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Abstract

Sarcasm indicates the literal meaning is contrary to the
real attitude. Considering the popularity and complemen-
tarity of image-text data, we investigate the task of multi-
modal sarcasm detection. Different from other multi-modal
tasks, for the sarcastic data, there exists intrinsic incon-
gruity between a pair of image and text as demonstrated
in psychological theories. To tackle this issue, we pro-
pose a Dual Incongruity Perceiving (DIP) network con-
sisting of two branches to mine the sarcastic information
from factual and affective levels. For the factual aspect,
we introduce a channel-wise reweighting strategy to ob-
tain semantically discriminative embeddings, and leverage
gaussian distribution to model the uncertain correlation
caused by the incongruity. The distribution is generated
from the latest data stored in the memory bank, which can
adaptively model the difference of semantic similarity be-
tween sarcastic and non-sarcastic data. For the affective
aspect, we utilize siamese layers with shared parameters
to learn cross-modal sentiment information. Furthermore,
we use the polarity value to construct a relation graph
for the mini-batch, which forms the continuous contrastive
loss to acquire affective embeddings. Extensive experiments
demonstrate that our proposed method performs favorably
against state-of-the-art approaches. Our code is released
on https://github.com/downdric/MSD.

1. Introduction

Sarcasm is an interesting and prevailing manner to ex-

press users’ opinions [18], which means the real attitude

is converse to the literal meaning [19]. With the develop-

ment of social platforms, sarcasm detection (SD) attracts

increasing attention [11, 40, 65] due to its wide application,

e.g. product review analysis, political opinion mining [32],

etc. Automatically distinguishing sarcastic instances from
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Figure 1. Examples from the sarcasm dataset [6]. (a) shows the

samples (left) and statistics (right) for factual incongruity. Ac-

quiring inter-modal semantic similarity 𝑆𝑖𝑛𝑡𝑒𝑟 from CLIP [50],

the factual incongruity is depicted by 1 − 𝑆𝑖𝑛𝑡𝑒𝑟 . (b) displays the

cases for affective incongruity. Obtaining the models trained on FI

(image) [70] and IMDB (text) [41] datasets, the incongruity is rep-

resented by the difference in sentiment polarity. For both groups

of samples, the top two samples are sarcastic data, and the bottom

two samples are non-sarcastic ones.

the mass of non-sarcastic content is important for any on-

line service.

The challenge of multi-modal sarcasm detection (MSD)

mainly comes from two aspects. First, the task aims to de-

tect implicit intention from data, which increases the diffi-

culty of learning. Specifically, compared with visual recog-

nition, the expressed attitude of the sarcastic data com-

monly hides in a normal stimulus and is hard to be iden-

tified. Fortunately, the linguistic theory demonstrates that

incongruity is an important and effective factor for sarcasm

detection [29], which inspires researchers automatically ex-

tract the positive and negative seeds [51]. Another challenge

lies in that, while both image and text express similar infor-
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mation is expected in multi-modal tasks [3, 50], this rule is

not applicable to SD that discovering dissimilar informa-

tion. There exists an intrinsic conflict between off-the-shelf

techniques for multi-modal learning and the new task in this

work.

In order to address the issue, we focus on the inter-modal

incongruity for MSD. Sarcasm is a long standing topic in

various areas like psychology [43], sociology [54], and neu-

robiology [31]. Researchers observe that sarcasm occurs

when the literal meaning unexpectedly contrasts with the

observed facts [22, 43]. The process is defined as counter-

factual inference [43]. Besides, the studies from empiri-

cal theory [55] find that attitude is another important factor,

which is especially effective for obscure cases. In light of

these theoretical works, we utilize semantic association and

sentiment polarity to verify the incongruity in the sarcasm

dataset [6]. As shown in Figure 1, the incongruity of sar-

castic data is obviously larger than the non-sarcastic one in

factual level, especially in terms of the mean value. Mean-

while, the phenomenon also exists in the affective level. In-

spired by the study and verification above, we design our

method to detect the incongruity for multi-modal sarcastic

data in both the factual and affective levels.

