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Figure 1. Hand Drill: Magnifying rotational motion is a difficult task. So to evaluate SOTA methods (b) Acceleration method [29], (c)
Jerk-aware [24], (d) Anisotropy [22], (e) Oh et al. [17], and the proposed method (f) D1, (g) D2, a video containing a hand drill with
rotational motion along its axis is used. In 2D, this motion is visible as a spiral motion. So, magnification can be perceived as an increase in
spiral motion (shown in spatial-temporal slices taken from the red strip at the right part of the figure). Hand-crafted methods [22], [24], [29]
have small magnification (less outward radius in temporal slices) and produce ringing artifacts (visible as white edges around the drill) and
blurry spikes in the temporal slices (b), (c), (d)). Oh et. al [17] induce flickering motion (seen as spikes in the temporal slice (e)) and blurry
distortions in some frames (visible in the frame (e)). The proposed networks ( (f) D1 and (g) D2) produce better magnification with fewer
distortions. Please zoom in for a clearer view. https://github.com/jasdeep-singh-007/Multi-Domain-Learning-for-Motion-Magnification

Abstract

Video motion magnification makes subtle invisible mo-
tions visible, such as small chest movements while breath-
ing, subtle vibrations in the moving objects etc. But small
motions are prone to noise, illumination changes, large mo-
tions, etc. making the task difficult. Most state-of-the-art
methods use hand-crafted concepts which result in small
magnification, ringing artifacts etc. The deep learning-
based approach has higher magnification but is prone to
severe artifacts in some scenarios. We propose a new phase-
based deep network for video motion magnification that op-
erates in both domains (frequency and spatial) to address
this issue. It generates motion magnification from frequency
domain phase fluctuations and then improves its quality in
the spatial domain. The proposed models are lightweight
networks with fewer parameters (∼ 0.11M and ∼ 0.05M ).
Further, the proposed networks performance is compared to
the SOTA approaches and evaluated on real-world and syn-
thetic videos. Finally, an ablation study is also conducted
to show the impact of different parts of the network.

1. Introduction

Subtle movements in real-world circumstances contain
significant information and these motions are translated into
larger motions using video motion magnification. This
turned out to be useful in a variety of applications, includ-
ing the categorization of micro-expression [2], [12], [10],
[27], [18], taking a person’s vital signs [3], [20], [16], [9],
analysing vibrations [19], [11], [6], [4] etc. However, be-
cause little movements are often at the same level as pho-
tographic noise (introduced during image acquisition e.g.
small illumination changes which are invisible to the naked
eye etc.) [22], magnifying them presents a difficult problem.
Second, it might be difficult to magnify minor changes in
dynamic situations or when there are large motions present
since magnifying large changes produces hazy output and
obscures the subtle changes. Third, higher magnification
causes issues with texture synthesis problems and results in
artifacts, distortions etc. in the output.

The traditional technique [28] comprises of handcrafted
filter-based algorithms, that rely on steerable pyramids for
image decomposition and filters for motion magnification.
However, it produced noisy output. Through phase vari-
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Table 1. Conceptual differences between the proposed approach and existing methods for motion magnification

Methods Hand-crafted Methods
[29], [24], [22], [23]

Deep-learning Method
Oh et al. [17]

Proposed Method

Motion
Manipulation

Phase-Variation based
Linear / Non-Linear filters

(Frequency Domain)

Shape Feature Differences
based learnable filters

(Spatial Domain operations)

Phase and Spatial Variation
based learnable filters

(Frequency and Spatial Domain)

Magnified Frame
Texture Generation

Steerable Pyramid
(wavelet-based reconstruction)

Residual blocks based
simple decoder

(learnable filters in spatial domain)

Multi-scale texture
Correction block

(learnable filters in spatial domain)

ations, [25] propose a complex steerable pyramid for im-
age decomposition and magnification. This resulted in im-
proved magnification while lowering the effects of noise in
the magnification process. However, they function poorly
in scenarios containing dynamic or large motion. Two dif-
ferent approaches are proposed to tackle these issues: hand
design filtering and deep learning models. In the first ap-
proach, authors propose hand-design filters [29], [24], [22],
[23] compatible with earlier methods, to work both in static
and dynamic scenarios. But, they have small amount of
magnification and are prone to ringing artifacts. The second
technique is deep learning, which is based on the notion that
deep convolutional networks may produce a more optimal
solution [17]. Oh et. al [17] proposed a deep network with
more magnification, compared to handcrafted methods but
it’s solution is computationally challenging, prone to distor-
tions, artefacts, and texture generation-related problems.

