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Abstract

The causality relation modeling remains a challenging
task for group activity recognition. The causality relations
describe the influence on the centric actor (effect actor)
from its correlative actors (cause actors). Most existing
graph models focus on learning the actor relation with syn-
chronous temporal features, which is insufficient to deal
with the causality relation with asynchronous temporal fea-
tures. In this paper, we propose an Actor-Centric Causal-
ity Graph Model, which learns the asynchronous temporal
causality relation with three modules, i.e., an asynchronous
temporal causality relation detection module, a causality
feature fusion module, and a causality relation graph infer-
ence module. First, given a centric actor and its correlative
actor, we analyze their influences to detect causality rela-
tion. We estimate the self influence of the centric actor with
self regression. We estimate the correlative influence from
the correlative actor to the centric actor with correlative
regression, which uses asynchronous features at different
timestamps. Second, we synchronize the two action features
by estimating the temporal delay between the cause action
and the effect action. The synchronized features are used to
enhance the feature of the effect action with a channel-wise
fusion. Third, we describe the nodes (actors) with causal-
ity features and learn the edges by fusing the causality re-
lation with the appearance relation and distance relation.
The causality relation graph inference provides crucial fea-
tures of effect action, which are complementary to the base
model using synchronous relation inference. Experiments
show that our method achieves state-of-the-art performance
on the Volleyball dataset and Collective Activity dataset.

1. Introduction
Group activity recognition is a challenging task to iden-

tify the group activity by analyzing the actors that perform

*Corresponding author.

Figure 1. Illustration of the causality relation. (a) Asynchronous
causality relation. (b) Synchronous temporal relation graph. (c)
Asynchronous temporal causality relation detection and fusion.
(d) Asynchronous temporal causality relation graph learns the in-
fluences of two actors to detect causality relation. In this work, we
enforce the graph model with asynchronous causality relation by
analyzing the actors’ influences.

different actions. It has been widely used in many appli-
cations in video surveillance, social interaction analysis,
and sports analysis [4, 14, 25, 40]. Unlike individual action
recognition, group activity recognition learns the relation
between actors to infer the group activity. The relation be-
tween two actors can be explained as cause-effect relation
(denoted as causality relation), in which the action of one
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actor (denoted as the cause actor) impacts the action of an-
other actor (denoted as the effect actor). The two actors im-
pact each other individually resulting in different causality
relations. As the effect action performs after the cause ac-
tion with a temporal delay, the asynchronous temporal fea-
tures of the two actors hinder causality relation learning.
Existing methods describe the relation with the appearance
feature [15] and the position feature [24, 36]. The above
methods merely learn the spatial relation in each frame,
which neglect to describe the relation with the temporal
dynamics in the frame sequence. Some methods describe
the relation with the temporal feature learned by RNN [28]
and Transformer network [18]. The existing methods al-
ways learn the relation at the same timestamp with the syn-
chronous temporal feature, and neglect to describe the in-
fluences of two actors, who have asynchronous temporal
relation. Therefore, it is still challenging to capture the rela-
tion with asynchronous temporal features for group activity
recognition.

As the causality relation is asynchronous, we decompose
our graph model with asynchronous causality relation into
two sub-tasks illustrated in Figure 1b: (1) the causality rela-
tion detection task by analyzing the influences of two actors
with their asynchronous features, and (2) the asynchronous
causality feature fusion task by integrating the feature of the
effect actor with the synchronized feature of the cause actor.

Figure 1 shows the group activity prediction influenced
by different actors. (1) In Figure 1a, with a temporal delay
after the cause action performs (digging), the cause actor
changes to the action ”falling”, and the effect actor changes
to the action ”jumping”. Actors change their states with
a temporal delay in an asynchronous way, which hinders
cause-effect (causality) relation learning. (2) As shown in
Figure 1b, the traditional method addresses the group ac-
tivity using a synchronous temporal relation graph, which
contains a large number of irrelevant relations. The syn-
chronous graph is hard to detect the cause-effect relation
with the synchronous features at a single timestamp. With-
out learning the asynchronous causality relation, the model
can not explain why the effect actor jumps. For example, it
uses the falling cause actor to mispredict group activity as
the ”Right pass”. (3) To detect the causality relations be-
tween the centric actor and its correlative actor, we focus
on learning the influences with their asynchronous features.
When the centric actor is affected by the correlative actor,
the influence of two actors is larger than the influence of
the centric actor itself. The influences of two actors can de-
tect the causality relation from the correlative actor to the
centric actor. As shown in Figure 1c, after the correlative
actor moves, the centric actor jumps with the temporal de-
lay of one frame (+1). Then, the causality relation is used to
enhance the centric actor features by fusing two actors’ fea-
tures. (4) When we learn asynchronous causality relations