We propose a Dual Incongruity Perceiving (DIP) net-

work, which is consisting of Semantic Intensified Distri-

bution (SID) Modeling and Siamese Sentiment Contrastive

(SSC) Learning modules. In SID, based on the semantic as-

sociation [9, 44], the samples are differentiated by an adap-

tive strategy. Specifically, we maintain gaussian distribu-

tions for sarcastic and non-sarcastic samples respectively,

and utilize the probability generated by them to model the

incongruity. Since the distributions depend on the extracted

embeddings, we introduce a channel-wise reweighting strat-

egy to learn representations related to sarcasm. In SSC,

the affective incongruity is perceived by the polarity dif-

ference between the image-text pair. To efficiently intro-

duce sentiment information into the network, we employ

two siamese layers to transmit knowledge of affective dic-

tionary, i.e. SenticNet. Furthermore, with the help of the

polarity intensity, the continuous contrastive learning is pro-

posed to enhance the affective representations. Overall, the

facutal and affective information are intensified in SID and

SSC, and leveraged to explicitly calculate the incongruity

for MSD.

Our contributions are three-fold: (1) To our knowledge,

DIP is the first work explicitly investigating and model-

ing incongruity in multi-modal sarcasm detection. (2) It’s

a dual perceiving network to learn sarcastic information

from factual and affective levels, which utilizes channel-

wise reweighting and continuous contrastive strategies to

acquire discriminative representations. (3) Extensive com-

parisons and ablations demonstrate the effectiveness and su-

periority of the proposed method.

2. Related Work

2.1. Sarcasm Detection

With the rapid development of multimedia, sarcasm be-

comes prevailing for users to convey the real attitude. In

the early stage, researchers detect sarcasm embodied in the

text [51, 72]. Roberto et al. utilize hashtags to construct la-

beled corpus for SD [21]. Riloff et al. develop a bootstrap-

ping method that learns positive and negative phrases re-

spectively [51]. To better utilize the multiple small sarcasm

datasets, Guo et al. provide an adversarial model based

on latent optimization for transferring knowledge between

datasets [23]. Due to the popularity of image-text data,

MSD draws increasing attention in recent years [6, 65].

Different from single modal SD, mining the relation be-

tween modalities is a crucial tactic for MSD. Schifanella et
al. analyze the effectiveness of hand-crafted features and

deep representations, then adopting concatenation for the

multi-modal prediction [52]. Later, attention-based mecha-
nism becomes the main interaction method of MSD [6,45].

Cai et al. leverage hierarchical strategy to deeply fuse the

representations [6]. Inspired by the significant progress of

Transformer, self-attention is employed in MSD to discover

the relevance between the modalities [11, 36, 45, 59, 65].

Particularly, realizing the importance of disagreement for

MSD, [45, 69] leverage cross-modal attention and expect

the modal could implicitly learn the incongruity between

images and text. Liu et al. [37] utilize the attention mecha-

nism to model the multi-level i.e.atomic and composition

congruity. In order to elaborately take advantage of the

mapping between image and text of each instance, graph-
based modeling also plays an important role in the recent

years [34, 35, 49]. [34] constructs in- and cross-modal

graphs to grasp the multi-modal information, and [35] fur-

ther exploits VQA tookit [2] to derive the bounding boxes

for fine-grained matching.

In the light of DIP, to avoid the complexity of graph-

based method [62], we utilize an attention-based strategy

for cross-modal interaction. Furthermore, DIP is also dif-

ferent from implicit modeling incongruity [45, 69], where

the knowledge exactly learned is unknown [17]. Inspired by

the human perception process, we propose a dual perceiving

structure to explicitly model the crucial factor incongruity
in sarcastic data from factual and affective aspects.

2.2. Sentiment Analysis

Sentiment analysis is closely relevant with SD, which is

an attractive topic with widespread application [1, 16, 38].

For visual sentiment analysis, researchers design the hand-

crafted operators in the early years inspired by psychology

and photography [30,42,74]. As a typical handcrafted emo-

tional representation, ANP [5] constructs adjective-noun

pairs as a descriptor to bridge the mapping between visual
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Figure 2. Illustration of the proposed DIP for multi-modal sarcasm detection. The input image and text are processed by ViT and BERT,

then delivered to the two branches. The first branch SID leverages reweighting strategy to intensify the regions most related to sarcasm,

and utilizes gaussian distribution to discover sarcastic samples. The second branch SSC adopts siamese layers and continuous contrastive

learning to jointly learn multi-modal affective embeddings. The process of constructing contrastive graphs 𝐺𝑒 and 𝐺 𝑝 is shown in the

sub-graph. Next, embeddings from the dual perception module are fused for sarcasm detection.

concepts and emotion. In recent years, deep neural net-

work (DNN) is leveraged to address the challenge of af-

fective gap [64, 66], ambiguity [28, 60, 67], and emotional

region detection [68, 71, 76]. For textual sentiment analy-

sis, researchers automatically construct the sentiment dic-

tionary [53, 57] at the early stage, which can be leveraged

to obtain the polarity intensity of words. Later, DNN is

utilized to tackle the implicit expression [10, 48], cross-

domain [14, 20], and cross-language [4, 8] issues. The

DNN methods are powerful on the specific dataset [39], but

the dictionaries provide general knowledge without dataset

bias [15]. Therefore, introducing word-level domain-

invariant features into the DNN is an effective strategy [20].

