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Abstract

Contrastive Language-Image Pre-training (CLIP) is at-
tracting increasing attention for its impressive zero-shot
recognition performance on different down-stream tasks.
However, training CLIP is data-hungry and requires lots
of image-text pairs to memorize various semantic concepts.
In this paper, we propose a novel and efficient frame-
work: Retrieval Augmented Contrastive Language-Image
Pre-training (RA-CLIP) to augment embeddings by online
retrieval. Specifically, we sample part of image-text data as
a hold-out reference set. Given an input image, relevant
image-text pairs are retrieved from the reference set to
enrich the representation of input image. This process can
be considered as an open-book exam: with the reference
set as a cheat sheet, the proposed method doesn’t need
to memorize all visual concepts in the training data. It
explores how to recognize visual concepts by exploiting
correspondence between images and texts in the cheat
sheet. The proposed RA-CLIP implements this idea and
comprehensive experiments are conducted to show how
RA-CLIP works. Performances on 10 image classification
datasets and 2 object detection datasets show that RA-
CLIP outperforms vanilla CLIP baseline by a large margin
on zero-shot image classification task (+12.7%), linear
probe image classification task (+6.9%) and zero-shot ROI
classification task (+2.8%).

1. Introduction

Traditional visual representation learning systems are
trained to predict a fixed set of predetermined image cate-
gories [12, 16, 22, 34]. This limits their transferability since
additional labeled training data are required to recognize
new visual concepts. Recently, vision-language pre-training
approaches such as CLIP [29] emerge as a promising
alternative which introduces text description as supervision.
CLIP aligns image modality and text modality by learning a

*indicates equal contribution.

37.7

53.5

0
10
20
30
40
50
60
70

CLIP RA-CLIP

ImageNet

32.8

47.2

0

10

20

30

40

50

60

CLIP RA-CLIP

ImageNet V2

76.0 

89.4

50.0

60.0

70.0

80.0

90.0

100.0

CLIP RA-CLIP

CIFAR 10

48.6
62.3

0
10
20
30
40
50
60
70
80

CLIP RA-CLIP

CIFAR 100

69.8
76.9

30

40

50

60

70

80

90

ClLIP RA-CLIP

Caltech 101

16.1

49.0 

0

10

20

30

40

50

60

CLIP RA-CLIP

Oxford Pets

50.8 46.5

0

10

20

30

40

50

60

CLIP RA-CLIP

SUN397

28.3 25.6

0
5
10
15
20
25
30
35
40

CLIP RA-CLIP

DTD

11.1

26.1

0
5
10
15
20
25
30
35

CLIP RA-CLIP

Stanford Dogs

21.8

43.8

10

20

30

40

50

60

CLIP RA-CLIP

Food 101

44.4
48.4

20
25
30
35
40
45
50
55
60

CLIP RA-CLIP

MS COCO

21.6 23.2

0

5

10

15

20

25

30

CLIP RA-CLIP

LVIS

Figure 1. Transferring the CLIP and RA-CLIP to 12 down-stream
visual recognition datasets for zero-shot evaluation. Our RA-CLIP
achieves better results in 10 out of 12 datasets, and brings +12.7%
averaged improvements on the 10 image classification datasets and
2.8% averaged improvements on the 2 object detection datasets..

modality-shared representation. During pre-training, CLIP
learns to pull matched image-text pairs together and push
non-matched pairs apart. After pre-training, CLIP can be
transferred to zero-shot image classification task: categories
can be referred by textual descriptions, and the image clas-
sification task can be converted to image-to-text retrieval
task. Experimental results show that CLIP performs well
on zero-shot image classification task, e.g., for ImageNet
zero-shot classification task, CLIP can match the accuracy
of ImageNet pre-trained ResNet50, even that CLIP doesn’t
use any of the 1.28 million training examples of ImageNet
for training.

Despite the impressive zero-shot performance, CLIP
requires lots of image-text pairs to train encoders and
memorize various semantic concepts, which limits its ap-
plications since it is not affordable for most laboratories
and companies. Recent works [24, 25] try to alleviate this
limitation by taking full advantage of existing data and
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train encoders to memorize concepts as many as possible,
e.g., DeCLIP [24] explores widespread supervision from
given image-text pairs, and SLIP [25] introduces self-
supervised learning which helps encoders learn better visual
representation.