to form a causality relation graph, which can select the rel-
evant edges and enhance node features. In Figure 1d, the
causality inference process finds the relation from the mov-
ing actor to the jumping actor, and helps to explain the actor
jumps for setting the volleyball. The causality relation ana-
lyzes the influences learned with the asynchronous tempo-
ral features, which is complementary to the relation learned
with synchronous temporal features. The framework by in-
tegrating two relation graphs can successfully predict the
group activity as the “Right set”.

In this paper, we propose an Actor-Centric Causality
Graph (ACCG) Model to detect the asynchronous causal-
ity relation for group activity recognition. Figure 2 shows
the overview of the proposed model. The model consists
of three modules, i.e., an asynchronous temporal causality
relation detection module, a causality feature fusion mod-
ule, and a causality relation inference module. First, we
detect the causality relation between the centric actor and
its correlative actor by analyzing the self influence and the
correlative influence. We learn the self influence with self
regression, and learn the correlative influence with correl-
ative regression. We extend the correlative regression with
asynchronous features of the correlative actor, which helps
to learn the asynchronous causality relation by analyzing
the influences of the two actors. Second, the temporal delay
of the causality relation is estimated to synchronize two ac-
tion features. We integrate them with a channel-wise fusion
to learn the causality feature of the effect actor. Third, we
describe the actors (nodes) with asynchronous causality fea-
tures, and describe the edges with the causality relation for
graph inference. The causality relation inference provides
the crucial features of actors, which are complementary to
synchronous relation inference. We apply the base model to
learn the synchronous relation inference, and add two rela-
tion inferences to enhance the group relation learning.

Our contributions are summarized as follows:
(1) We propose an Actor-Centric Causality Graph

Model, which detects the asynchronous causality relation
by analyzing the influences of two actors at different times-
tamps. We design the self regression to estimate the self
influence of the centric actor. We design the corelative re-
gression with the asynchronous features of two actors to es-
timate their correlative influence.

(2) We design a causality feature fusion to enhance the
feature of the centric actor by integrating it with the syn-
chronized feature of its correlative actor. The synchronized
feature is generated by estimating the temporal delay be-
tween the asynchronous features of two actors.

(3) Our Actor-Centric Causality Graph Model learns
the asynchronous relation, which is complementary to syn-
chronous relation learning. Our framework integrates two
relations and achieves state-of-the-art performance on the
Volleyball dataset and Collective Activity dataset.
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Figure 2. The overview of the actor-centric causality graph model. The base model learns the relation with synchronous features at each
timestamp. The actor-centric causality graph is proposed to analyze the influence of two actors with asynchronous features, which can
learn the causality relation in the asynchronous temporal causality relation detection module. The causality feature fusion model enhances
the centric action with synchronized correlative action features. The causality relation graph inference module learns the contextual feature
with causality relation. The framework combines the causality relation graph and the base graph for better graph relation learning.

2. Related Work
Group Activity Recognition. Group activity recogni-

tion learns the group feature by organizing the actor feature
with relation. Existing methods use graph models to learn
the relation between actors with appearance features [1, 15]
and position features [24, 36]. Some methods learn the re-
lation adaptively by introducing self-attention [10, 23] and
multi-head attention [8, 18]. Some methods learn the rela-
tion by selecting the key actors [22]. The above methods
learn the relation with spatial features. Some methods learn
the relation with temporal features [11–13, 17, 26–28, 33].
These methods use the feature at the same timestamp, and
neglect to learn the relation by analyzing the asynchronous
temporal features.