For multi-modal sentiment analysis, Truong et al. leverage

images to highlight the salient aspect of the entities [58].

Zhang et al. propose a weakly supervised temporal senti-

ment localization method to detect the parts conveying sen-

timent [73].

Different from the above works training model on the

sentiment datasets, we aim to mine the affective informa-

tion in the sarcastic samples. Considering the bias between

datasets, we design siamese sentiment contrastive learning

module to obtain general word-level supervision, which as-

sists the MSD in an end-to-end manner.

3. Methodology

3.1. Overview

The pipeline of the proposed DIP is illustrated in Fig-

ure 2. The image-text pair is formally defined as: 𝐼 =
{𝑝𝑖}𝑚𝑖=1

, and 𝑇 = {𝑤𝑖}𝑘𝑖=1
, where 𝑝𝑖 represents the 𝑖-th patch

of the image, 𝑤𝑖 is the 𝑖-th word. An image is split into 𝑚
patches, and a text contains 𝑘 words. The image and text

are first processed by the visual and textual encoders, i.e.

ViT [13], BERT [12]. The output embeddings are defined

as 𝑒𝑝 ∈ R𝑚×𝐶 and 𝑒𝑤 ∈ R𝑘×𝐶 , 𝐶 denotes the number of

channels.

To find the informative content, we utilize a cross-modal

attention module to implicitly build the interaction between

image and text modalities. Specifically, with the embed-

dings 𝑒𝑝 ∈ R𝑚×𝐶 and 𝑒𝑤 ∈ R𝑘×𝐶 , we first construct the

relation matrix 𝑅 ∈ R𝑚×𝑘 by matrix multiplication in the

channel dimension, then pass the matrix through convolu-

tion layers:

𝑅 = 𝐶𝑜𝑛𝑣(𝑒𝑝 · 𝑒𝑤𝑇 ), (1)

where 𝑇 denotes the transposition, 𝐶𝑜𝑛𝑣 is implemented

by two convolution layers. The large value in 𝑅 indicates

strong relevance. For the visual modality, we add the values

of the textual tokens to generate the attention vector 𝑣𝑝 ∈
R
𝑚. The same way is adopted to form the attention vector

𝑣𝑤 ∈ R𝑘 for the words. Then, 𝑣𝑝 and 𝑣𝑤 are integrated into

𝑒𝑝 and 𝑒𝑤 by channel-wise multiplication followed by the

sigmoid activation. The aligned visual patch embeddings

can be formulized as

𝑒𝑎𝑝 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑣𝑝) · 𝑒𝑝 , (2)

and 𝑒𝑎𝑤 is processed in the same way. The explicit align-

ment enforces the image and text representations to be con-

sistent by loss [3, 50]. However, sarcasm detection depends

on the incongruity between modalities. The strong con-

straint harms the latent incongruity within the representa-
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tions. Therefore, we adopt cross-modal attention to implic-

itly discover the correspondence regions. Then, the aligned

embeddings are sent to SID and SSC.

3.2. Semantic Intensified Distribution Modeling

Counterfactual inference is crucial for perceiving sar-

casm [43]. The fact describes the existence of objects or

events, which is perceived by semantic information [9, 44].

SID aims to intensify the invariant representations that lead

to sarcasm and utilize distributions to model the incongruity

in the multi-modal data.

First, we introduce a channel-wise reweighting strategy

to learn invariant representations. This strategy is moti-

vated by the observation that some image-text regions are

related, but irrelevant to the sarcastic object. Take the ex-

ample shown in Figure 4 (a), the ’toast’ exists in both image

and text, but actually the key information is ’egg’. There-

fore, inspired by the research about invariant risk minimiza-

tion [77], we utilize reweighting to find the content most

related to sarcasm. Specifically, with the training of the

model, representations related to sarcasm are gradually ac-

tivated by the loss. Furthermore, these embeddings have

large variances with different instances [33,61]. Inspired by

this, we propose channel-wise reweighting as:

𝑟𝑝 = 𝑒𝑎𝑝 · 𝜎(𝑅𝑒𝐿𝑈 (𝐹𝐶 (𝑒𝑎𝑝))), (3)

where 𝑟𝑝 denotes reweighted embeddings for patches and 𝜎
means the channel-wise variance. The reweighted embed-

dings for words 𝑟𝑤 is processed in the same way.