In this paper, we propose a novel and efficient way to
make use of image-text pairs. We sample part of image-
text data as a hold-out reference set. Given an input image,
our model first retrieves similar images from the reference
set with an unsupervised pre-trained image retrieval model,
then we use the relationship between retrieved images and
texts to augment the representation of input image. A
heuristic explanation of the idea is that, it can be considered
as an open-book exam: our model doesn’t have to memorize
all visual concepts in the training data, but learns to
recognize visual concepts with the help of a cheat sheet (i.e.,
the reference set). We propose a framework called Retrieval
Augmented Contrastive Language-Image Pre-training (RA-
CLIP) to implement this idea. Although using the same
amount of image-text data with the vanilla CLIP, RA-CLIP
achieves better zero-shot classification performance and
linear probe classification performance.

Our contributions are three-fold:

• For contrastive language-image pre-training (CLIP),
we present a novel and efficient utilization of image-
text pairs. Concretely, we construct a hold-out ref-
erence set composed by image-text pairs. Given an
input image, we find relevant image-text pairs and use
them to help us build better representation for the input
image.

• We propose Retrieval Augmented Contrastive
Language-Image Pre-training (RA-CLIP), a
framework to implement the idea described above.
We conduct comprehensive experiments to validate
the effectiveness of each block. Visualization results
are also provided to explain how RA-CLIP works.

• We compare the proposed RA-CLIP with previous
methods on a dozen of commonly used visual recog-
nition benchmarks. Experimental results show that
our proposed method significantly outperforms vanilla
CLIP baseline and other recently proposed methods.

2. Related Work
2.1. Contrastive Language Image Pre-training

CLIP [29] introduces a new paradigm for visual rep-
resentation learning. Given image-text pairs as training
data, CLIP learns a visual encoder and a textual encoder
to align images and text sentences. Different from previous
visual recognition system which can only recognize cate-
gories specified by the training set, CLIP can be flexibly

transferred to new categories. Given new categories, CLIP
extends them into text sentences and feed them into the
text encoder to obtain categories embeddings. Experimental
results show that CLIP can match the accuracy of ImageNet
trained ResNet50, even that CLIP didn’t use any of the 1.28
million training examples of ImageNet during pre-training.
Despite the impressive transfer performance, CLIP is quite
data-hungry, it needs tens of millions or more image-
text pairs for pre-training [1, 18, 29, 41, 42]. To decrease
the amount of training data, recent works [24, 25] try to
introduce as much as supervision from existing datasets to
help CLIP train better encoders.

In this paper, we propose a novel and efficient methods to
make better use of image-text pairs. Different from previous
methods that only use image-text pairs to train encoders,
we also use them to construct a reference set which can
provide supplementary information for the encoder. Given
an input image, we find relevant images along with their
text descriptions from the reference set, these image-text
pairs contain information that can help us describe the input
image, thus we use them to augment original CLIP’s image
representation.

2.2. Knowledge-Enhanced Models

Structured external knowledge has also been included to
improve the zero-shot performance, K-Lite [33] enriches
entities in natural language with WordNet and Wiktionary,
the motivation is straightforward, some concepts like “ze-
bra” may have less training example in the training set, by
introducing a knowledge base, “zebra” can be extended to a
more general description: “Zebras are African equines with
distinctive black-and-white striped coats”. CLIP-event [23]
also introduces structured external knowledge to construct
hard negative text descriptions for images during training.
ASIF [26] builds a relative representation for image and text
respectively and aligns image modality and text modality
with image-text pairs.

Recently large language models have shown impressive
zero-shot and few-shot performance on various down-
stream NLP tasks, massive parameters have to be intro-
duced to encode the knowledge that will be used. Previous
works Atlas [17] and RETRO [2] introduce an external
non-parametric knowledge base to store the information,
which significantly reduces the parameters of their model,
e.g., Atlas outperforms a 540B model with 50× fewer
parameters.

The methods mentioned above mainly focus on provid-
ing more information for individual modalities. Different
from them, we utilize the correspondence between image-
text pairs in the reference set, which helps us align visual
concepts and textual concepts.
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Figure 2. Overview of the proposed RA-CLIP. Given an input image, RA-CLIP retrieves K most similar image-text pairs from the reference
set, which provide informative descriptions for the input image, thus we feed them into the Retrieval Augmented Module (RAM) to enrich
the representation of input image.

