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Abstract

The images captured under improper exposure condi-
tions often suffer from contrast degradation and detail dis-
tortion. Contrast degradation will destroy the statisti-
cal properties of low-frequency components, while detail
distortion will disturb the structural properties of high-
frequency components, leading to the low-frequency and
high-frequency components being mixed and inseparable.
This will limit the statistical and structural modeling ca-
pacity for exposure correction. To address this issue, this
paper proposes to decouple the contrast enhancement and
detail restoration within each convolution process. It is
based on the observation that, in the local regions covered
by convolution kernels, the feature response of low-/high-
frequency can be decoupled by addition/difference opera-
tion. To this end, we inject the addition/difference operation
into the convolution process and devise a Contrast Aware
(CA) unit and a Detail Aware (DA) unit to facilitate the
statistical and structural regularities modeling. The pro-
posed CA and DA can be plugged into existing CNN-based
exposure correction networks to substitute the Traditional
Convolution (TConv) to improve the performance. Fur-
thermore, to maintain the computational costs of the net-
work without changing, we aggregate two units into a single
TConv kernel using structural re-parameterization. Evalu-
ations of nine methods and five benchmark datasets demon-
strate that our proposed method can comprehensively im-
prove the performance of existing methods without intro-
ducing extra computational costs compared with the origi-
nal networks. The codes will be publicly available.

1. Introduction

Images captured under improper exposure conditions of-
ten suffer from under-exposure or over-exposure problems
[2, 14, 16]. Improper exposure will change the statistical
distribution of image brightness, resulting in contrast degra-
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Figure 1. (a, b) The PSNR and SSIM comparison of TConv and
our DAConv on the ME dataset. (c, d) The PSNR and SSIM com-
parison of TConv and our DAConv on the SICE dataset. Under
the boosting of DAConv, the performance of existing methods has
been comprehensively improved, reaching a new SOTA perfor-
mance without introducing extra computational costs. Complete
results can be found in Table 2.

dation. Besides, improper exposure will also destroy the
image’s structural property and result in detail distortion.
The contrast degradation and detail distortion will cause the
low-frequency and high-frequency components to mix and
inseparable across the image, making the image exposure
correction extremely challenging [2, 4, 9, 31, 33, 39].

In practice, one solution for this problem is to design an
end-to-end architecture for learning contrast enhancement
and detail restoration in shared feature space [14,16]. How-
ever, the contrast-relevant features are primarily distributed
in low-frequency components, while the detail-relevant fea-
tures are primarily distributed in high-frequency compo-
nents. Since low-frequency components are statistically
dominant over high-frequency components, these methods
mainly focus on contrast enhancement and cannot guarantee
that the high-frequency details can be efficiently restored.

To achieve better contrast enhancement and detail
restoration, some researchers propose to decompose and re-
store the input image’s lightness and structure components,
respectively [2, 20, 41]. For example, some researchers de-
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compose images into illumination and reflectance compo-
nents by utilizing Retinex theory and then design a spe-
cific network for each component [19, 20, 24]. Other re-
searchers propose to decompose the input image into multi-
scale components and adopt the coarse-to-fine strategy to
progressively recover the lightness and fine-scale structures
[2]. However, the decomposition operation inevitably de-
stroys the relationship between brightness and detail and
cannot balance the contrast and detail enhancement, leading
to over-smooth problems or artifacts for enhanced results.

To address the above issues, this paper proposes to de-
couple the contrast enhancement and detail restoration dur-
ing the convolution process. This method is based on
statistical observations that the feature response in local
regions can be decomposed into low-frequency compo-
nents and high-frequency components by a difference oper-
ation. Based on this, we introduce a novel Contrast Aware
(CA) unit in parallel with a Detail Aware (DA) unit to
guide the contrast and detail modeling, termed Decoupling-
and-Aggregating Convolution (DAConv). Different from
TConv, we inject the addition/difference operation into the
convolution process, which can guide the contrast and detail
modeling in an explicit manner. Furthermore, to balance the
contrast enhancement and detail restoration, we introduce a
dynamic coefficient for each branch to adjust the amplitude
of the feature response. Our proposed DAConv can be used
as a general unit to substitute the TConv kernel in existing
CNN-based exposure correction networks to facilitate con-
trast enhancement and detail restoration.