We propose a phase-based deep network for video mo-
tion magnification to address these concerns. It combines
the handcrafted approach of phase-based motion magnifi-
cation [25] with deep learning-based spatial magnification
[17] to overcome each other limitations. In addition, for
real-time applications, lightweight networks D1 and D2 are
proposed. The following are the key contributions:-

• A novel multi-domain lightweight networks (D1 and
D2) is proposed for video motion magnification.

• A frequency domain-based motion magnification
block is proposed for motion synthesis. It directly es-
timates the phase and amplitude changes for the mag-
nification according to the provided magnification fac-
tor. This helps to reduce noise effects in the magnifica-
tion process and generates motion (which depends on
phase variations).

• A spatial domain-based multi-scale texture correction
block is proposed to improve the texture quality. It
estimates the texture component at each scale using
information from input frames and magnified motion
features in the spatial domain.

The proposed networks (D1 and D2) are evaluated qualita-

tively and quantitatively on real-world and synthetic videos
on different tasks. Additionally, an experiment is conducted
to check the physical sccuracy of the proposed method. An
ablation study is also conducted to see the effects of differ-
ent parts of the proposed network.

2. Related Work
Lagrangian and Eulerian methods are the two types of

video motion magnification techniques. Lagrangian tech-
niques [14] depend on optical flow for generating motion
magnified frames. In Eulerian methods filters are used for
motion magnification [25], [26], [28], [29], [24], [22], [23]
which have demonstrated state-of-the-art results. Most of
them use handcrafted techniques and decompose images
into feature representations utilising steerable pyramids.
Motion is then manipulated in these representations, and the
output frame is rebuilt using a steerable pyramid. Initially,
Wu et al. [28], used laplacian pyramids for feature decom-
position and reconstruction, and provided a first-order ap-
proximation of input and output motion magnified frames.
Wadhwa et al. [25] suggest a complex steerable pyramid for
feature extraction and magnification with respect to phase
variations. As a result, there has been an increase in magni-
fication and improved results when noise is present. How-
ever, in dynamic situations or when there is large motion,
this strategy is not appropriate. Non-linear approximation
(between input and magnified frame) based filters are sug-
gested [29], [24], [22] to make the framework suitable for
both static and dynamic scenarios. These techniques lack
additional considerations like computing complexity, occlu-
sion [17], etc., have low magnification and are susceptible
to ringing artefacts.

Deep learning-based techniques are used to address these
problems [5, 7, 17, 21]. The majority of approaches have
a narrow range of applicability [5], [7], so their scope of
work is limited. The approach provided by Oh et al. [17],
is more generic and comparable to handcrafted methods.
Oh et al. [17], assume that learnable filters can learn bet-
ter feature representation for motion magnification. So,
to make the motion magnification problem learnable, [17]
proposed a new synthetic dataset and a deep network for
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Figure 2. Proposed phase based motion magnification method (as
illustrated in Eq (1) shows better output more similar to the true
amplification. In comparison, the [17] 1 D simplified output (as
shown in Eq (2), deviates more with the increase in magnification
factor (α). These results are calculated at small phase variations.
The effect of change in input phase variations, for both methods,
is shown at the same magnification factor in (d).

motion magnification. They extract texture and shape data
from the input frames and emphasise variations in shape as-
pects. The magnified output is then created by integrating
the magnified shape information with texture data from in-
put frames. However, it has certain drawbacks, including
the ineffective separation of shape and texture information,
which occasionally causes the resulting intermediate fea-
tures to flicker or superious motion in the output. Further,
sometimes texture information also deviates from input and
results in blurry distortions. Manipulating motion directly
in a spatial domain is challenging and susceptible to un-
wanted errors. To solve this, we combine the best of both
approaches, handcrafted and deep learning to mitigate each
other limitations as shown in Table 1.