2.3. Zero-shot Visual Recognition

Zero-shot visual recognition can be categorized into two
generations: the traditional class-level zero-shot setting and
recently popular task-level zero-shot setting [33]. The tradi-
tional class-level zero-shot aims at recognizing objects that
belong to categories that are not included in the training set.
The task-level zero-shot like CLIP [29] is more practical in
real-world applications, the model is trained by hundreds
of millions of image-text pairs and is directly evaluated on
image classification task, by prompting category names into
sentence descriptions [1, 18, 29, 41, 42].

Memorizing visual and textual concepts for down-stream
zero-shot tasks usually requires lots of image-text pairs.
In this paper, we propose that, besides using image-text
pairs to train image encoder and text encoder, we can also
introduce a reference set to help the model align visual
concepts and textual concepts.

3. Method

In this section, we present the details of our proposed
Retrieval Augmented Language Image Pre-training (RA-
CLIP). An overview of RA-CLIP is summarized in Fig-
ure 2. Given N image-text pairs {Ii, Ti}Ni=1 as training
data, where Ii is the i-th image in the dataset and Ti is
its corresponding text description. Different from previous
Contrastive Language Image Pre-training (CLIP) method
that only uses {Ii, Ti}Ni=1 to train encoders, we propose
a novel utilization of the image-text pairs. Specifically,
we split {Ii, Ti}Ni=1 into two disjoint sets: training set T
and reference set R. Given Ii as input image, we first
feed it into the image encoder to obtain the initial image
embedding vi, following previous method CLIP. After that,

we retrieveK most similar images
{
rIk
}K
k=1

fromR as well

as their corresponding text sentences
{
rTk
}K
k=1

.
{
rIk
}K
k=1

and
{
rTk
}K
k=1

provide informative description for Ii, so we
use them to augment vi by a proposed Retrieval Augmented
Module (RAM). The augmented image embedding is output
as v′

i. The text branch of RA-CLIP is like the one of CLIP.

3.1. Dual-Encoder Architecture

The dual-encoder architecture consists of an image en-
coder and a text encoder. The image encoder used in our
experiments is a Vision Transformer [12]. Given an image
Ii, we take the embedding of the [CLS] token and normalize
it by its L2-norm to obtain the representation of Ii, which
is a d-dimension feature vector vi. The text encoder is
also a Transformer. Given a sequence of input text Ti, the
text encoder transforms and normalizes Ti into another d-
dimension feature vector ti.

3.2. Overview of RA-CLIP

Reference Set Construction. Multi-modal image-text
pairs naturally establish the connection between images and
texts. Different images and text descriptions of the same
concept can provide informative description of this concept.
Inspired by this observation, we construct the reference
set R by random sampling 1.6M (about 1/10 amount of
our total training data) image-text pairs from original train
set. Ablation experiments will show that commonly used
image-text datasets such as YFCC [35], CC12M [5] and
LAION [32] can be used as reference data. We also
exploit how the amount of image-text pairs effect the final
performance. Please refer to Section 4.2.2 for more details.
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Reference Image-Text Retrieval. Given an input image
Ii, RA-CLIP retrieves K most similar images

{
rIk
}K
k=1

from the reference set as well as their corresponding
text descriptions

{
rTk
}K
k=1

. Concretely, we first extract
the embeddings of the images in reference set, with an
unsupervised pre-trained image encoder (e.g., DINO) for a
fairer comparison. This process can be pre-computed off-
line. Given an input image Ii as query, we also extract the
embedding of Ii with the same model, then use the embed-
ding to retrieve K most similar images from the reference
set. The retrieval process can be conducted efficiently by
existing libraries like Faiss [19]. Finally, we get K images{
rIk
}K
k=1

and their corresponding text sentences
{
rTk
}K
k=1

,
which are sent to the Retrieval Augmented Module (RAM)
to obtain augmented image representation.

Retrieval Augmented Module (RAM). We propose a
novel Retrieval Augmented Module (RAM), which first
extracts the embeddings of each retrieved rIk and rTk :

eIk = φ(rIk),

eTk = ψ(rTk ).
(1)

Note that φ and ψ are pre-trained uni-modal encoders for
image and text respectively. They are frozen during the
training stage, so Equation 1 can be pre-computed before
training.