After acquiring the discriminative semantic embeddings,

we maintain the similarity distributions of sarcastic and

non-sarcastic samples, and calculate the probability of

multi-modal data belonging to them. Specifically, for the

𝑟𝑝 and 𝑟𝑤 , we utilize 𝑟𝑣 ∈ R𝐶 and 𝑟𝑡 ∈ R𝐶 as [CLS],

which are calculated as the average of all the patch and word

embeddings. During the training process, we maintain two

memory banks 𝑀𝑆 = {(𝑟 𝑖𝑣 , 𝑟 𝑖𝑡 )}𝑞𝑖=1
, 𝑀𝑁𝑆 = {(𝑟 𝑖𝑣 , 𝑟 𝑖𝑡 )}𝑞𝑖=1

of

sarcastic and non-sarcastic semantic representations from

previous batches [25], 𝑞 represents the length of the mem-

ory bank. Based on the observation in Figure 1, we adopt

the gaussian distribution, which can be estimated by the fol-

lowing formulas:

𝜇 =
𝑞∑
𝑖=1

𝑆𝑖𝑚(𝑟 𝑖𝑣 , 𝑟 𝑖𝑡 ), (4)

𝜎 =

√√
𝑞∑
𝑖=1

(𝑆𝑖𝑚(𝑟 𝑖𝑣 , 𝑟 𝑖𝑡 ) − 𝜇)2, (5)

where 𝑆𝑖𝑚 denotes the cosine similarity function, 𝜇 and 𝜎
are the mean and variance values of the maintained gaus-

sian distribution. The distributions 𝐷𝑠 and 𝐷𝑛𝑠 are denoted

as 𝐷𝑠 ∈ N (𝜇𝑠 , 𝜎𝑠), 𝐷𝑛𝑠 ∈ N (𝜇𝑛𝑠 , 𝜎𝑛𝑠). We model the

possibility of the sample belonging to 𝐷𝑠 and 𝐷𝑛𝑠 based on

the probability density function.

𝑝 =
1

𝜎
√

2𝜋
· 𝑒−𝜏 (

𝑆𝑖𝑚(𝑟𝑖𝑣 ,𝑟𝑖𝑡 )−𝜇
𝜎 )2

, (6)

where 𝜏 is the temperature controls the importance of 𝜎.

Next, the factual incongruity 𝜆𝑆𝐼𝐷 is calculated as 𝑝𝑠− 𝑝𝑛𝑠 ,
and utilized to guide MSD. Comparing with adopting the

fixed or adaptive threshold to distinguish the sarcastic data,

our method leverage gaussian distribution to provide a soft

probability. The strategy prevents the bias caused by the

hard decision.

3.3. Siamese Sentiment Contrastive Learning

The affective feeling plays a crucial role in MSD [29].

In SSC, we introduce sentiment knowledge to the network,

and further model the affective incongruity.

SenticNet [7] is a widely used sentiment dictionary that

provides the continuous polarity value of the words. Note

that we assign zeros to the words can not be found in

SenticNet following [35]. The aligned word embeddings

𝑒𝑎𝑤 ∈ R𝑘×𝐶 from the cross-attention module are input to

the siamese layers to predict the sentiment label for each

word. Specifically, the siamese layers consist of a projec-

tion head for extracting affective embeddings, and a classi-

fier to obtain polarity value. Then, the text sentiment loss is

calculated by the MSE loss,

L𝑡𝑠 =
1

𝑘

𝑘∑
𝑖=1

(𝑝𝑖𝑤 − 𝑝𝑖𝑤)2, (7)

where 𝑝𝑖𝑤 denotes the polarity value of the 𝑖-th word.

Next, since the embeddings have been implicitly aligned

in the cross-modal attention module, we utilize the projec-

tion head and classifier with shared parameter to process the

images. To further boost the image sentiment representa-

tions, we introduce a continuous graph contrastive learning

strategy, which constructs continuous supervision labels to

capture the intensity of the polarity. In detail, the same as

the SID, we use the average of the patch and word embed-

dings to obtain visual and textual [CLS]. Then 𝑝𝑣 ∈ R𝐵
and 𝑝𝑡 ∈ R𝐵 of whole images and texts are obtained by

the siamese layers, where 𝐵 is the mini-batch size. For an

image-text pair, the large polarity difference means the em-

beddings should be accordingly pushed away. Otherwise,

they should be pulled close. Therefore, we construct the

supervision 𝐺 𝑝 as follows:

𝐺
𝑖 𝑗
𝑝 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑒𝑥𝑝(−|𝑝𝑖𝑣 − 𝑝

𝑗
𝑡 |)), (8)

where 𝑝𝑖𝑣 , 𝑝
𝑗
𝑡 ∈ [−1, 1] are the intensity of the polarity. The

similarity matrix𝐺𝑒 of embeddings can be calculated by the
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Table 1. Comparison with state-of-the-art uni-modal and multi-modal methods on the sarcasm dataset. To fairly and comprehensively

verify the performance of the methods, we adopt four backbones i.e. ResNet, ViT, LSTM, and BERT in our experiments. Note HFM*

indicates we re-implement HFM on the new backbone.

Modality Method Acc.
Binary-Average Macro-Average

Precision Recall F1 Precision Recall F1

Image
ResNet [6] 64.76 54.41 70.80 61.53 60.12 73.08 65.97

ViT [13] 67.83 57.93 70.07 63.43 65.68 71.35 68.40

Text

Bi-LSTM [27] 81.90 76.66 78.42 77.53 80.97 80.13 80.55

SIARN [56] 80.57 75.55 75.70 75.63 80.34 78.81 79.57

SMSD [63] 80.90 76.46 75.18 75.82 80.87 78.20 79.51

BERT-Base [12] 83.85 78.72 82.27 80.22 81.31 80.87 81.09

Image+Text

(ResNet+LSTM)

HFM [6] 83.44 76.57 84.15 80.18 79.40 82.45 80.90

D&R Net [65] 84.02 77.97 83.42 80.60 - - -

DIP 86.30 83.82 82.35 83.08 85.90 85.69 85.79

Image+Text

(ResNet+BERT)

HFM* [6] 85.76 82.32 83.88 83.09 85.31 85.49 85.27

Res-BERT [45] 84.80 77.80 84.15 80.85 78.87 84.46 81.57

Att-BERT [45] 86.05 78.63 83.31 80.90 80.87 85.08 82.92

HKE [37] 87.02 82.97 84.90 83.92 - - -

DIP 88.20 87.73 82.66 85.12 88.11 87.34 87.67

Image+Text

(ViT+BERT)

HFM* [6] 86.63 83.84 84.18 84.01 86.24 86.28 86.26

InCrossMGs [34] 86.10 81.38 84,36 82.84 85.39 85.80 85.60

HKE [37] 87.36 81.84 86.48 84.09 - - -

CMGCN [35] 87.55 83.63 84.69 84.16 87.02 86.97 87.00

DIP 89.59 87.76 86.58 87.17 88.46 89.13 89.01

dot product between the sentiment embeddings 𝑠𝑣 ∈ R𝐵×𝐶
and 𝑠𝑡 ∈ R𝐵×𝐶 , which are the outputs of projection head

𝐺
𝑖 𝑗
𝑒 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑒𝑥𝑝((𝑠𝑖𝑣 · 𝑠 𝑗𝑡 ))). (9)

Besides, the loss of continuous graph contrastive learning is

calculated by the Kullback-Leible (KL) divergence:

L𝑐𝑐 = 𝐾𝐿 (𝐺𝑒, 𝐺 𝑝). (10)

Then, we use the difference of the sentiment polarity be-

tween vision and text as another factor for sarcasm detec-

tion, denoted as 𝜆𝑆𝑆𝐶 = |𝑝𝑣 − 𝑝𝑡 |.
After the SID and SSC modules, the embeddings are em-

pirically fused for final prediction. The inter-modal embed-

dings from the same aspect are processed by element-wise

product, then we concatenate the representations from se-

mantic and affective levels. More fusion settings can be

found in our ablation experiments.

Considering the incongruity from factual and affective

levels, we add the predictions 𝑦 𝑓 from fused embedding and

the two incongruity factors 𝜆𝑆𝐼𝐷 and 𝜆𝑆𝑆𝐶 ,

𝑦̂ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑦 𝑓 + 𝜆𝑆𝐼𝐷 + 𝜆𝑆𝑆𝐶 ), (11)

The binary cross-entropy loss is calculated as:

L𝑏𝑐𝑒 = −[𝑦 · 𝑙𝑜𝑔( 𝑦̂) + (1 − 𝑦) · 𝑙𝑜𝑔(1 − 𝑦̂)] . (12)

Finally, the DIP network for multi-modal sarcasm detection

is optimized by the loss:

L = L𝑏𝑐𝑒 + L𝑐𝑐 + L𝑡𝑠 . (13)

4. Experiments
4.1. Dataset and Evaluation Metrics

We conduct experiments on the public MSD dataset [6],

and each sample in the dataset consists of an image-text

pair. The dataset is divided into training, testing, and val-

idation sets with a ratio of 80%, 10%, and 10%, respec-

tively. During the construction of the dataset, the retrieved

tweets with the hashtag #sarcasm are set as positive exam-

ples and the others are negative examples. Following pre-

vious works [6, 35, 65], we report the accuracy, precision,

recall, binary-average, and macro-average results.