Granger Causality Test. The causality test describes
the cause-effect relation of two things [39]. Some methods
learn the cause-effect relation with and-or graph [7], and
bayesian inference [6]. The Granger causality test learns
the cause-effect relation by analyzing the feature residual
estimated with temporal feature regression [9] and extends
to lagged temporal analysis [5, 29], reversal temporal anal-
ysis [35], and selected feature analysis [3]. The Granger
causality test has not been used to analyze the relation be-
tween two actors for group activity recognition.

Asynchronous Temporal Modeling. The asynchronous
features have been studied for the temporal feature inte-
gration [16, 34]. The asynchronous features can be fused
with multiple temporal features [30] and multiple modality
features, including appearance feature and motion feature
[20]. The asynchronous features have been exploited with
spatial-temporal asynchronous normalization [21]. Unlike
the above methods, we use asynchronous features to model
the feature reconstruction of two actors in the group activ-
ity. The feature reconstruction can learn the influences of
them, and can be analyzed with the Granger causality test
to detect causality relation.

3. Base Group Activity Recognition Model
Most existing methods predict the group activity with

three main stages as shown in Figure 2 [18, 25, 36, 38]. (1)
The feature extraction stage extracts features of the frame
sequence using the pre-trained backbone model. (2) The
graph modeling stage learns the relation to provide contex-
tual features of the actors. (3) The prediction stage gener-
ates the actor action label and the group activity label and
computes the prediction loss for training. In the follow-
ing, we review the common practices of the graph relation
model, which is used as our base model.
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3.1. Feature Extraction

Following [18, 36], we use Inception-v3 to extract a fea-
ture map for a video sequence, and use RoIAlign to extract
the features of the actor’s bounding boxes. After that, an FC
layer is performed on the aligned features to get the feature
map for actorsX ∈ RT×Nd×D. T ,Nd, andD denote frame
number, actor number, and feature dimension.

Following [18], the group feature extractor uses the
backbone model to generate the feature map of each frame.
2D convolution is applied to learn the group feature se-
quence Xg ∈ RT×K×H×W . K, H , and W denote the to-
ken number, the height, and the width of the group feature.
The group encoder reshapes the feature into a flattened fea-
ture and uses a softmax operation to generate the spatial at-
tention matrix. 2D convolution is used to project the group
feature into D channels, which is used to learn K tokens
by computing the weighted summation of every pixel with
spatial attention. Another average pooling is used to get the
group token XG ∈ RT×D.

3.2. Spatial-Temporal Graph

Following [18], the base synchronous relation can be
learned with a temporal encoder and a spatial encoder
in a stacked manner. The temporal encoder adopts a
transformer-based model to learn the temporal relation of
each actor. The input actor feature sequence is split to get
the feature sequence of each actor Xi ∈ RT×D, where i is
the actor index. The transformer-based temporal feature is
estimated as:

Qi = XiWQ,Ki = XiWK , Vi = XiWV ,

V ′
i = softmax(

QiK
T
i√

D
)Vi + Vi

V ′′
i = FFN(V ′

i )

(1)

where WQ, WK , WV are learnable parameters shaped as
D × D. FFN is the feed-forward network in the canonical
Transformer. The features of all actors are packed together
to the temporal features VT ∈ RNd×T×D.

The spatial encoder learns the spatial relation between
actors. The spatial encoder follows the operation of the
temporal encoder. The difference with the above temporal
encoder is that the spatial encoder uses the features at each
timestamp, which is split from the output of the temporal
encoder. We pack the output of the spatial encoder to get
the features of all frames VS ∈ RT×Nd×D.

3.3. Group Activity Prediction and Training Losses

The base model predicts the actor action scores and
group activity scores. For actor action recognition, a clas-
sifier with two FC layers takes the learned actor features as
input to predict each actor action score. For group activ-
ity recognition, a group decoder [18] is applied to predict

the group activity. The group decoder takes the group to-
ken as the group query. The decoder takes the group pool-
ing features from individual features as the group key. The
updated group query is learned by summarizing the group
query with the overall context from the group pooling fea-
tures. The group classifier uses two FC layers to predict the
group activity scores.