After that, RAM uses
{
eIk
}K
k=1

and
{
eTk
}K
k=1

to aug-
ment vi. RAM first introduces a Multi-head Attention [37]
block which takes vi as query,

{
eIk
}K
k=1

as key and{
eTk
}K
k=1

as value to obtain text-augmented embedding aTi :

aTi =MultiheadAttn(vi,
{
eIk
}K
k=1

,
{
eTk
}K
k=1

). (2)

In Equation 2, vi learns to weight and aggregate
{
eTk
}K
k=1

according to the relationship between vi and
{
eIk
}K
k=1

. The
aggregated text embedding aTi will be used to augment vi.

Likewise, RAM also computes image-augmented em-
bedding aIi by aggregating

{
eIk
}K
k=1

in a similar way:

aIi =MultiheadAttn(vi,
{
eTk
}K
k=1

,
{
eIk
}K
k=1

). (3)

Finally, RAM outputs the augmented image embedding v′
i:

v′
i = vi + aTi + aIi , (4)

as illustrated in Figure 3.

3.3. Loss Function.

At the training stage, we follow previous contrastive
learning methods [29] and use InfoNCE loss [36] to train
our framework. Concretely, given a batch of N image-
text pairs {Ii, Ti}Ni=1 as training data, RA-CLIP produces
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Figure 3. The proposed Retrieval Augmented Module (RAM).

the augmented image embeddings and the text embeddings:
{v′

i, ti}
N
i=1, then we compute text-to-image contrastive loss

Lt2v and image-to-text contrastive loss Lv2t:

Lv2t = −log(
exp(σ(ti,v

′
i)/τ)∑N

j=1 exp(σ(ti,v
′
j)/τ)

), (5)

Lt2v = −log( exp(σ(v′
i, ti)/τ)∑N

j=1 exp(σ(v
′
i, tj)/τ)

), (6)

where N is the batch size, and τ is a temperature factor,
which is initialized as 0.07 and trained end-to-end. σ
computes the cosine similarity between two vectors. The
total loss of our framework is:

L = Lt2v + Lv2t. (7)

4. Experiment
Following previous works [24, 25, 39], we pre-train

our framework on YFCC dataset [35], then evaluate the
performance of zero-shot classification and linear probe
classification on commonly used visual recognition bench-
marks. Besides that, we also follow RegionCLIP [43]
and evaluate the zero-shot ROI classification performance
on two widely used object detection datasets, i.e., MS
COCO [7] and LVIS [15].

We first describe the implementation details in Sec-
tion 4.1, including datasets, evaluation metrics, model
architecture and optimization details. Then we conduct
ablation experiments in Section 4.2 to validate the effective-
ness of our proposed method and analyse the effectiveness
of each component. Finally, we compare our proposed
method with recently proposed CLIP variants like MS-
CLIP [39], DeCLIP [24] and SLIP [25] in Section 4.3.
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Table 1. Ablation experiments on zero-shot ImageNet classification.

ID Method Init. of Init. of Pretrain Reference
φ ψ

ImageNet
Image Enc. Text Enc. Dataset Dataset Top-1

1 CLIP ViT rand. BERT YFCC % % % 37.7
2 CLIP DINO-S SentenceT YFCC % % % 21.0
3 CLIP ViT IN1K BERT YFCC % % % 46.1
4 CLIP ViT rand. BERT YFCC+CC % % % 42.1
5 RA-CLIP ViT rand. BERT YFCC YFCC SentenceT DINO-S 53.5
6 RA-CLIP ViT rand. BERT YFCC CC SentenceT DINO-S 54.5
7 RA-CLIP ViT rand. BERT YFCC LAION SentenceT DINO-S 54.2
8 RA-CLIP ViT rand. BERT YFCC CC Text Encoder DINO-S 54.4

4.1. Implementation Details

Dataset All the experiments are conducted on public
available datasets. For a fair comparison, we follow
previous works [24, 25, 39] and use YFCC [35] for pre-
training. We follow CLIP [29] and use the 15 million
English subset of YFCC for pre-training. For the reference
set used in our framework, we test three different image-
text datasets, including the YFCC15M described above,
CC12M [5] and LAION [32]. By default, we random sam-
ple 1,600,000 image-text pairs (about 1/10 amount of our
pre-train dataset) from corresponding dataset to construct
the reference set. 10 widely used visual recognition datasets
are used to evaluate the zero-shot classification performance
and linear probe classification performance, including Im-
ageNet [10], ImageNet V2 [30], CIFAR 10 [21], CIFAR
100 [21], Caltech 101 [13], Oxford Pets [27], SUN397 [38],
Food 101 [3], DTD [8] and Stanford Dogs [20]. Following
RegionCLIP [43], two object detection datasets are used to
evaluate the zero-shot ROI classification performance, i.e.,
COCO [7] and LVIS [15]. More details about the datasets
can be found in our supplement.