To reduce the computational costs, the CA, DA, and dy-
namic coefficients are aggregated into a single TConv ker-
nel by structural re-parameterization in the inference phase.
The aggregation is conducted before the activation func-
tion, and the linear superposition can reduce computational
costs without changing the function of DAConv. After
that, the performance of networks can be significantly im-
proved without introducing extra computational costs com-
pared with the original network. Evaluations of nine meth-
ods and five benchmark datasets demonstrate the effective-
ness of our proposed method, as shown in Fig. 1.

The contribution can be summarized as follows:
(1) We propose a novel decoupling-and-aggregating

scheme for image exposure correction, in which two par-
allel convolution processes are decoupled for contrast en-
hancement and detail restoration, respectively, and then ag-
gregated into a single branch without additional computa-
tion compared with the original convolution scheme.

(2) To facilitate the contrast and detail relevant features
extraction, a novel CA and DA unit are devised by injecting
the addition and difference operation into the convolution
process. Compared with traditional convolution kernels,
our proposed CA and DA can explicitly model the contrast
and detail relevant properties.

(3) Evaluations on the five prevailing benchmark datasets
and nine SOTA image exposure correction methods demon-
strate our proposed DC can comprehensively improve the
contrast enhancement and detail restoration performances
without introducing extra computational costs.

2. Related Work
Image Exposure Correction. Exposure correction is

a hot research topic and has been studied for a long time
in computational imaging [14, 16, 18, 21, 33, 37, 38, 40],
which can be divided into traditional methods and learning-
based methods. Traditional methods usually use Retinex
theory and image histogram to enhance the contrast and de-
tail [1,10,12,13,17,19,25,32,35]. However, suffering from
the limitation of model capacity, it is difficult for traditional
methods to deal with complex real-world conditions [6].

Learning-based methods can automatically learn the
complex mapping function from datasets and have better
performance in contrast enhancement and detail restora-
tion [2,5,6,14,15,23,29]. Existing methods tend to decom-
pose the image (e.g., laplacian pyramid, frequency transfor-
mation) into different frequency components through pre-
processing and enhance the different components one by
one. Afifi et al. [2] propose a pyramid structure network
to enhance image brightness and details in a coarse-to-
fine manner. Huang et al. [15] propose a deep Fourier-
based exposure correction network for image lightness and
structure component reconstruction. CMEC [23] and ENC
[14] learn to improve the contrast by learning exposure-
invariant space. However, these preprocessing steps will
disrupt the interrelationship between low-frequency and
high-frequency, leading to the imbalance of the enhance-
ment amplitudes of different components, leading to over-
smooth or artifacts in enhanced results.

Structural Re-parameterization. Structural re-
parameterization [7, 8] is a methodology of equivalently
converting model structures via transforming the parame-
ters. A widely used method is to design multiple convo-
lutions parallel modules during training and merge them
during inference. Different from the above structural re-
parameterization, our DAConv can explicitly extract statis-
tical and structural feature properties, respectively.

Pixel Difference Operation: Inspired by LBP, Yu et
al. [36] propose central difference operation to improve the
robustness of the face anti-spoofing network in the variable
lighting environment. Su et al. [28] take the pixel rela-
tionship on different positions into consideration and pro-
poses several different differential modes for extracting ob-
ject edge information. Different from the above works, we
propose a novel decoupling-and-aggregating scheme to fa-
cilitate the statistical and structural properties modeling for
image exposure correction without introducing extra com-
putational costs.
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Figure 2. (a) In the training phase, each TConv is substituted by a DAConv. (b) After training, the DA, CA, αc and αd are aggregated into
a single TConv again.

3. Decoupling-and-Aggregating Convolution
The under-/over-exposure images suffer from both con-

trast degradation and detail distortion. The contrast
degradation will change the statistical distribution of low-
frequency components, while the detail distortion will dis-
turb the structural properties of high-frequency compo-
nents. Based on this frequency characteristic, some re-
searchers propose decomposing under-/over-exposure im-
ages into a series of components and then performing
contrast enhancement and detail restoration, respectively.
However, the decomposition operation in existing meth-
ods will inevitably destroy the coupling relationship be-
tween contrast enhancement and detail restoration, result-
ing in over-smoothing or artifact problems in enhanced re-
sults. To better balance the relative relationship between
contrast enhancement and detail restoration during the ex-
posure correction, we propose a novel exposure correction
method based on the decoupling-and-aggregating convolu-
tion, which contains two stages: the decoupling in the train-
ing phase and the aggregation in the testing phase.