Given the ground truth labels for actor action and group
activity, the loss function considers the actor action recog-
nition loss, the group activity recognition loss, and the re-
lation contrastive loss following [25]. The contrastive loss
compares the feature similarity between the nodes in the
same relation graph and the similarity between the nodes in
different relation graphs. The contrastive loss encourages
the diversity of relation learning.

3.4. Discussion

The base model uses a transformer-based temporal en-
coder, which can enhance the temporal features of actors.
The base model learns the spatial relation with the syn-
chronous temporal features at the same timestamp, and ne-
glects to analyze the influence of two actors with asyn-
chronous features. The main focus of our work is to ana-
lyze the influence of two actors with asynchronous features,
which helps to detect the asynchronous causality relation
for relation learning, as described in the following section.

4. Actor-Centric Causality Graph Model

Figure 2 shows the overview of our proposed methods
by embedding the actor-centric causality graph in the graph
modeling stage. The graph learns the asynchronous causal-
ity relation, which is complementary to the relation with
synchronous temporal features. We represent the actor-
centric causality graph as Gcau = {V cau, Ecau}. The
causality relations are learned by analyzing the influences of
two actors in the Asynchronous Temporal Causality Detec-
tion Module. The nodes V cau describe the causality fused
features of actors, which are learned with the Causality Fea-
tures Fusion Module. The edges Ecau detail the causality
relations with appearance relations and distance relations,
which are used for graph relation reasoning in the causality
relation inference module.

4.1. Asynchronous Temporal Causality Relation
Detection Module

The causality relation indicates the cause actor and effect
actor. We introduce feature reconstruction to learn the re-
construction residual, which can be used to estimate the ac-
tion influence. The effect actor takes a large influence from
the cause actor, and its action has a large residual of feature
reconstruction with its historical features. When the feature
reconstruction considers the historical features of the cause
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action and effect action, the residual of effect action recon-
struction becomes small. To detect the causality relation,
we select the centric actor and correlative actor. To learn the
self influence, we design self regression to model the fea-
ture reconstruction with the historical features of the centric
actor. To learn the correlative influence, we design corela-
tive regression to model the feature reconstruction with the
historical features of the two actors. The large difference
between the two influences detects a strong causality rela-
tion between the two actors.

Self Influence Estimation. We estimate the self influ-
ence with the residual between the frame feature and the
reconstructed feature, which is reconstructed with the his-
torical feature of the actor itself. Given the feature sequence
Xi ∈ RT×D, We design self regression to reconstruct the
current frame x̂ik using the historical feature bank with the
time window [k−m, k−1]. m is the window size. The self
influence ssri is estimated with the sum of squares residual
(SSR) as: 

x̂ik =

k−1∑
r=k−m

ωi
rx

i
r + bi

ssri =
∑
k

∥∥∥xik − x̂ik

∥∥∥2

2

(2)

where ωi
r, bi are the parameters in self regression. The

parameters are learned with the sum of the squared recon-
struction error Lself = ssri.

Correlative Influence Estimation. We estimate the cor-
relative influence using the construction model with two ac-
tors’ features. We design the correlative regression for fea-
ture construction. We extend it to asynchronous correlative
regression by temporally shifting the features of the correl-
ative features with the temporal delay. The temporal de-
lay explains the effect action occurs after the cause action.
Given the correlative actor featuresXj and the temporal de-
lay delay, the asynchronous historical time window of the
correlative actor is [k − delay − m, k − delay − 1]. The
asynchronous historical features of two actors are used to
estimate the reconstruction feature of the centric actor x̂j→i

k .
The correlative influence srrj→i is estimated with the sum
of squares residual (SSR) as:

x̂j→i
k =

k−1∑
r=k−m

ωj→i
r xir+

k−delay−1∑
r′=k−delay−m

ωj→i
r′ xjr′ + bj→i

ssrj→i =
∑
k

∥xik − x̂j→i
k ∥22

(3)

where ωj→i
r , ωj→i

r′ , bj→i are the parameters in corelative
regression. The parameters are learned with the sum of the
squared reconstruction error Lcorr = ssrj→i.