Metrics The metrics used to evaluate image classifica-
tion on all datasets are top-1 accuracy except for Oxford
Pets, and Caltech101, which are measured by mean accu-
racy over classes as in CLIP [29]. The evaluation metric for
COCO and LVIS is box Average Precision (AP) as used in
RegionCLIP [43].

Architecture By default, the image encoder is a random
initialized ViT-B/32 [12], which has 12 layers of Trans-
former blocks. Each Transformer block has 12 attention
heads and the hidden size is set to 768. The text encoder is
BERT-base [11], which shares similar scale with the image
encoder, i.e., 12 layers of Transformer blocks, 12 attention
heads in each Transformer block and 768 hidden size. We
also try smaller text encoder from scratch while comparing
with previous state-of-the-arts in Section 4.3. The output
of the text encoder and image encoder are projected to
384-dim by linear projection. We adopt DINO-S/8 [4] as
the image retriever and the uni-modal image encoder φ

described in Section 3.2, which is pre-trained on ImageNet
1K [10] with self-supervised method. Meanwhile, we adopt
Sentence Transformer (SentenceT) [31] as the uni-modal
text encoder ψ, which is a 6-layer Transformer. For our
proposed Retrieval Augmented Module (RAM), we use 6
layers of cross-attention blocks. We truncate the input text
tokens so that they have a maximum length of 77. The input
image is resized to 224× 224.

Optimization We implement our framework with Py-
Torch [28]. All pre-training experiments are conducted
on 8 NVIDIA Tesla A100 GPUs. Batch size is set to
4096. The framework is trained for 32 epochs with LAMB
optimizer [40] and an initial learning rate of 2.5e-3. The
learning rate follows a cosine decay schedule with 5 epochs
of linear warm-up. Weight decay is set to 0.2. For data aug-
mentation, we random crop a 224×224 patch from the input
image, then conduct random horizontal flip, random color
distortions, random gaussian blur and RandAugment [9],
following previous works [6, 24, 25]. Training details of
down-stream tasks (e.g., linear probe classification) can be
found in our supplement.

4.2. Ablation Study

In this section, we first validate the effectiveness of our
proposed method by comparing RA-CLIP and CLIP trained
on the same dataset. After that, we build reference sets by
sampling image-text pairs from different datasets (YFCC,
CC or LAION) and sampling different amounts of image-
text pairs from the same dataset to see if the reference
set is sensitive to these two factors. Since we introduce
pre-trained DINO-S/8 (φ in Section 3.2) and SentenceT
(ψ in Section 3.2) to extract reference embeddings, we
also discuss how these models effect the final performance.
At last, ablation experiments with different K-value and
different design choices of RAM are provided.

4.2.1 Effectiveness of the Retrieval Augmented CLIP

To validate the effectiveness of our proposed method, we
train and test CLIP and RA-CLIP with the same dataset.
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Figure 4. Zero-shot classification performance of RA-CLIP with
different amounts of reference data. Five different scales of
reference sets are used, i.e., 1K, 10K, 100K, 1.6M, and 10M.

For CLIP, we use YFCC15M for pre-training, and evaluate
the zero-shot performance on ImageNet. For RA-CLIP,
we random sample 1.6 million image-text pairs (about 1/10
amount of entire dataset) from YFCC15M to construct the
reference set, and use the other 13 million image-text pairs
for training. Experimental results can be found in Table 1,
RA-CLIP (experiment ID 5) outperforms CLIP (experiment
ID 1) by a large margin (53.5% vs 37.7%), which validates
the effectiveness of RA-CLIP.

We provide a heuristic explanation for this comparison.
The pipeline of training and testing CLIP may be considered
as a closed-book exam. In the training stage, CLIP trains
encoders to learn visual and textual concepts in the training
data. In the testing stage, given a test query image, CLIP
may return a false prediction if it didn’t memorize related
concepts of the test image. Different from CLIP, the training
and testing of RA-CLIP can be considered as an open-
book exam. In the training stage, RA-CLIP doesn’t have
to memorize all concepts in the training data, but learns
how to recognize an image with a help of a cheat-sheet
(i.e., the reference set). In the testing stage, given a test
query image, RA-CLIP can look up the cheat-sheet (i.e., the
reference set) and finds related knowledge about the query
image, then uses the knowledge to enrich the representation
of input image.

