx) ,

cx = Attention(Qx,Kx,Vx).

(2)

Pre-text Reconstruction. Intuitively, cx should contain
long-range cost information for better optical flow estima-
tion and its center of the perceptual field should be similar
to that of the local cost patch qx. We design a pre-text re-
construction task in line with these two characteristics to
pretrain the cost-volume encoder as shown in Fig. 3: small
cost-map patches are randomly cropped from the cost maps
to retrieve cost features from the cost memory, targeting at
reconstructing larger cost-map patches centered at the same
locations.

Specifically, for each source pixel x, we randomly sam-
ple a location ox, which is analogous to px in finetuning.
Taking this location as center, we crop a small cost-map
patch qS

x = Crop9×9(Cx,ox) of shape 9 × 9. Then we
perform the decoding process shown in Equation 2 to ob-
tain the cost feature cx, except that pX and qx are replaced
by ox and qS

x in pretraining, respectively. To encourage the

extracted cost feature cx to carry long-range cost informa-
tion conditioned on ox, we take larger cost-map patch as
supervision. Specifically, we crop another larger cost-map
patch qL

x = Crop15×15(Cx,ox) of shape 15× 15 centered
at the same location ox. We choose a light-weight MLP as
prediction head. The MLP takes as input cx and its output
q̂L
x = MLP(cx) is supervised by normalized qL

x . We take
mean squared error (MSE) as loss function.

L =
1

|Ω|
∑
x∈Ω

∣∣∣∣qL
x −Normalize(q̂L

x )

∣∣∣∣2, (3)

where Ω is the set of source pixels.
Discussion. The key of pretraining is to maintain consistent
with finetuning, in terms of both network arthictecture and
prediction target. To this end, we keep the cross-attention
decoding layer unchanged and construct inputs with the
same semantic meaning (e.g., replacing dynamically pre-
dicted px with randomly sampled ox); we supervise the
extracted feature cx with long-range cost values to encour-
age the cost-volume encoder to aggregate global informa-
tion for better optical flow estimation. What’s more, our
scheme only takes an extra light-weight MLP as prediction
head, which is unused in finetuning. Compared with pre-
vious methods that use a stack of self-attention layers, it is
much more computationally efficient.

4. Experiments

We evaluate our FlowFormer++ on the Sintel [4] and
KITTI-2015 [17] benchmarks. We pretrain FlowFormer++
using the proposed Masked Cost-volume Autoencoding on
YouTube-VOS [69] dataset. For the supervised finetun-
ing, following previous works, we train FlowFormer++ on
FlyingChairs [13] and FlyingThings [45], and then respec-
tively finetune it on the Sintel and KITTI-2015 benchmarks.
FlowFormer++ obtains all-sided improvements over Flow-
Former, ranking 1st on both benchmarks.
Experimental Setup. We adopt the commonly-used av-
erage end-point-error (AEPE) as the evaluation metric. It
measures the average l2 distance between predictions and
ground truth. For the KITTI-2015 dataset, we additionally
use the F1-all (%) metric, which refers to the percentage of
pixels whose flow error is larger than 3 pixels or over 5% of
the length of ground truth flows. YouTube-VOS is a large-
scale dataset containing video clips from YouTube website.
The Sintel dataset is rendered from the same movie in two
passes: the clean pass is rendered with easier smooth shad-
ing and specular reflections, while the final pass includes
motion blur, camera depth-of-field blur and atmospheric ef-
fects. The motions in the Sintel dataset are relatively large
and complicated. The KITTI-2015 dataset constitutes of
real-world driving scenarios with sparse ground truth.
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Training Data Method Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)

Clean Final F1-epe F1-all Clean Final F1-all

A
Perceiver IO [29] 1.81 2.42 4.98 - - - -
PWC-Net [58] 2.17 2.91 5.76 - - - -
RAFT [62] 1.95 2.57 4.23 - - - -