Granger Causality Relation Estimation. We estimate
the causality relation by analyzing the two influences with
the Granger causality test. The Granger causality test ex-
plains the distribution of the causality relation over the dif-
ference between two influences. The actor features are sup-
posed to obey the Gaussian distribution, which can imply

the influence, i.e. sum of squares residual (SSR) of the
reconstructed feature, obeys the χ2 distribution. Granger
causality test uses the test statistic f j→i to analyze two χ2

distributions as:

fj→i =

(
ssrj→i − ssri

)
/m

ssri/ (nm − vm)
(4)

The test statistic obeys the Fisher-Snedecor distribution,
which has two degrees of freedom. nm = (T −m)D is the
sample number. vm = 2m+ 1 is the degrees of freedom of
the corelative regression. The Fisher-Snedecor distribution
ψF (·) can project the test statistic into the causality proba-
bility value as:

pj→i =

∫ fj→i

0

ψF (m,nm−vm)(z)dz (5)

Our graph focuses on learning multiple causality rela-
tions by considering multiple asynchronous temporal fea-
tures. Multiple asynchronous temporal features are learned
by temporal shifting with different temporal delays in the
correlative regression. The causality relation with the
largest probability indicates the estimated temporal delay
delay∗j→i and the estimated causality probability pj→i be-
tween two actions as:

[delay∗j→i, p
∗
j→i] = argmaxdelay pj→i (6)

Our graph represents the causality relations AGranger =

{aGranger
j→i }. Each causality relation between two actors is de-

tected by comparing the causality probability with a causal-
ity threshold as:

aGranger
j→i =

{
1, p∗j→i > τ

0, otherwise
(7)

4.2. Causality Features Fusion Module
The causality relation indicates the cause actor and the

effect actor in the group activity. The effect action can
be enhanced by integrating it with the cause action. The
features of the cause actor are synchronized by temporally
shifting to the effect actor with the estimated delay. Due to
we cannot observe the features before the input frames, the
early part of the shifted cause action features cannot be di-
rectly estimated. We fill this early part using the feature of
the first frame. The temporal shift operation is formed as:

xshift,j→i
k =

x
j
1, k − delay∗j→i < 1

xjk−delay∗
j→i

, otherwise
(8)

We use channel-wise concatenation to integrate the ef-
fect action features with the shifted cause action features.
The impact of each part is considered by introducing the
channel ratio parameter d. The input cause action feature
has the shape RD. The cause action feature is projected with
the parameter wd

i in an FC layer to the shape RD/d. The ef-
fect action feature is projected with the parameter wd

j→i to
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the shape RD−D/d. We concatenate them and analyze the
impact of the cause action feature by adjusting the parame-
ter in two projection layers as follows:

xcon,j→i
k = concat(wd

i x
i
k, w

d
j→ix

shift,j→i
k ) (9)

In the group activity, the centric actor may have multiple
causality relations to different cause actors. Each causal-
ity relation indicates a cause action to learn effect action
features separately. We average the features learned with
multiple causality relations as:

xsyn,i
k =

1∑
j a

Granger
j→i

∑
j

xcon,j→i
k (10)

Our graph uses the node representation of all actors as
V cau = {Xsyn

i }, where each actor has the feature Xsyn
i =

{xsyn,ik }.

4.3. Causality Relation Graph Inference Module

Our graph represents nodes with causality fusion fea-
tures and represents the edges with causality relations. The
nodes describe effect action with asynchronous fused fea-
tures by detecting the temporal delay, which is comple-
mentary to the synchronous features at the same timestamp
learned with the temporal transformer. The edges using
causality relations can enhance the relevant relations in the
spatial transformer. To detail the causality relation with the
actor’s appearance and position, we embed the causality re-
lation with the appearance relation and distance relation.