3.1. Decoupling

Unlike existing methods of designing multiple sub-
networks [2, 14], we dive into the convolution process
within the network and decouple the convolution process
into two parallel branches for statistical modeling and struc-
tural modeling, as shown in Fig. 2 (a). Our decoupling oper-
ation mainly uses the local smoothness assumption, which
is widely used in image processing [22, 27] and is mathe-
matically formulated as:

x(pi) ≈ x(pj), pi, pj ∈ Rn. (1)

where, x(pi) and x(pj) represent the pixel intensity on

location of pi and pj of local patch Rn and xpi
, xpj

∈ [0, 1].
We conduct the following statistical experiment on im-
proper exposure images to verify the local smoothness as-
sumption. We randomly sample 10,000 image patches with
size 3 × 3 from the ME dataset [2]. For each patch, we
randomly select 5 pairs of pixels from different positions
and calculate the average of intensity absolute difference
for each pair of pixels as follows:

Pm =
1

10000
|x (pi)− x (pj)| m = 1, 2, · · · , 5. (2)

The values of P1 to P5 are 0.00777, 0.00778, 0.00778,
0.00779, and 0.00780, respectively. We can infer that the
pixel intensity at different positions is very close, which ver-
ifies the local smoothness assumption. Based on the above
statistical experiment, we choose the central pixel within
the local patch as the reference pixel, denoted as pc, and the
intensity of pixels in other positions can be expressed as the
sum of the central pixel intensity and a bias ni:

x(pi) = x(pc) + ni. (3)

where ni changes from pixel to pixel, which is also
known as the high-frequency components. Based on Eq.
3, the convolution process of TConv can be expressed as:

y(pc) =
∑

pi∈R

w(pi)·x(pi)

=
∑

pi∈R

w(pi)· (x(pc) + ni)

=
∑
pi∈R

w(pi) · x(pc)︸ ︷︷ ︸
low−frequency response

+
∑
pi∈R

w(pi) · ni︸ ︷︷ ︸
high−frequency response

(4)
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From Eq. 4, we can observe that the low-frequency re-
sponse and high-frequency response are mixed in the tradi-
tional convolution feature response. To separate the high-
frequency response from the above convolution response,
we introduce a central-surrounding difference operation as:

yh(pc) =
∑

pi∈R

w(pi)· (x(pi)− x(pc))

=
∑

pi∈R

w(pi)·ni,
(5)

With the central-surrounding difference operation, the
low-frequency response can be significantly suppressed.
We denote the convolution kernel injected with difference
operation as Detail Aware (DA) kernel. After obtaining
the high-frequency response, an intuitive option to get the
low-frequency response is to subtract the high-frequency
response from the y(pc) in Eq. 4. However, we empiri-
cally found that the direct subtraction operation would sig-
nificantly drop the performance. The reason for this is that
the obtained feature response will also contain enormous
noise, especially in under-exposure conditions.

To this end, we propose to suppress the high-frequency
response by increasing the proportion of low-frequency
response, which is achieved by injecting the central-
surrounding addition operation into the convolution pro-
cess:

yl(pc) =
∑
pi∈R

w(pi)· (x(pi) + x(pc)) , (6)

In Eq. 6, the pixel at each position within the receptive
field is superimposed with the same intensity value as the
central pixel. Mathematically, the above operation is equiv-
alent to adding a low-frequency response to the original re-
sponse. We denote the above kernel as Contrast Aware (CA)
kernel. Next, we connect DA and CA in parallel to substi-
tute the TConv in existing networks. However, the differ-
ence and addition operation in DA and CA may result in the
amplitude imbalance of high-frequency and low-frequency
responses. To compensate for this, we introduce a dynamic
adjustment coefficient on each branch to adjust the ampli-
tude of feature response, as shown in Fig. 2 (a). Mathemat-
ically, it can be represented as:

y(pc) = s(αca) ·

( ∑
pi∈R

wca(pi)· (x(pi) + x(pc))

)

+s(αda) ·

( ∑
pi∈R

wda(pi)· (x(pi)− x(pc))

)
.

(7)
where s is the sigmoid activation function that is used to

constrain the distribution of adjustment coefficients from 0
to 1. With continuous training, adjustment coefficients are
constantly updated to balance the response magnitudes of
CA and DA.