C+T

HD3 [72] 3.84 8.77 13.17 24.0 - - -
LiteFlowNet [26] 2.48 4.04 10.39 28.5 - - -
PWC-Net [58] 2.55 3.93 10.35 33.7 - - -
LiteFlowNet2 [27] 2.24 3.78 8.97 25.9 - - -
S-Flow [75] 1.30 2.59 4.60 15.9
RAFT [62] 1.43 2.71 5.04 17.4 - - -
FM-RAFT [31] 1.29 2.95 6.80 19.3 - - -
GMA [30] 1.30 2.74 4.69 17.1 - - -
GMFlow [68] 1.08 2.48 - - - - -
GMFlowNet [79] 1.14 2.71 4.24 15.4 - - -
CRAFT [55] 1.27 2.79 4.88 17.5 - - -
SKFlow [60] 1.22 2.46 4.47 15.5 - - -
FlowFormer [24] 0.94 2.33 4.09† 14.72† - - -
Ours 0.90 2.30 3.93† 14.13† - - -

C+T+S+K+H

LiteFlowNet2 [27] (1.30) (1.62) (1.47) (4.8) 3.48 4.69 7.74
PWC-Net+ [59] (1.71) (2.34) (1.50) (5.3) 3.45 4.60 7.72
VCN [71] (1.66) (2.24) (1.16) (4.1) 2.81 4.40 6.30
MaskFlowNet [78] - - - - 2.52 4.17 6.10
S-Flow [75] (0.69) (1.10) (0.69) (1.60) 1.50 2.67 4.64
RAFT [62] (0.76) (1.22) (0.63) (1.5) 1.94 3.18 5.10
RAFT* [62] (0.77) (1.27) - - 1.61 2.86 5.10
FM-RAFT [31] (0.79) (1.70) (0.75) (2.1) 1.72 3.60 6.17
GMA [30] - - - - 1.40 2.88 5.15
GMA* [30] (0.62) (1.06) (0.57) (1.2) 1.39 2.47 5.15
GMFlow [68] - - - - 1.74 2.90 9.32
GMFlowNet [79] (0.59) (0.91) (0.64) (1.51) 1.39 2.65 4.79
CRAFT [55] (0.60) (1.06) (0.57) (1.20) 1.45 2.42 4.79
SKFlow* [60] (0.52) (0.78) (0.51) (0.94) 1.28 2.23 4.84
FlowFormer [24] (0.48) (0.74) (0.53) (1.11) 1.16 2.09 4.68†

Ours (0.40) (0.60) (0.57) (1.16) 1.07 1.94 4.52†

Table 1. Experiments on Sintel [4] and KITTI [17] datasets. ‘A’ denotes the autoflow dataset. ‘C + T’ denotes training only on the
FlyingChairs and FlyingThings datasets. ‘+ S + K + H’ denotes finetuning on the combination of Sintel, KITTI, and HD1K training sets.
* denotes that the methods use the warm-start strategy [62], which relies on previous image frames in a video, while other methods use
two frames only. † denotes the result is obtained via the tile technique proposed in FlowFormer [24]. Our FlowFormer++ achieves the best
generalization performance (C+T) and ranks 1st on both the Sintel and the KITTI-15 benchmarks (C+T+S+K+H).

Input FlowFormer FlowFormer++ (Ours)

Figure 4. Qualitative comparison on Sintel and KITTI test sets. FlowFormer++ preserves clearer details (pointed by red arrows) and
maintains better global consistency (indicated by blue boxes).
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Implementation Details. We use the same architecture of
FlowFormer for fair comparison. The image feature en-
coder and context feature encoder are chosen as the first
two stages of ImageNet-pretrained Twins-SVT, which are
frozen in pretraining for better performance. We pretrain
our model on YouTube-VOS for 50k iterations with a batch
size of 24. The highest learning rate is set as 5 × 10−4.
During finetuning, we follow the same training procedure of
FlowFormer. We train our model on FlyingChairs for 120k
iterations with a batch size of 8 and on FlyingThings with
a batch size of 6 (denoted as ‘C+T’). Then, we train Flow-
Former++ by combining data from Sintel, KITTI-2015 and
HD1K [33] (denoted as ‘C+T+S+K+H’) for another 120k
iterations with a batch size of 6. This model is submitted
to Sintel online test benchmark for evaluation. To obtain
the best performance on the KITTI-2015 benchmark, we
further train FlowFormer++ on the KITTI-2015 dataset for
50k iterations with a batch size of 6. The highest learning
rate is set as 2.5× 10−4 for FlyingChairs and 1.25× 10−4

on other training sets. In both pretraining and finetuning,
we choose AdamW optimizer and one-cycle learning rate
scheduler. We crop images and tile predictions from all
patches to obtain full-resolution flow predictions following
Perceiver IO [29] and FlowFormer.