3. Proposed Method

The proposed methods assume that subtle variations
translated through phase changes are more robust to noise
[25] . So, by manipulating the phase, subtle motion can be
enhanced. In the following section, first we discuss why
phase-based motion magnification has the upper hand and
the challenges associated with it (for a better explanation
we adapt similar example scenarios as in [25], [15]). Then,
we present the proposed solutions to overcome those chal-
lenges. Later, the loss function and other implementation
details are discussed.

Figure 3. For the small phase shift between two sinusoidal waves
output magnified signal is shown in green (on the left). When the
shift becomes large (adding 2π), similar-looking input produces
different magnified output in green (on the right). The phase shift
based magnification method needs to determine the correct output
(between the dotted green curve for the small phase shift and the
green curve, the actual one).

3.1. Motivation

We consider a 1D case to give intuition on the work-
ing and challenges associated with motion magnification
through phase variation. Let f(x), a 1D signal at T = 0.
The signal at time step T = t is defined as the displaced
version of f(x), f(x+ δ(t)) where δ(t) represents the dis-
placement function (not to be confused with a Dirac func-
tion). Then the motion magnification signal is defined as
f(x+ (1+α)δ(t)), where α decides the amount of magni-
fication.

For a sinusoid wave, y = A sin(ωx + ϕ), A, ω, ϕ rep-
resent its amplitude, angular frequency, and phase respec-
tively. By setting 1 D signal as sinusoid f(x) = A sin(ωx),
we get the displaced signal f(x+ δ(t)) = A sin(ω(x+ ϕ))
∀ t ∈ [0, t] , where δ(t) = ωϕ. The magnified signal can
be written in terms of phase variations of the input signal as
f(x+(1+α)δ(t)) = A sin(ω(x+(1+α)ϕ)). For two time
instances t1 and t2, the proposed method approximate δ(t2)
as ω(ϕt2 − ϕt1), and the magnified signal can be written as

f(x+(1+α)δ(t2)) ≈ A sin(ω(x+(1+α)(ϕt2−ϕt1))) (1)

Similarly, 1 D approximation of method discussed in
[17] can be written as

f(x+ (1 + α)δ(t2)) ≈ A sin(ω(x+ ϕt1))+

(1 + α)(A sin(ω(x+ ϕt2))−A sin(ω(x+ ϕt1)))
(2)

Figure 2 illustrates the effects of change in magnification
factor and error with respect to change in phase. Phase-
variation based magnification has less error (from Figure 2).
Also, in phase based magnification, the noise is translated
instead of amplified, making it more robust to noise [25].
Let’s extend it to a complicated function S(x), by applying
the Fourier series, a signal at time t can be represented as:

S(x+ δ(t)) =

∞∑
ω=−∞

Aωe
jω(x+ϕt) (3)
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Figure 4. Structure of Frequency Domain-based Motion Magnification Block (FDMM). It consists of two parallel streams (a) Phase
Manipulator and (b) Amplitude Manipulator. Phase Manipulator takes input frames phase (ϕ1, ϕ0) and tries to estimate the magnified
frame phase (ϕm). Similarly, amplitude manipulator tries to predicts output frame amplitudes (Am) from input frame amplitudes (A1, A0).

Figure 5. Proposed multi-domain based network for motion mag-
nification. First, input frames (I1, I0) Fourier transform (𭟋(.)) is
taken and given to FDMM block. Then from the output phase, ϕm

and amplitude Am, intermediate magnified output Îm is generated
by taking inverse Fourier transform. SDMST block process Îm in
the spatial domain, to generate the final magnified output (Im).

Then the proposed method magnified signal at time t2 can
be represented as :

S(x+ (1 + α)δ(t2)) ≈
∞∑

ω=−∞
Aωe

jω(x+(1+α)(ϕt2
−ϕt1

))

(4)
Phase-variation based magnification has some difficul-

ties. For instance, as the phase difference becomes large,
there is phase ambiguity. As shown in Figure 3 for similar-
looking sinusoidal waves, there are two different motion
translation for the same magnification factor. This causes
ringing artifacts and blurriness in the output [15]. Also, di-
rectly magnifying phase variation does not take occlusion
into account. To resolve these issues, the output is first mag-
nified in the frequency domain and then use it for spatial

domain magnification.