4.2.2 Different image-text data as reference set

Since the reference set is the core component of RA-
CLIP, we then analyse if RA-CLIP provides significant
improvements while using different datasets or different
amounts of image-text pairs as reference sets.

Different dataset as reference set. We adopt another
two widely used datasets to construct the reference set, i.e.,
CC12M and LAION. We sample 1.6 million image-text
pairs from CC12M to construct the reference set, and use
YFCC15M for RA-CLIP pre-training. We also train CLIP
on the combination of the reference set and YFCC15M.

Table 2. Different design choices of Retrieval Augmented Module
(RAM). All models are trained on YFCC15M with CC1.6M as
reference set and evaluated on zero-shot ImageNet classification.

Method Augment Augment Fusion Type K ImageNet
Image Text Top-1

RAM ! % aT
i 64 52.1

RAM ! % aT
i + aI

i 64 51.8
RAM ! % aT

i + aI
i + vi 64 54.5

RAM ! % aT
i + aI

i + vi 16 54.3
RAM ! % aT

i + aI
i + vi 128 53.9

RAM ! ! aT
i + aI

i + vi 64 53.1

By comparing experiment 6 and experiment 4 in Table 1,
we can see that RA-CLIP still outperforms CLIP with
significant improvement(54.5% v.s. 42.1%). We then
conduct similar experiments with 1.6 million image-text
pairs from LAION as reference set, which achieves 54.2%
top-1 accuracy on ImageNet. Experiments above show
that the commonly used datasets like YFCC15M, CC12M,
LAION can be used as reference set and provide similar
performance.

Different amounts of reference data. We then test
the performance of reference sets with different amounts of
image-text pairs. 5 reference sets are constructed by sample
1K, 10K, 100K, 1.6M, 10M image-text pairs from CC12M.
YFCC15M is used as training data. The performance of
RA-CLIP with these 5 different reference sets is illustrated
in Figure 4. We can see that introducing more image-text
pairs as reference set usually brings better performance.
Since the horizontal axis of Figure 4 is plotted in log-space,
we can conclude that performance is getting saturated while
introducing more image-text pairs as reference set.

4.2.3 Ablation of pre-trained SentenceT and DINO

Two frozen pre-trained uni-modal encoders are introduced
in RA-CLIP to process image-text data of the reference set:
SentenceT and DINO-S/8. It is necessary for us to show if
the improvement described above is brought by these two
encoders. We re-implement CLIP with frozen SentenceT
as text encoder and frozen DINO-S/8 as image encoder,
linear projection layer is appended after each encoder to
obtain final embeddings. We train the CLIP model on
YFCC15M, the zero-shot classification performance on
ImageNet is 21.0%, referred as experiment 2 in Table 1,
which is significantly lower than CLIP baseline (experiment
1). Experimental results show that although the pre-trained
SentenceT and DINO-S provide promising results on uni-
modal tasks, they provide poor performance on multi-modal
alignment task.

We also prove that, SentenceT is not necessary for
our final performance. We re-implemented RA-CLIP by
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Table 3. Zero-shot image classification performance and linear probe classification performance on 10 downstream datasets (%). RA-
CLIP* denotes the model that trains a text encoder with width = 512 and head = 8 from scratch.

Evaluation Method ImageNet ImageNetV2 Pets CIFAR10 CIFAR100 SUN397 Food101 Caltech101 DTD Dogs Avg.Type

Zero-shot

K-Lite [33] 45.3 – – – – – – – – – –
CLIP [29] 37.7 32.8 16.1 76.0 48.6 50.8 21.8 69.8 28.3 11.1 39.3

MS-CLIP [39] 36.7 30.2 – – – – – – – 5.6 –
SLIP [25] 38.3 33.3 28.3 72.2 45.3 45.1 44.7 65.9 21.8 11.8 40.7

DeCLIP [24] 43.2 36.1 30.2 72.1 39.7 51.6 46.9 70.1 24.2 11.7 42.6
RA-CLIP* 51.2 45.4 50.5 89.4 61.8 45.7 43.9 76.1 24.6 22.0 51.1
RA-CLIP 53.5 47.2 49.0 89.4 62.3 46.5 43.8 76.9 25.6 26.1 52.0