3.2. Aggregating

Under the boosting of DA unit and CA unit, the modeling
capability and performance of networks can be significantly
improved. However, this parallel structure will increase the
model’s complexity and parameters, resulting in low effi-
ciency. In order to reduce computational costs, we intro-
duce structural re-parameterization to merge CA and DA in
parallel into a TConv kernel during inference, as shown in
Fig. 2 (b). During training, we replace k× k TConv with
k× k DAConv. After training, we perform an equivalent
replacement to fuse k× k DAConv into a TConv kernel to
maintain the computational costs of network without chang-
ing, as shown in the following formula [7, 8]:

Firstly, we can expand Eq. 7 as follows:

y(pc) =

∑
pi∈R

(s(αca) · wca(pi)) ·x(pi)


︸ ︷︷ ︸

k×k conv

+

∑
pi∈R

(s(αda) · wda(pi)) ·x(pi)


︸ ︷︷ ︸

k×k conv

+x(pc) ·

∑
pi∈R

s(αca) · wca(pi)−
∑
pi∈R

s(αda) · wda(pi)


︸ ︷︷ ︸

item1

,

(8)
Secondly, the weight accumulation operation in item1

can be mathematically equivalent to a 1 × 1 convolution.
Then, we expand 1× 1 convolution to k× k convolution:

y(pc) =

∑
pi∈R

(s(αca) · wca(pi)) ·x(pi)


︸ ︷︷ ︸

k×k conv

+

∑
pi∈R

(s(αda) · wda(pi)) ·x(pi)


︸ ︷︷ ︸

k×k conv

+

∑
pi∈R

wc(pi)·x(pi)


︸ ︷︷ ︸

k×k conv

,

(9)

where wc (pi) is defined by the following formula:

wc (pi) =

{
s(αca) · sum (wca)− s(αda) · sum (wda) if pi = pc
0 if pi ̸= pc

,

(10)
Finally, we fuse all parallel k× k kernels into a single

k× k kernel wall by the linearity of convolution [8]:

y(pc) =
∑

pi∈R

(s(αca) · wca(pi) + s(αda) · wda(pi) + wc(pi)) · x(pi)

=
∑

pi∈R

wall(pi) · x(pi).

(11)
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Table 1. Summary of multi-exposure correction and low-light image enhancement datasets.

Multi-exposure correction Low-light image enhancement
ME dataset [2] SICE dataset [4] LOLV1 [30] LOL-v2-Real [34] LOL-v2-Synthetic [34]

Train samples 17,675 3,988 485 689 900
Test samples 5,905 812 15 100 100

Table 2. Quantitative results for nine image exposure correction methods on ME dataset and SICE dataset. The bold represents performance
of DAConv-based methods. The bold represents our cost-free improvement compared to the baselines. The bold represents a slight
degradation after using DAConv. Note that DAConv-based methods are marked with as bold*.

ME dataset [2] SICE dataset [4]
Under-exposure Over-exposure Under-exposure Over-exposure

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
RUAS [20] 13.430 0.681 6.390 0.466 7.507 0.246 5.806 0.089

RUAS* 14.867+1.437 0.708+0.027 6.940+0.550 0.486+0.020 8.528+1.021 0.356+0.110 5.938+0.132 0.137+0.048
Zero-DCE [11] 14.550 0.589 10.400 0.514 15.972 0.653 9.078 0.590

Zero-DCE* 15.067+0.517 0.771+0.182 10.847+0.447 0.710+0.196 16.229+0.257 0.656+0.003 9.315+0.237 0.595+0.005
RetinexNet [30] 12.130 0.621 10.470 0.595 15.239 0.613 16.863 0.638

RetinexNet* 12.208+0.078 0.607-0.014 18.576+8.106 0.794+0.199 15.637+0.398 0.642+0.029 17.009+0.146 0.645+0.007
UNet [26] 18.437 0.821 17.440 0.809 16.036 0.650 17.209 0.664

UNet* 18.524+0.087 0.831+0.010 17.953+0.513 0.822+0.013 16.521+0.485 0.678+0.028 17.239+0.030 0.684+0.020
DRBN [34] 19.740 0.829 19.370 0.832 17.249 0.707 18.275 0.700