4.2. Implementation Details

To ensure fairness, we conduct extensive experiments

with various backbones for a comprehensive comparison.

In detail, we present the results with ResNet [26], ViT [13],

LSTM [27], and BERT [12]. The images are uniformly re-

sized to 224 × 224, and the resolution of a patch is set to

16 in ViT [13]. As a result, the image is split into 196

2544



Table 2. Ablation study to prob the SID and SSC utilized in DIP.

CR denotes the channel-wise reweighting in SID.

Base CR 𝜆𝑆𝐼𝐷 L𝑡𝑠 L𝑐𝑐 𝜆𝑆𝑆𝐶 Acc. Binary-F1 Macro-F1

� 85.21 81.42 84.57

� � 87.19 84.86 86.88
� � 86.51 83.14 85.95
� � � 88.41 85.70 87.98

� � 86.68 84.04 86.31
� � � 87.95 85.21 87.52
� � � 87.48 84.18 86.91
� � � � 88.20 85.70 87.83

� � � � � � 89.59 87.17 89.01

patches. When utilizing LSTM as the backbone, we adopt

Glove [47] for embedding, and the dimension of hidden rep-

resentations is set as 256. For BERT, we employ the pre-

trained uncased model. In addition, to unify the dimension

of embeddings, we adopt a fully-connected layer following

the ResNet and LSTM, which adjusts the output dimension

as 768, the same as ViT and BERT. The mini-batch size is

set to 16 for experiments with ViT and BERT. Otherwise,

the mini-batch is 64. The memory bank stores the latest

256 elements. The network is optimized by stochastic gra-

dient descent with a weight decay of 0.00001. The model

is trained for 20 epochs. The learning rate is set to 0.00002

for the image and text encoder and 0.00005 for the rest part.

The learning rate is reduced to 0 in the line schedule.

4.3. Comparison Methods

We compare DIP with the methods based on image, text,

and image+text modalities, respectively.

1) For the image modality, we explore the performance

of visual information for MSD. Following [35], ResNet [26]

and ViT [13] are utilized for comparison.

2) For the text modality, we present the performance

based on LSTM and BERT. Bi-LSTM [27] is a classi-

cal backbone for text analysis. Methods i.e. SIARN [56],

SMSD [63] designed for single-modal sarcasm detection

are also compared. In addition, we fine-tune BERT [12]

with the text data and compare with its performance.

3) For the text+image modality, we compare all the

seven advanced models. HFM [6] designs a hierarchical

fusion model to combine information from two modali-

ties. D&R Net [65] uses the semantic association to find

the sarcasm clues. Res-BERT [45] and Att-BERT [45]

fuse the visual and textual embeddings by concatena-

tion and self-attention mechanism, respectively. InCross-

MGs [34] introduces a graph network to depict the image-

text pairs. CMGCN [35] builds the connection between re-

gions and words by a cross-modal graph convolutional net-

work (GCN). HKE [37] mines external knowledge to build

a hierarchical framework. For a fair comparison, we report

the performance of both DIP and the contrastive methods

(a) (b)
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Figure 3. Probing the accuracy of each component of the final

predictions. We report the results of precision on both sarcastic

and non-sarcastic data in (a) and (b), respectively.

on various backbones.

4.4. Comparison with the State-of-the-Art Methods

We conduct extensive experiments to compare DIP with

state-of-the-art methods. The results of text, image, and text
+ image are shown in Table 1. According to the results, we

have the following observations.

1) DIP is clearly superrior to single-modal SOTA meth-

ods. Benefit from the complementary information of multi-

modal data, DIP improves 21.76% and 5.74% on accuracy

compared with visual and textual SOTA methods respec-

tively. On the one hand, compared with only using the data

of image modality, it is relatively more effective to detect

the sarcasm expressed in the highly semantic text [24]. On

the other hand, as an important unit of expressing sarcasm,

images can significantly improve the performance of MSD.