Following [36], h graphs are used to learn appearance re-
lations, which is estimated by the dot product of two actor’s

features as: aappi,j,h =
(wi

hx
i)T (wj

hx
j)√

D
. The distance relation

considers s masks with different distance ratios λs to limit
the relation based on the image width width. When the dis-
tance between actor i and actor j is smaller than the distance
ratio disti,j ≤ λswidth, the distance relation is adisti,j,s = 1.
Otherwise, the distance relation is 0. Our graph embeds the
causality relation with the appearance relation and distance
relation to learn the causality edges Ecau

h,s = {ej→i
h,s } as:

ej→i
h,s =

aGranger
j→i aappi,j,ha

dist
i,j,s∑

j a
Granger
j→i aappi,j,ha

dist
i,j,s

(11)

Our graph learns the output features of nodes with mul-
tiple edges as:

X ′ =
∑
h,s

ReLU(Ecau
h,s V

cauW graph
h,s ) (12)

The output features of our actor-centric causality graph
consider the asynchronous temporal causality relation. The
graph in the base model considers the synchronous temporal
relation with the transformer-based network. Two graphs
are added together to enhance the actor representation.

5. Experiments

5.1. Datasets and Implementation Details

Datasets. We conduct experiments on two widely-
adopted group activity datasets which contain tracking an-
notations and bounding boxes, including the Volleyball
dataset [14]and the Collective Activity dataset [4]. The met-
ric employs the Multi-class Classification Accuracy [36].

The Volleyball dataset [14] contains 55 video recordings
of volleyball games and is split into 3493 training clips and
1337 testing clips. The center frame of each clip is anno-
tated with bounding box coordinates for all actors and their
action labels (i.e. blocking, digging, falling, jumping, mov-
ing, setting, spiking, standing, and waiting). Each clip is
annotated with one group activity label out of eight labels
(i.e. right set, right spike, right pass, right winpoint, left set,
left spike, left pass, and left winpoint).

The Collective Activity dataset [4] contains 44 clips. We
follow the train set and test set in [36]. The center frame
of every ten frames is annotated with bounding box coordi-
nates of all actors and their action labels (i.e. NA, crossing,
waiting, queueing, walking, and talking). Every ten frames
are given one group activity label out of five (i.e. crossing,
waiting, queueing, walking, and talking).

Implemenation Details. For feature extraction, we
adopt the ImageNet pre-trained Inception-v3 [32] as the
backbone. The RoIAlign [36] is applied to extract the ac-
tor feature with each bounding box. The feature is embed-
ded into D = 1024 channels with an FC layer. Besides
the Inception-v3 features, we consider the pose feature with
the ImageNet pre-trained HRNet-48 as backbone [31]. The
pose feature is extracted with each bounding box and con-
catenates with the Inception-v3 feature to enhance the actor
feature. The concatenated feature is embedded intoD chan-
nels with an FC layer. Following [18], the base model takes
the group token number K = 8 in the group encoder. The
spatial encoder and temporal encoder use 8 attention heads.
In the Actor Centric Causality Graph, we set the window
size m = 4, the set of temporal delay delay = {0, 1, 2},
the causality threshold τ = 0.9, the channel ratio parameter
d = 6. For causality relation graph inference, we set the
appearance graph number k = 16, and the set of distance
ratios λs = {0.1, 0.2, 0.3, 0.4}.

We train our model in three stages. First, the parameters
in the base model are trained with the base model loss. Sec-
ond, the parameters in the Asynchronous Granger Causality
Detection Module, including the self-regression and correl-
ative regression, are trained in each clip. Third, the frame-
work combines our causality relation graph and the base
graph.

In the first and third training stage, the stochastic gra-
dient descent with ADAM is adopted as an optimizer with
fixed hyper-parameters to β1 = 0.9, β2 = 0.999, epsilon
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Table 1. Comparisons with the state-of-the-art methods on Volley-
ball dataset and Collective Activity dataset.

Method Flow Backbone
Volleyball Collective Activity

Group Individual Group
HDTM [14] AlexNet 81.9 - 81.5
CERN [27] VGG16 83.3 - 87.2
CCGLSTM [33] AlexNet 89.3 - 93.0
HRN [15] VGG19 89.5 - -
SSU [2] Inception-v3 90.6 81.8 -
PRL [13] VGG16 91.4 - 93.8
PDAR [24] Inception-v3 92.2 - 90.3
ARG [36] Inception-v3 92.5 82.8 91.0
AT [8] ✓ I3D 93.0 83.7 92.8
GLIL [28] Inception-v3 93.0 - 94.9
VC [37] Inception-v3 93.3 - 95.1
CRM [1] ✓ I3D 93.0 - 85.8
DIN [38] VGG16 93.6 - 95.9
GF [18] Inception-v3 94.1 83.7 93.6
GRAIN [19] VGG16 94.5 - 95.2
SAACRF [25] ✓ I3D+HRNet 96.4 85.5 96.0
Base model Inception-v3 93.6 83.8 92.6
Base+ACCG Inception-v3 95.0 85.6 94.5
Base+ACCG VGG-16 95.5 85.8 95.0
Base+ACCG ✓ I3D+HRNet 96.7 86.4 96.3