DRBN* 20.630+0.890 0.888+0.059 19.100-0.270 0.878+0.046 17.337+0.088 0.709+0.002 18.896+0.621 0.780+0.080
SID [5] 19.370 0.810 18.830 0.806 17.065 0.692 18.728 0.706
SID* 19.484+0.114 0.829+0.019 19.015+0.185 0.820+0.014 17.539+0.474 0.724+0.032 18.796+0.068 0.714+0.008

MSEC [2] 20.520 0.813 19.790 0.816 18.291 0.606 17.755 0.626
MSEC* 21.530+1.010 0.859+0.046 21.550+1.760 0.875+0.059 18.949+0.658 0.655+0.049 17.979+0.224 0.660+0.034

ENC [14] 22.720 0.854 22.110 0.852 18.665 0.696 18.974 0.703
ENC* 23.320+0.600 0.909+0.055 22.600+0.490 0.909+0.057 19.072+0.407 0.701+0.005 19.176+0.202 0.707+0.004

FECNet [15] 22.960 0.860 23.220 0.875 18.012 0.685 18.496 0.691
FECNet* 23.150+0.190 0.865+0.005 23.410+0.190 0.880+0.005 18.347+0.335 0.691+0.006 18.893+0.397 0.698+0.007

Table 3. Ablation study for DAConv. The best performance is
marked in bold.

Under-exposure Over-exposure
PSNR↑ SSIM↑ PSNR↑ SSIM↑

baseline 20.520 0.812 19.790 0.815
DA+CA 18.592 0.782 18.055 0.751
CA+DA 18.950 0.787 18.433 0.759

TConv//TConv 20.720 0.831 20.453 0.822
DA//TConv-DA 20.640 0.821 20.023 0.817

TConv//DA 21.010 0.842 21.243 0.838
TConv//CA 21.034 0.849 21.260 0.849

w/o α DA//CA 21.256 0.851 21.379 0.867
w/ α & DA//CA 21.530 0.859 21.550 0.875

4. Experiments and Analysis

4.1. Settings

Datasets. We evaluate our DAConv on five prevailing
benchmarks for multi-exposure correction and low-light im-
age enhancement: ME dataset [2], SICE dataset [4], LOLV1
[30], LOL-v2-Real [34] and LOL-v2-Synthetic [34]. The
details of each dataset are summarized in Table 1. Different
from ENC [14] and SICE [4], they only select a part of the
exposure levels for evaluation. We take a further step and
use all of the exposure levels for evaluation to verify the al-

gorithm’s performance under more practical multi-exposure
conditions. We randomly select 489 scenes as the training
set, and the rest of the 100 scenes are used as the test set,
containing 3,988 and 812 paired images, respectively. The
ME dataset contains five exposure levels for each scene, and
we also use all exposure levels for training and evaluation.
Following [14], we use Expert Cin [3] as ground truth. Re-
ferring to [14], we define the images at exposure level of 1-2
as under-exposure images, the rest as over-exposure images.
For the SICE dataset, we define the average brightness on
the Y channel of YCbCr space lower than that of ground
truth as under-exposure images, and the rest of the images
are used as over-exposure images.

Baselines. In order to evaluate the superiority and gener-
ality of DAConv on image exposure correction, nine public
methods are selected for evaluation, including: RUAS [20],
Zero-DCE [11], RetinexNet [30], U-Net [26], DRBN [34],
SID [5], MSEC [2], ENC [14] and FECNet [15]. For
low-light image enhancement, six baselines are selected for
evaluation, including: Zero-DCE [11], U-Net [26], DRBN
[34], SID [5], MSEC [2] and ENC [14].

Implementation Details. In all experiments, we keep
the training setting (e.g., loss function, batch size, training
epoch, and active function) the same as the original setting,
except that the TConv is replaced by DAConv.
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Table 4. Quantitative comparison on LOLV1, LOL-V2-R, and LOL-V2-S datasets. The bold represents our cost-free improvement com-
pared to the existing method. The performance of baseline can be comprehensively improved after using DConv.