3.2. Network Architecture

The proposed network takes only two frames at a time
to produce a motion magnified frame according to the given
magnification factor. It has two main blocks 1) Frequency
domain-based motion magnification block (FDMM) and 2)
Spatial domain-based multi-scale texture correction block
(SDMST). The architecture of the proposed model is shown
in Figure 5 and the details are discussed below

3.2.1 Frequency Domain-based Motion Magnification
Block (FDMM)

Let, the input frames in color space as I1 and I2. First,
Fourier transform (𭟋) is applied on both frames to separate
phase (ϕ) and amplitude (At) as shown below

𭟋{I1, I0} = {{A1, ϕ1}, {A0, ϕ0}} (5)

Then, the difference in phases and amplitude are pro-
cessed in the FDMM block. To make the network
lightweight, we did not apply convolution operations before
taking the difference, as even without that the proposed net-
work achieve good results. In dynamic scenarios, new in-
formation is getting into the image which results in a change
of phase and amplitude. [25] depends on steerable pyramids
to tackle this non-periodicity. But they produce distortions
in dynamic scenarios. So, the FDMM block tries to es-
timate both, amplitude and phase changes in two parallel
streams 1) Phase Manipulator and 2) Amplitude Manipula-
tor as shown in Figure 5.

In the phase manipulator, first, it takes the difference
of input frames phases (ϕ1, ϕ0), and then they are passed
through the fixed concatenate blocks (FCB). Similarly, this
is done in an amplitude manipulator as shown in Figure
4. FCB takes two input features (previous output and one
fixed input), and concatenates them both to give it to a
3×3×f convolution layer with Elu activation, (f represents
the number of channels). FCB tries to predict the residual
components which are added to I1 features. So keeping I1
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Figure 6. Depicts the Spatial Domain Based Multi-Scale Texture Correction Block (SDMST). It consists of two main parts (a) Residual
Motion Texture Estimator Block (RMTE), and (b) Multi-Scale Texture Generation Block (MSTG). RMTE block estimated texture on
magnified areas (Rm). While SDMST block is responsible for estimating the texture correction features, which are added to Îm, to
generate the magnified output (Im).

features as fixed input to each layer help in better estima-
tion. The estimated output of the phase manipulator (ϕm)
and amplitude manipulator (Am) are used to generate inter-
mediate magnified output Îm, where Îm = 𭟋−1{Am, ϕm}
( 𭟋−1 is inverse Fourier transform). Îm, α and input frames
I1, I0 are given as input to SDMST block to generate the
final magnified input Im as shown in Figure 5.

3.2.2 Spatial Domain Based Multi-Scale Texture Cor-
rection Block (SDMST)

SDMST block is used to improve the FDMM block output.
Processing in frequency domain leads to blur, inappropri-
ate motion manipulation and distortions in the output due
to phase ambiguity and no-linear relation of phase changes
between input and output. Spatial domain processing helps
to remove them. It consists of two parts, 1) Residual Mo-
tion Texture Estimator Block (RMTE), and 2) Multi-Scale
Texture Generation Block (MSTG).

Residual Motion Texture Estimator Block (RMTE): It
assumes that spatial manipulator can generate magnified
motion features. The block structure is different from [17]
manipulator. Instead of feature space difference (as in [17]),
direct image space difference is taken. Also, to prevent dis-
tortions due to spatial magnification from adding, Îm based
difference features are used as spatial attention features (Ψ̂)
(shown in Figure 6). This assumes that some distortions
produce in both difference features are orthogonal and will
be canceled after multiplication. The final output of the
RMTE block can be expressed as follows

Rm = FCB×6{(α∗ψ∗(FCB×2{(I1−I0), I1}), I1} (6)