2) Compared with the multi-modal SOTA methods, DIP

achieves 2.28%, 1.18%, and 2.04% improvements on accu-

racy in the three backbone implementation. For the binary-

average precision, DIP improves at least 4.13% compared

with the SOTA method. This result demonstrates DIP is par-

ticularly adept at recognizing sarcastic data. Moreover, our

macro-average metrics also have competitive performance

(at least 1.44% improvements), proving that DIP is both ef-

fective for distinguishing sarcastic and non-sarcastic data.

Furthermore, compared with previous methods implicitly

modeling incongruity [37], DIP improves over 2% on ac-

curacy. Therefore, our proposed explicitly modeling factual

and affective incongruity method is more effective for MSD.

4.5. Ablation Study

To probe the effectiveness of each component in DIP,

we conduct ablation experiments. All the experiments are

implemented by ViT+BERT. First, we evaluate SID and

SSC in Table 2. Base means directly concatenate the

[CLS] of visual and textual models. According to the

results, we have the following four observations. First,

both SID and SSC improve the performance compared with

the base model. Second, modeling the incongruity with
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Table 3. Comparison of different fusion strategies. M denotes the

fusion of image and text embeddings, and L denotes the fusion of

semantic and sentiment modules. C, P, S represent concatenation,

element-wise product, and element-wise sum respectively. B-F1

and M-F1 denote Binary-F1 and Macro-F1.

M \ L
Acc. B-F1 M-F1

C P S C P S C P S

C 88.75 88.41 88.03 87.03 85.04 85.55 88.32 87.98 87.67

P 89.59 89.04 89.09 87.17 86.47 86.85 89.21 88.63 88.76

S 89.30 89.00 89.17 86.83 85.79 86.99 88.91 88.41 88.86

Table 4. Detailed evaluation of SID. EA means explicit alignment,

IA is implicit alignment, CR means channel-wise reweighting.

Method Acc. Binary-F1 Macro-F1

Ours (IA) 89.59 87.17 89.01
Ours (EA) 88.24 85.61 87.84

Ours (EA) w/o CR 87.91 85.45 87.55

Ours (EA) w/o 𝜆𝑆𝐼𝐷 88.03 85.32 87.61

Ours (IA) w/o CR 88.07 85.49 87.68

Ours (IA) w/o 𝜆𝑆𝐼𝐷 88.28 86.07 87.98

𝜆𝑆𝐼𝐷 achieves higher accuracy, but integrating channel-

wise reweigting brings more benefits, which demonstrates

the effectiveness of discriminative embeddings. Third, with

the help of L𝑐𝑐, the binary-f1 is obviously increased. The

results demonstrate the effectiveness of continuous con-

trastive learning for discovering sarcastic data. Fourth, our

model combining SID and SSC achieves the best results,

showing the components are complementary to each other.

Next, we present the results of different fusion strategies.

We empirically evaluate three commonly used fusion meth-

ods: concatenation, element-wise sum, and element-wise

product. Note M denotes modal (i.e. image, text) fusion,

and L represents level (i.e. factual, affective) fusion. As

shown in Table 3, the fusion strategy which adopts element-

wise product within modalities, and concatenation for the

two levels outperforms other strategies. We think this is be-

cause the non-linear representation brings more interaction

within the modality [75], and the concatenation reserves the

information from both semantic and sentiment. Therefore,

this form of combination achieves the best performance.

Then, we present the precision of sarcastic and non-

sarcastic data by using fused embedding with channel-wise

reweighting, incongruity values 𝜆𝑆𝐼𝐷 , or 𝜆𝑆𝑆𝐶 . As shown

in Figure 3, the fused embedding achieves the best per-

formance. However, the precision of non-sarcastic data is

higher than the sarcastic one, which is different from the

results of 𝜆𝑆𝐼𝐷 and 𝜆𝑆𝑆𝐶 . Specifically, we find the incon-

gruity values obtained by SID and SSC enable DIP to be

more sensitive to the sarcastic data, which improves the per-

Table 5. Affective recognition accuracy (%) on the FI (im-

age) and IMDB (text) datasets. FI*/IMDB* denotes that training

ViT/BERT on the sentiment dataset, then utilizing its prediction

on the sarcasm dataset as label for evaluating DIP. MS means the

SID and SSC modules are sequentially trained.

Method Base w/o L𝑐𝑐 MS w/o L𝑐𝑐 DIP

FI 55.81 67.10 68.54 69.06 70.94
IMDB 52.28 72.55 75.81 77.19 77.36

FI∗ 49.13 65.38 66.29 69.66 71.03
IMDB∗ 52.11 73.00 73.67 76.32 77.85

formance combined with the fused embedding.