4.1. Quantitative Experiments

As shown in Table 1, we evaluate FlowFormer++ on
the Sintel and KITII-2015 benchmarks. Following previ-
ous methods, we evaluate the generalization performance of
models on the training sets of Sintel and KITTI-2015 (de-
noted as ‘C+T’). We also compare the dataset-specific accu-
racy of optical flow models after dataset-specific finetuning
(denoted as ‘C+T+S+K+H’). Autoflow [57] is a synthetic
dataset of complicated visual disturbance.
Generalization Performance. The ‘C+T’ setting in Ta-
ble 1 reflects the generalization capacity of models. Flow-
Former++ ranks 1st on both benchmarks among published
methods. It achieves 0.90 and 2.30 on the clean and fi-
nal pass of Sintel. Compared with FlowFormer, it achieves
4.26% error reduction on Sintel clean pass. On the KITTI-
2015 training set, FlowFormer++ achieves 3.93 F1-epe and
14.13 F1-all, improving FlowFormer by 0.16 and 0.59, re-
spectively. These results show that our proposed MCVA
promotes the generalization capacity of FlowFormer.
Dataset-specific Performance. After training the Flow-
Former++ in the ‘C+T+S+K+H’ setting, we evaluate its per-
formance on the Sintel online benchmark. It achieves 1.07
and 2.09 on the clean and final passes, a 7.76% and 7.18%
error reduction from previous best model FlowFormer.

We further finetune FlowFormer++ on the KITTI-2015
training set after the Sintel stage and evaluate its perfor-
mance on the KITTI online benchmark. FlowFormer++
achieves 4.52 F1-all, improving FlowFormer by 0.16 while

also outperforming the previous best model S-Flow by 0.12.
To conclude, FlowFormer++ shows greater optical flow

estimation capacity for both naturalistic non-rigid motions
(Sinel) and real-world rigid scenarios (KITTI-2015). This
validates that our proposed MCVA improves the Flow-
Former architecture by enhancing the cost-volume encoder.

4.2. Qualitative Experiments

We visualize flow predictions by our FlowFormer++ and
FlowFormer on Sintel and KITTI test sets in Fig. 4 to
qualitatively show how FlowFormer++ outperforms Flow-
Former. The red arrows highlight that FlowFormer++ pre-
serves clearer details than FlowFormer: in the first row,
FlowFormer misses the flying bird while FlowFormer++
produces clear results; in the second row, FlowFormer++
keeps the boundaries of leaves while FlowFormer generates
blurry prediction. FlowFormer++ also shows greater global
aggregation capacity indicated by blue boxes. In the first
row, FlowFormer produces obviously inconsistent predic-
tion on the large-area sky, while FlowFormer++ yields con-
sistent prediction. In the second row, the black car is par-
tially occluded by the foreground tree, which challenges the
optical flow model to aggregate information in long range.
FlowFormer++ generates consistent prediction for the two
separated parts of the car, while FlowFormer mixes the left
part of the car with background and thus produces inconsis-
tent optical flow prediction.

4.3. Ablation Study

We conduct a set of ablation studies to show the im-
pact of designs in the Masked Cost-volume Autoencoding
(MCVA). All models in the experiemnts are first pretrained
and then finetuned on ‘C+T’. We report the test results on
Sintel and KITTI training sets.
Masking Strategy. Masking strategy is one important de-
sign of our MCVA. As shown in Table 2, pretraining Flow-
Former with random masking already improves the perfor-
mance on three of the four metrics. But the proposed block-
sharing masking strategy brings even larger gain, which
demonstrates the effectiveness of this design. Besides, we
observe higher pretraining loss with block-sharing masking
than that with random masking, validating that the block-
sharing masking makes the pretraining task harder.
Masking Ratio. Masking ratio influences the difficulty of
the pre-text reconstruction task. We empirically find that
the mask ratio of 50% yields the best overall performance.
Pre-text Reconstruction Design. The conventional MAE
methods aim to reconstruct input data at fixed locations and
use the positional encodings as query features to absorb in-
formation for reconstruction (the first row of Table 4). To
keep consistent with the dynamic positional query of Flow-
Former architecture, we propose to reconstruct contents at
random locations (the second row of Table 4) and addition-
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Figure 5. Comparison on FlyingChairs. FlowFormer++ converges faster and achieves lower validation error.
Case Sintel (train) KITTI-15 (train)

Clean Final F1-epe F1-all
FlowFormer 0.94 2.33 4.09 14.72
+ Random Masking 0.93 2.35 4.03 14.30
+ Block-sharing Masking 0.90 2.30 3.93 14.13

Table 2. Masking strategy. Pretraining with block-sharing mask-
ing brings greater performance gain than random masking.