Multi-Scale Texture Generation Block (MSTG):
Multi-Scale texture generation helps in improving the
quality of the magnified frame. Features are processed
from the lowest scale to the highest scale, like in U-net
type architecture. But the encoder is replaced by simple
average pooling to reduce the number of parameters. This
structure differs from [17] as they use a simple decoder
where residual blocks are stacked together to generate
output. At each scale, a residual component is generated
by difference between Ii−1

m/n and I0/n, such that they match

the motion component with respect to Rm/n (where Ii−1
m/n

is the previous scale (i− 1)th magnified output, and n sub-
script depicts the down-sampling rate). These features are
processed with FCB and added to Îm/n features to create
magnified features Iim/n. Then the magnified features are
concatenated with I1/n and given to the conv-transpose
layer for up-sampling. The exact process is repeated in the
next scale, as shown in Figure 6. This assumes that the next
scale blocks should work on residual input features created
from previous scale-magnified features. These repeated
estimations of texture components at each scale help in
improving the prediction of the final texture feature map
which is added to Îm (output of FDMM) for generating
texture-corrected output. The magnified output at each
scale can be defined as :

Iim/n = Îm/n + FCB×6{(Ii−1
m/n − I0/n +Rm/n), I1/n}

(7)
for i = 0, I0m/8 = Îm/8, where i ∈ (0, 3). Texture in ar-
eas without motion is mostly similar in input and magnified
frames. We assume giving I1 information as fixed input in
FCB helps in improving texture in areas where motion is
not present.
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Figure 7. Balloon Burst: In the video, a water canon raptures the balloon. Balloon develops small and large motions as it bursts. The
aim is to magnify subtle changes in the balloon while in the presence of large motion. To illustrate this intermediate frames (in the left part
of the Figure) and spatial-temporal slices taken from the red strip (shown in the right part of the Figure) are shown for SOTA methods (a)
Anisotropy [22], (b) Jerk-aware [24], (c) Acceleration method [29], (d) Oh et al. [17], and the proposed method D1, D2. Hand-crafted
techniques [22], [24], [29] have small magnification and generates ringing artifacts around the balloon, visible as white edges around
the balloon in the intermediate frames and white spikes in the temporal slice (highlighted in the bounding boxed)). They also have less
magnification than the proposed method (see the bounding box). Whereas [17] produces flickering motion (seen as white spikes across
the whole temporal slice (e)) and blurry distortions in some frames (see (e) frame). The proposed networks have more magnification with
lesser distortions.

3.3. Dataset, Loss Function, and Training

Dataset: For training, a synthetic dataset provided by Oh
et al. [17] is utilized. It consists of 7,000 images of objects
from PASCAL VOC dataset [8] as foreground and 200,000
images of the MS COCO dataset [13] as background. Dif-
ferent foreground objects are combined with distinct back-
grounds at various positions to yield random motion. It pro-
duces a total of 100,000 input pairs of 384×384 size.

Loss Function and Training: L1 loss across the pre-
dicted and magnified is taken for training the network. To
improve the edges’ quality and reduce blur, edge loss Le [1]
is used. These losses, penalize for each small deviation
across the output, but some deviations are acceptable as
long as they are not perceptible. So, a perceptual loss (Lp) is
also applied. Additionally, L1 loss across the phase and am-
plitude of the predicted frames is used to train the FDMM
block efficiently. The final loss function is illustrated as

Lf = λ1L1(Im, Igt) + λ2Lp(Im, Igt)+

Le(Im, Igt) + L1(ϕm, ϕgt) + L1(Am, Agt)
(8)

where gt subscript indicates the ground truth. λ1 = 10,
λ2 = 0.1, and an ADAM optimizer with a learning rate
set to 0.0001 is used for training. Gaussian noise is added
to the input to mimic noise. All the models are trained on
NVIDIA 2080 RTX with 8GB GPU. Different lightweight
networks (D1, D2) are generated in the proposed pipeline
by changing the number of channels f , as shown in Table 2.

4. Experimental Results
The proposed method is compared on real-world and

synthetic videos with state-of-the-art methods Jerk-Aware
[24], Anisotropic [22], Acceleration [29] and Oh et al. [17].

Table 2. Parameters and GFOPs (measured at 720 X 720 resolu-
tion) of proposed lightweight networks D1, D2 and [17] method.