LOLV1 [30] LOL-V2-R [34] LOL-V2-S [34]
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

ZeroDCE [11] 15.296 0.518 12.382 0.448 16.954 0.810
ZeroDCE* 16.206+0.910 0.522+0.004 13.445+1.063 0.460+0.012 17.372+0.418 0.820+0.01
UNet [26] 17.480 0.753 18.449 0.668 18.131 0.843

UNet* 17.671+0.191 0.764+0.011 18.533+0.084 0.718+0.050 20.079+1.948 0.878+0.035
DRBN [34] 19.068 0.790 19.421 0.729 21.012 0.895

DRBN* 19.190+0.122 0.812+0.022 19.855+0.434 0.747+0.018 21.100+0.088 0.899+0.004
SID [5] 18.577 0.789 18.640 0.703 20.801 0.884
SID* 19.260+0.683 0.812+0.023 18.892+0.252 0.713+0.01 22.267+1.456 0.910+0.026

MSEC [2] 18.845 0.679 19.031 0.662 19.582 0.705
MSEC* 20.895+2.050 0.748+0.069 20.192+1.161 0.670+0.008 20.745+1.163 0.813+0.108

ENC [14] 22.310 0.837 21.004 0.802 21.608 0.887
ENC* 22.856+0.546 0.843+0.006 21.764+0.760 0.839+0.037 22.337+0.729 0.902+0.015

Figure 3. Visualization comparison on SICE dataset. DAConv-based methods have better results in image contrast and details.

Figure 4. Qualitative comparison on LOLV1. Compared with the
TConv-based method, the DAConv-based method is closer to the
ground truth in image contrast and image details.

4.2. Ablation study

To demonstrate the effectiveness of DAConv, we com-
pare DAConv with the following settings: (a) DA and
CA in serial; (b) CA and DA in serial; (c) TConv and
TConv in parallel; (d) DA and TConv-DA in parallel. The
“TConv-DA” represents the response of TConv subtract
the response of DA; (e) TConv and DA in parallel; (f)
TConv and CA in parallel; (g) DAConv without α. The
setting from (a) to (g) is denoted as DA+CA, CA+DA,
TConv//TConv, DA//TConv-DA, TConv//DA, TConv//CA,

and w/o α DA//CA, respectively. We choose MSEC [2]
as the baseline and replace each TConv within the network
with the above settings. The experiments are conducted on
the ME dataset, and the results are reported in Table 3.

We can observe that the performance of the serial con-
nection is much lower than the parallel connection. The
reason for this is that difference operation will lose the
low-frequency components, resulting in the next layer can-
not obtain sufficient information for correction. The per-
formance of DA//(TConv-DA) is lower than that of w/o α
DA//CA, which demonstrates that subtracting the response
of DA from the response of TConv cannot obtain accu-
rate statistical features. The performance of TConv//TConv
is higher than the baseline. It is because the number of
parameters has been doubled and representation capabil-
ities have been improved. However, the performance of
TConv//TConv is lower than TConv//DA and TConv//CA.
The reason for this is that the DA and CA can explic-
itly guide the detail and contrast modeling. Thus, with
the combination of DA and CA in parallel (i.e. w/o α &
DA//CA), the exposure correction performance can be fur-
ther improved. To balance the contrast enhancement and
detail restoration, we further introduce a dynamic adjust-
ment coefficient for each branch (i.e. w/ α & DA//CA),
which achieves the best performance among all settings.
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Figure 5. Qualitative comparison on ME dataset.

4.3. Quantitative results

In Table 2, we report the PSNR/SSIM performance of
nine exposure correction methods on the ME dataset and
SICE dataset. We can observe that the performance of most
of these methods is comprehensively improved after utiliz-
ing the DAConv, demonstrating that our proposed DC is ro-
bust and can be embedded in various network architectures.
It is worth mentioning that unsupervised algorithms, such
as Zero-DCE [11] and RUAS [20], are also improved after
using DAConv, indicating that DAConv is not sensitive to
network learning methods. For MSEC [2], which focuses
on detail restoration, DAConv still improves its ability to
perceive detail and contrast features. Even for SOTA al-
gorithms such as MSEC [2], FECNet [15], and ENC [14],
using DAConv can still improve network performance and
achieve new SOTA performance. To better demonstrate
the performance in practical multi-exposure conditions, like
[14], we calculate the average performance on all under-
exposure and over-exposure images, as shown in Fig. 1. We
can observe after using DAConv, the performance of each
method gains comprehensive improvements.