Masking Ratio Sintel (train) KITTI-15 (train)

Clean Final F1-epe F1-all
20% 0.97 2.41 3.91 14.27
50% 0.90 2.30 3.93 14.13
80% 0.94 2.35 4.00 14.07

Table 3. Masking ratio. The masking ratio influences the diffi-
culty of the reconstruction task. Masking 50% cost values yields
best overall results.

Location Query Feature Sintel (train) KITTI-15 (train)

Clean Final F1-epe F1-all
Fixed PE 0.99 2.40 4.35 15.33
Random PE 0.95 2.42 3.99 14.47
Random PE + Cropped patch 0.90 2.30 3.93 14.13

Table 4. Pre-text reconstruction design. Our pre-text recon-
struction task leads to better performance over conventional MAE
task (first row) and its improved version with random reconstruc-
tion locations (second row).

ally use local patches as query features (the third row of
Table 4). The results validate the necessity of ensuring se-
mantic consistency between pretraining and finetuning.
Freezing Image and Context Encoders. The FlowFormer
architecture has an image encoder to encode visual appear-
ance features for constructing the cost volume, and a con-
text encoder to encode context features for flow prediction.
As shown in Table 5, freezing the image encoder is nec-
essary, otherwise the model diverges. We hypothesize that
the frozen image encoder ensures the reconstruction targets
(i.e., raw cost values) to keep static. Freezing the context
encoder leads to better overall performance.
Comparisons with Unsupervised Methods. We also use
conventional unsupervised methods to pretrain FlowFormer
with photometric loss and smooth loss following [42,44,54]
and then finetune it in the ‘C+T’ setting as FlowFormer++.
As shown in Table 6, our MCVA outperforms the unsuper-
vised counterpart for pretraining FlowFormer.
FlowFormer++ v.s. FlowFormer on FlyingChairs. We
show the training and validating loss of the training pro-
cess on FlyingChairs [13] in Fig. 5. FlowFormer++ presents
faster convergence during training and better validation loss

Freeze Sintel (train) KITTI-15 (train)

Image Encoder Context Encoder Clean Final F1-epe F1-all
✗ ✗ - - - -
✗ ✓ - - - -
✓ ✗ 0.92 2.34 3.90 14.23
✓ ✓ 0.90 2.30 3.93 14.13

Table 5. Freezing image and context encoders in pretraining.
Freezing the image encoder ensures the reconstruction targets (i.e.,
raw cost values) to maintain static, otherwise the model diverges.
Freezing the context encoder leads to better overall performance.

Methods Sintel (train) KITTI-15 (train)

Clean Final F1-epe F1-all
Unsupervised Baseline 0.99 2.54 4.38 15.22
MCVA (ours) 0.90 2.30 3.93 14.13

Table 6. Comparisons with unsupervised methods. We use
the conventional unsupervised algorithm [42, 44, 54] (using pho-
tometic loss and smooth loss) to pretrain FlowFormer for compar-
ison. Our MCVA outperforms the unsupervised counterpart.

at the end, which reveals that FlowFormer++ learns effec-
tive feature relationships during pretraining and benefits the
supervised finetuning.

5. Conclusion and Limitation
In this paper, we propose Masked Cost Volume Autoen-

coding (MCVA) to enhance the cost-volume encoder of
FlowFormer by pretraining. We show that the naive adap-
tation of MAE scheme to cost volume does not work due
to the redundant nature of cost volumes and the incurred
pretraining-finetuning discrepancy. We tackle these issues
with a specially designed block-sharing masking strategy
and the novel pre-text reconstruction task. These designs
ensure semantic integrity between pretraining and finetun-
ing and encourage the cost-volume to aggregate information
in a long range. Experiments demonstrate clear generaliza-
tion and dataset-specific performance improvements. The
major limitation is that our proposed pretraining strategy is
mainly designed for FlowFormer.
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