Table 2. The effect of the temporal delay setting.

Delay
Group Individual

wo shift adaptive wo shift adaptive
{0} 93.6 - 84.5 -
{0,1} 94.4 94.7 85.1 85.3
{0,1,2} 94.5 95.0 85.2 85.6
{0,1,2,3} 94.5 95.0 85.2 85.6

=10−8. For the Volleyball dataset, we train the network in
150 epochs in each stage with a mini-batch size of 32 and a
dropout ratio of 0.3 [36]. For the Collective Activity dataset,
we train the network in 80 epochs in each stage with a mini-
batch size of 16 and a dropout ratio of 0.5 [36]. For both
datasets, the initial learning rate is 0.00001 and decreases
by 0.1 after every 40 iterations.

In model prediction, we use each test video clip to update
the parameters of the self-regression and correlative regres-
sion, and fix the parameters of the rest modules.

5.2. Comparison with the State-of-the-Art

Volleyball Dataset. Table 1 shows the performance re-
sults on the Volleyball dataset. The base model is reported
without considering the influences of actors. Our model
embeds the ACCG to analyze the influences of two actors
with asynchronous features, which can detect asynchronous
causality relations. The asynchronous causality relation is
complementary information to the synchronous temporal
relation. The model adds ACCG features and Base fea-
tures to boost the performance. The Base+ACCG outper-
forms the model with spatial-temporal relation learned in
GF [18]. Using the Flow, I3D, and HRNet [31] features, the
Base+ACCG outperforms the SAACRF [25].

Collective Activity Dataset. Table 1 shows the per-
formance results on the Collective Activity dataset. The
Base+ACCG model considers both the synchronous rela-

Table 3. The effect of channel ratio parameter.

Channel ratio parameter Group Individual
without 93.3 83.7

d=2 94.1 84.7
d=4 94.6 85.3
d=6 95.0 85.6
d=8 93.5 84.0

Table 4. The effect of graph number and distance mask number.

Appearance graph
Group Individual

Distance mask Distance mask
2 3 4 2 3 4

8 93.5 94.5 94.8 84.1 85.1 85.6
16 93.7 94.7 95.0 84.1 85.1 85.6
32 93.6 94.6 94.9 84.0 85.0 85.5

Table 5. The effect of graph attention.

Method
Volleyball

Group Individual
ARG [36] 92.5 82.8
ACCG wo attention 93.3 83.1
ACCG 93.6 83.7
ARG+ACCG 93.9 84.0
Base model 93.6 83.8
Base+ACCG wo attention 94.3 84.7
Base+ACCG 95.0 85.6

Table 6. Comparison with other graph relation learning. GD, SE,
and TE denote the Group decoder, Spatial encoder, and Temporal
encoder in the base model. V cau, Ecau denote the node represen-
tation and edge relation in the causality relation graph.

Base model Causality graph
Group Individual

Inception-v3 GD SE TE V cau Ecau

✓ 89.8 80.9
✓ ✓ 91.0 82.1
✓ ✓ ✓ 91.8 82.2
✓ ✓ ✓ ✓ 93.6 83.8
✓ ✓ 91.9 82.5
✓ ✓ 92.9 83.3
✓ ✓ ✓ 93.6 83.7
✓ ✓ ✓ ✓ ✓ ✓ 95.0 85.6

tion and the asynchronous causality relation learned by an-
alyzing the influences of actors. The Base+ACCG model
with RGB feature outperforms the GF method [18].