In Table 4, we report the PSNR/SSIM performance of
six methods on public LOLV1, LOL-V2-Real, and LOL-
V2-Synthetic datasets. Particularly, LOLV1 and LOL-V2-
Real datasets are captured in real dark environments, los-
ing many image details, as shown in Fig. 4. Compared
with TConv, DAConv can better perceive image details and

texture, significantly improving network performance. For
example, after using DAConv, the PSNR/SSIM score of
MSEC on LOLV1 dataset is improved from 18.845/0.679
to 20.895/0.748. Furthermore, all these performance gains
are cost-free without introducing extra computational costs.
Thus, the DAConv can be used as a general computing unit
to incorporate with various networks to improve low-light
image enhancement performance.

4.4. Qualitative results

Fig. 3 shows the visual comparison before and after us-
ing DAConv on under-exposure images of the SICE dataset.
Due to space limitations, we only show the exposure cor-
rection results of several methods. More results are pro-
vided in the supplementary material. We can observe that
the TConv-based method suffers from blurred details and
color distortion, especially in the red box in Fig. 3, while
the DAConv-based method is better at detail restoration and
contrast enhancement. For real dark scenes where a lot of
image details have been lost, our DAConv can still improve
the image details while improving the contrast of the image,
as shown in Fig. 4.

Fig. 5 represents the visualization results on the over-
exposure images of the ME dataset. It can be seen that
the details of the building area in the over-exposure im-
age background have been seriously damaged. The net-
work based on TConv separates the processes of brightness
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Figure 6. Feature visualization of CA and DA, which can capture
image brightness distribution and image details, respectively

Figure 7. The PSNR comparison of different high-frequency lay-
ers and the error map between enhanced high-frequency layers and
corresponding GT.

enhancement and detail restoration, destroys the inner re-
lationship between them, and leads to over-smoothness in
these areas. However, the algorithm based on DAConv uses
the decoupling-and-aggregating mechanism at each convo-
lution, which can make full use of the mutual relationship
between them to achieve a balance while performing con-
trast enhancement and detail restoration.

4.5. Performance analysis

Feature Visualization. To verify that DAConv can cap-
ture the image details and contrast-relevant information ex-
plicitly, we select over-exposure and under-exposure im-
ages in the same scene and visualize the feature maps of
CA and DA in DAConv, respectively, as shown in the Fig. 6.
For under-exposure images, CA can perceive the brightness
distribution and pays more attention to dark areas, while DA
focuses on extracting structural features. For over-exposure
images, CA pays more attention to the overexposed area.

Detail Error Map. In order to verify the superiority of
DAConv in detail restoration, we take ENC as the baseline
and conduct the following experiment. Firstly, we randomly
select 100 pairs of under-exposure and over-exposure image

Table 5. Running time comparison before and after aggregation
as well as the original network. We calculate the average running
time of 1000 images with 1024× 1024 resolution on RTX3080.

w/o aggregation w/ aggregation original
Running Time (s)↓ 0.320 0.144 0.144

enhancement results from ENC and ENC*. Secondly, fol-
lowing [2], we decompose the image into detail layers via
the Laplace Image Pyramid, denoted as Level 1, Level 2,
and Level 3. Finally, we calculate the average PSNR score
of different layers, as shown in Fig 7 (a). We can observe
that DAConv can significantly outperform TConv in detail
restoration, especially for tiny textures (i.e. Level 3). We
further visualize the error map between each layer with the
corresponding GT, as shown in Fig.7 (b). We can observe
that the error of DAConv is much lower than that of TConv,
which demonstrates that DAConv can improve the detail
restoration capability of existing networks.

Running Times. We choose ENC as the baseline and
compare the average inference time of 1000 images of
1024 × 1024 resolution before and after aggregating, as
shown in Table 5. After aggregating, DA and CA can be
merged into a convolution kernel, which keeps the inference
time the same as the original network.

5. Conclusion and Limitation

Conclusion. This paper proposes a novel Decoupling-
and-Aggregating Convolution (DAConv) for image expo-
sure correction that can explicitly guide contrast and detail
modeling. The DAConv can be used to substitute TConv
in existing CNN-based exposure correction networks. Ex-
tensive experiments on under-exposure and over-exposure
datasets verify the effectiveness of DAConv in contrast en-
hancement and detail restoration. It can significantly im-
prove the performance of existing methods while maintain-
ing the same computational costs as the original networks.

Limitation. In this paper, we propose to use DAConv
to replace the TConv in the existing network to improve im-
age exposure correction performance. However, the com-
bination of DAConv with existing TConv-based networks
is may not the best choice. In the future, we will design a
new framework to fully exploit the capability of DAConv
for image exposure correction.
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