Methods [17] D1 D2

Parameters 0.98 M 0.117 M 0.053 M

GFLOPs 268.6 65.4 30.4

Linear filter based methods are not considered for compar-
isons as they produce distortions in dynamic scenarios. For
comparison, results of SOTA methods are generated for dif-
ferent videos from their official implementation receptively
(for more details please see the supplementary material).
The following sub-sections include a detailed discussion of
the qualitative and quantitative comparison. Also, an addi-
tional experiment on physical accuracy is provided. Further,
an ablation study is performed to illustrate the significance
of various parts of the network. All the results of the pro-
posed method are generated using consecutive frames (dy-
namic mode in [17]) unless otherwise specified.

4.1. Qualitative Analysis on Real World Videos

We evaluate the proposed methods in a challenging set
of scenarios, including rotating objects (Hand Drill in Fig-
ure 1), in the presence of large motion (Balloon Burst in
Figure 7 ), and in dynamic motion (Gun Recoil in Figure
8). SOTA hand-crafted methods produce small magnifica-
tion in challenging scenarios, as a further increase in mag-
nification factor only leads to a rise in distortions like ring-
ing artifacts, blurriness, etc. (see supplementary material
for details). [17] produces high magnification with flick-
ering and superious motion in challenging scenarios. The
proposed lightweight networks D1 and D2 generate good
results. The D2 model gives good results in static scenar-
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Figure 8. Gun Recoil: Video contains a large translation motion
due to movement of the camera from left to right and the subtle
motion generated in the forearm due to gun recoil. The target is
to magnify the forearm motion in the dynamic scenario. Spatial-
temporal slice is taken from the red-strip and illustrates how SOTA
methods (b) Acceleration method [29], (c) Jerk-aware [24], (d)
Anisotropy [22], (e) Oh et al. [17], and the proposed method (f)
D1, (g) D2 magnify subtle motion. Hand-crafted methods [22],
[24], [29] have small magnification. But [17] produces more mag-
nification but induces flickering motion (visible as spikes in tem-
poral slice (e)). The proposed network has the highest amount of
motion (highlighted in the red bounding box) with lesser distor-
tions.

ios but its texture quality decreases compared to D1 in dy-
namic scenarios. In the static scenario, most of the scenes
of input images are same as in the output. But this changes
in dynamic scenarios, where occlusion plays a much more
significant role and requires good texture generation. We
assume the network learns a better form of frame blend-
ing to generate motion magnified frames. But the texture
generation ability decreases after a reduction in several pa-
rameters. Improving texture quality in dynamic scenarios
with less than 0.1M parameters is a challenging task. So,
depending on the application, they give users a good trade-
off between quality and the number of parameters. Despite
that, the proposed networks give reasonably good magnifi-
cation with fewer distortions than most SOTA methods, as
shown in Figures 1, 7, 8.

4.2. Quantitative Analysis

Obtaining the actual ground truth of motion magnified
videos in real-life scenarios is challenging. Without the
ground truth, quality estimation of the magnified frame is
difficult. As the amount of magnification decreases, dis-
tortions become less and the output becomes perceptible.
But that will defeat the purpose of magnification. So, the
analysis requires accounting for both magnification and out-
put quality. Considering these factors synthetic videos with
various backgrounds are generated. Different background
videos will help to test the adaptability of the proposed
method in different scenarios. Circles with horizontal, ver-
tical, and diagonal directions motion are used to mimic the
subtle motion. Input subtle motion is 0.1 pixels and the
ground truth has 10-pixel motion (100 x more than the in-
put). The input frame is up-sampled by a scaling factor

Figure 9. Average Mean Square Error (MSE) of 25 synthetically
generated videos with different backgrounds, containing subtle
motion of circles on (a) Anisotropy [22], (b) Jerk-aware [24] , (c)
Acceleration method [29] , (d) Oh et al. [17], and the proposed
method D1, D2. The proposed networks (D1, D2) have the first
and second best results respectively.

Figure 10. Physical Accuracy: Comparison between our method
and other SOTA methods output (in red) with the sensor signal (in
blue) respectively. The optical flow across the input frame and the
magnified frame (of respective methods) is computed to extract the
motion signal. Then the average direction along the image patch
(marked in the bounding box in (a)) is calculated and shown above.