5.3. Ablation Study

To dispel any concerns that the improvement is simply
from additional optical flow and pose information, we per-
form ablation studies using RGB features learned with the
Inception-v3 backbone on the Volleyball dataset.

The effect of the temporal delay setting. Table 2 ana-
lyzes the model with different temporal delays. We consider
multiple asynchronous temporal features by setting multiple
temporal delays. In Table 2, the model without temporal
shifting (wo shift) learns the causality feature with the orig-
inal correlative features. In Table 2, the model with adap-
tive temporal shifting (adaptive) learns the causality feature
with the synchronized correlative features. The model with

6658



adaptive temporal shifting outperforms the model without
temporal shifting.

The effect of channel ratio parameter. Table 3 an-
alyzes the model with different channel ratio parameters,
which are used to adjust the impact of the cause action and
the effect action. The model without considering the cause
action features gets the worst performance. We introduce
the channel ratio parameter d to enhance the effect action
features with cause action features. We increase the chan-
nel ratio parameter to enlarge the impact of effect action and
get the best performance at d = 6.

The effect of appearance graph number and distance
mask number. Table 4 analyzes the model with multi-
ple appearance graphs in the graph relation inference. The
model with 16 appearance graphs gets enough appearance
relations. For distance relation learning, we adopt 4 dis-
tance masks. The model with 4 distance mask and 16 ap-
pearance graphs get the best performance.

The effect of graph attention. Table 5 provides the
ACCG with/without graph attention. ACCG model consid-
ers ARG [32] relation, which uses graph attention to learn
the appearance relation. ACCG uses asynchronous tempo-
ral relations to select crucial ARG relations. We provide
ACCG without (wo) attention by removing the ARG rela-
tion from ACCG. ACCG wo attention uses a set of tempo-
ral delays to capture asynchronous temporal relations, and
outperforms the ARG model. We provide a two-branch
model ARG+ACCG to adopt the ARG as the base model.
ARG+ACCG integrates two branch relations in a comple-
mentary way, and outperforms ARG and ACCG.

Comparision with other graph relation learning. Ta-
ble 6 analyzes the contribution of each component. The
base model uses GD, SE, and TE to learn the actor rela-
tion and improve performance. In the causality graph, our
model enhances the node features by fusing two actors’ fea-
tures by synchronizing with the temporal delay detected in
the causality relation. The causality fused features help to
increase the performance. Our model learns asynchronous
causality relations to indicate relevant relations in the group
activity for better relation learning. Without considering the
synchronous relation learned in the base model, our causal-
ity graph with asynchronous causality relation outperform
the base model. The asynchronous causality relation is
complementary to the transformer-based relation. We in-
tegrate the two relations to get the best performance. The
Base model has 63.6 MParams and 408.5 GFLOPs. The
Base+ACCG has 89.8 MParams and 414.8 GFLOPs.

5.4. Visualization

Figure 3 shows two examples of the Volleyball dataset.
In (a), The base model considers the moving actor (No.6)
as passing the volleyball and mispredicts the group activ-
ity as a “Right pass”. Our actor-centric causality graph es-

Figure 3. Visualization of the causality relation in the group activ-
ity. The changed actor labels are visualized.

timates the correlative influence of two actors (No.7 and
No.8), which is larger than the self influence (No.8). Our
graph analyzes these two influences to indicate the causal-
ity relation from No.7 to No.8. Our graph also detects the
causality relation from No.9 to No.8. The two causality re-
lations enhance the action of No.8 to correct its prediction
as the setting. Besides, our causality relation explains that
No.2 is waiting for the volleyball which passed from No.8.
In (b), our graph detects two causality relations, which ex-
plain that No.11 is Digging the ball passed from No.3 and
No.11 is adjusting the action to pass the ball to No.7. Be-
sides, our causality relation explains that No.10 is moving
to spike the volleyball which is set by No.11.

6. Conclusion

In this work, we propose an actor-centric causality graph,
which focuses on analyzing the influence of two actors
for asynchronous causality relation detection. We learn
the causality fused feature by integrating the effect action
features with the synchronized cause action features. The
learned asynchronous relation is complementary to the syn-
chronous relation learned in the transformer-based model.
We integrate two relation models, which can outperform the
state-of-the-art methods.
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