4.6. Semantic Effectiveness Analysis

The experimental results of SID are shown in Table 4.

We compare the performance of explicit and implicit align-

ment. The explicit alignment is implemented by a constra-

tive loss [50] which imposes the similarity of image-text

pairs to reach 1. First, DIP with explicit alignment drops

1.35%, 1.56%, 1.17% in accuracy, Binary-F1, and Macro-

F1. The phenomenon reflects that explicit alignment im-

pacts the intrinsic incongruity of sarcastic data. Second, the

implicit alignment without channel-wise reweighting drops

1.52% in accuracy, which is distinctly larger than the ex-

plicit one. The results demonstrate that the process of dis-

covering invariant embedding is relatively more effective

for implicit alignment. Different from the explicit strategy

which adds a loss term to pull the inter-modal embeddings

closer, our method leverages cross attention mechanism to

gradually activate the associated patches and words. As a

result, the reweighting strategy helps the model to focus on

the informative parts. Third, the implicit alignment with

𝜆𝑆𝐼𝐷 is 1.31% higher than without it, but the explicit one

only improves 0.21% in accuracy. Based on the observa-

tion, we find 𝜆𝑆𝐼𝐷 is more suitable for implicit strategy.

4.7. Sentiment Classification Performance

To evaluate the performance of the sentiment module,

we conduct experiments to calculate the accuracy of sen-

timent recognition, as shown in Table 5. The FI [70] and

IMDB [41] are commonly used sentiment analysis datasets

for image and text respectively. To minimize the effect of

the dataset bias [46], we evaluate the methods in two set-

tings. On the one hand, we train DIP on the sarcasm dataset,

and test on the sentiment datasets. On the other hand,

the predictions of the models pretrained on the sentiment

dataset are adopted as labels, which is used to calculate the

sentiment recognition accuracy of the DIP. Based on the re-

sults, we have the following three observations. First, the

base model trained without sentiment branch lacks compet-

itiveness, which needs sentiment supervision information to
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Figure 4. Visualization of our proposed DIP. (a) shows visual and textual attention maps after alignment, (b) shows visual and textual

attention maps after invariant reweighting, (c) presents four examples with high incongruity value in semantic and sentiment levels, and (d)

displays some failure cases of our method.

improve the recognition accuracy. Second, we train SID and

SSC in a sequential manner, which utilizes the embeddings

of SSC for sarcasm detection and sentiment analysis. We

find this method is sub-optimal, which may be caused by

the MSD is not just relying on the affective cues. Third, our

method with continuous contrast learning achieves best per-

formance. Despite the bias among datasets, the experimen-

tal results prove that our method learns affective knowledge.

4.8. Visualization

We present some visualization in Figure 4 to further dis-

cuss the effectiveness of our method. First, the examples

after cross-modal attention are visualized in (a), and the ac-

tivation maps after channel-wise reweighting are shown in

(b). We can observe that the cross-modal attention layers

make the network focus on the inter-modal related regions,

e.g. eggs and toast, queues, and fence. After the channel-

wise reweighting, the model pays more attention to the eggs

and fence, which have the closest relation to sarcasm. Sec-

ond, we provide the samples with high incongruity values

for factual and affective respectively. The first two examples

in (c) have large factual incongruity values. For instance,

the warm and dry are distinctly opposite to the snow in the

image. For the next two examples, the sentiment in the text

with green color is contrast to the sentiment conveyed in the

image. Based on these samples, we can find that both fac-

tual and affective incongruity play important roles in MSD.

The examples in (d) show some failure cases of our

method. Looking at the left example, both the image

and text convey a positive attitude, and there does not ex-

ist counterfactual inference. Some cases of sarcasm need

strong context knowledge from individuals, which is hard

to be differentiated. Observing the right examples, both

the low quality of the image and the French may lead to

the wrong prediction. Therefore, we think that combining

psychology about subjectivity and training a multilingual

model may improve the performance of MSD in the future.

5. Conclusion

In this paper, we propose DIP, which learns the incon-

gruity from factual and affective levels. In the factual

branch, we design a channel-wise reweighting strategy to

focus on the sarcastic regions. Then, the gaussain distribu-

tion is utilized to model the incongruity in SID. In the af-

fective branch, we leverage the siamese layers to efficiently

introduce sentiment information. Furthermore, the contin-

uous graph contrastive learning is designed to make better

use of the intensity of the polarity. Extensive experiments

on the MSD dataset indicates that our DIP performs favor-

ably compared with the state-of-the-art methods.
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