Sf and the object is moved 1 pixel to produce sub-pixel
motion. So, when the image is down-sampled, the motion
becomes 1/Sf pixels. Gaussian noise is added to mimic
photographic noise in the videos. Different magnification
factors are used to deliver the same motion as ground truth
(more details are given in supplementary material). Out-
put means square error concerning ground truth for vari-
ous SOTA methods [24], [22], [29], [17], and the proposed
method are shown in Figure 9. First, MSE values across
all the frames in a video are averaged, then the average
across 25 videos are calculated. From Figure 9, the pro-
posed method has the minimum error, as it produces better
magnification with the lesser distortions.

4.3. Physical Accuracy

To check the physical accuracy of the magnified output
an experiment with set-up, as shown in Figure 10 (a), is con-
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Figure 11. Mean Absolute Error (MAE) is computed between the
extracted signal from magnified video and sensor measured signal.
The error values of SOTA methods (a) Anisotropy [22], (b) Jerk-
aware [24] , (c) Acceleration method [29] , (d) Oh et al. [17], and
the proposed method D1, D2 are shown. The proposed networks
(D1, D2) have the first and second best results respectively.

Figure 12. Aggregate MSE values are computed across the same
synthetic videos as in 4.2 for D1-N1 to D1-N6 models as define
in section 4.4. The proposed network (D1 has the minimum MSE
values when compared with different ablation networks, which in-
dicates the importance of the proposed modules.

ducted. Subtle motions (up and down) are generated in the
mechanical rod of the universal vibration apparatus. These
motion signals are recorded using an ultrasonic sensor and a
video camera. The motion signal is extracted from the mag-
nified videos and compared with the ultrasonic sensor signal
as shown in Figure 10. Both the sensor measured and the
computed magnified signal are rescaled to 0 to 1 and mean
absolute error (MAE) values are calculated across SOTA
methods. As illustrated in Figure 11 the proposed method
has the minimum MAE values.

4.4. Ablation Study

An ablation study is conducted to verify the different as-
pects of the model, in contribution to motion magnification.
For this different ablation models are generated with assum-
ing D1 as the base model. First, (a) D1-N1 model is trained
without FDMM block to analyse the effects of frequency
domain operation in motion magnification. Further, D1-N2

is trained without phase and amplitude loss to examine the

influence of frequency domain regularization terms. In both
the cases there is a decrease in output quality (demonstrated
in Figure 12 in terms of increase in error with respect to
D1).

To analyse the different aspects of SDMST block (a)D1-
N3 is trained without RMTE block (b) D1-N4 without spa-
tial attention ψ in RMTE block. To highlight the efficiency
of MSTG block in texture synthesis (c) D1-N5 model with
simple U-net like decoder with residual blocks instead of
FCB, is used. Further, (d) D1-N6 is trained at single scale
texture generation block, instead of multi-scale texture gen-
eration block (MSTG) to emphasize the consequences of
multi-scale in the SDMST block. An increase in error has
been observed in the ablation models as compare to the pro-
posed model D1 (refer Figure 12).

4.5. Limitation

There is a performance gap between the D1 and D2.
More work needs to be done to decrease the gap and further
improve the results at higher magnification factor. Also, we
use [17] dataset for network training. It has an input pixel
displacement of up to 10 pixels. So, if videos have small
unwanted motions within this range, they will also get mag-
nified.

Hand-crafted methods can magnify color and motion
changes both. Whereas deep learning methods are limited
to motion only. Extending deep networks for color magni-
fication is still much of unexplored territory.

4.6. Conclusion

For video motion magnification, we suggest a multi-
domain network that combines frequency domain and spa-
tial domain-based operation. The proposed network first
works in the Fourier domain, and tries to predicts phase
and amplitude changes of the magnified frame, according to
the magnification factor. Then, the spatial domain use fre-
quency domain output to generate appropriate motion mag-
nified output. Further, lightweights models are proposed,
giving comparable results with SOTA methods. Results are
analyzed qualitatively and quantitatively on real-world and
synthetic videos. Also, an experiment is done to highlight
the physical accuracy of the proposed networks. An ab-
lation study is conducted to show the effects of different
modules in the proposed network pipeline. Results shows
that the proposed models (D1 and D2) perform better than
SOTA methods in terms of more magnification with less
distortions.
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