Linear probe

CLIP [29] 63.5 51.3 69.8 91.7 74.1 64.7 69.1 84.9 66.5 50.5 68.6
MS-CLIP [39] 68.1 49.8 62.1 87.2 66.7 71.7 76.0 81.6 69.4 46.1 67.9

SLIP [25] 68.1 52.1 75.4 90.5 75.3 73.5 77.1 87.2 71.1 52.6 72.3
DeCLIP [24] 69.2 53.1 76.5 88.6 71.6 75.9 79.3 88.0 69.1 49.9 72.1
RA-CLIP* 73.3 62.3 88.2 94.9 78.4 60.7 65.5 86.8 65.5 75.5 75.1
RA-CLIP 72.9 61.9 88.2 95.2 78.9 61.1 66.5 87.2 66.6 76.0 75.5

replacing SentenceT with the text encoder of RA-CLIP, the
zero-shot performance on ImageNet is 54.4% (experiment
8), which is comparable with the one used SentenceT
(experiment 6). We also note that, although replacing
SentenceT with the text encoder of RA-CLIP can provide
similar performance, the text encoder of RA-CLIP is trained
end-to-end, thus the embeddings of the reference text
cannot be pre-computed off-line before training, which
introduces more computation cost. So we use SentenceT
by default.

DINO-S/8 in Section 3.2 uses ImageNet 1K for self-
supervised learning, extracting reference images on-the-fly
during training with the image encoder is much more time-
consuming due to the time of reading, pre-processing and
extracting images. So we test if CLIP can achieve compara-
ble or better performance than RA-CLIP if it uses ImageNet
data for pre-training. Concretely, we use the ViT-B/32
pre-trained on ImageNet 21K and fine-tuned on ImageNet-
1K to initialize the image encoder of CLIP. Then train
the CLIP on YFCC15M, the classification performance is
referred as experiment 3 in Table 1. Initializing the image
encoder by ImageNet pre-trained model brings significant
improvements (46.1% v.s. 37.7%). However, it is not
zero-shot evaluation anymore. We can see that RA-CLIP
(53.5%) still outperforms this strong CLIP baseline.

4.2.4 Different hyper-parameters and design choices

Different K-value in retrieval process. We train RA-CLIP
by retrieving different amounts (K=16, 64, 128) of image-
text pairs from the reference set for each query image.
Experimental results are shown in row 3, 4 and 5 of Table 2.
RA-CLIP provides stable performance with different K
values, and the model with K=64 performs slightly better
than the others.

Different design choices of RAM architecture. We

further test different design choices of RAM architecture in
Table 2. Firstly, we take aTi as the final augmented represen-
tation. In this case, RAM gathers related information from
the reference texts and produces final embedding, the result
is 52.1%. After that, we fuse aTi and aIi , which provides
similar performance (51.8%). Finally, we take aTi +
aIi + vi as the final image embedding to fuse information
from original image encoder and the reference data, which
performs best (54.5%) among the three different variants as
expected.

Augment both image and text representation. Since
experiments above have validated the effectiveness of RA-
CLIP, a straightforward question is: will this idea improve
CLIP’s text representation? To validate that, we use
SentenceT to retrieve relevant image-text pairs for input text
sentence, then apply similar augmentation to the text em-
bedding. However, it leads to a slightly worse performance
53.1% as shown in Table 2. We conjecture that text sentence
is less informative and the retrieved image-text pairs are
more diverse and may not bring correct information.

4.3. Main Results

In this section, we compare RA-CLIP with CLIP and
recently proposed CLIP-variant on two down-stream visual
recognition tasks: zero-shot image classification and linear
probe image classification. Evaluations are conducted on 10
widely used visual recognition benchmarks. Note that some
previous works (e.g., DeCLIP [24]) train a text encoder
with width = 512 and head = 8 from scratch, thus we
follow them and re-implemented the RA-CLIP for a fair
comparison, the results are denoted as RA-CLIP*. Besides
that, we also follow RegionCLIP to evaluate the zero-shot
ROI classification performance on MS COCO and LVIS.

Zero-shot image classification Previous methods usu-
ally take YFCC15M or its augmented version as train set.
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GT: Ibizan Hound
Prediction: Shetland Sheepdog

GT: Ibizan Hound
Prediction: Ibizan Hound

…

Retrieval Top64 image-text pairs

Image Retrieval

Image classification result of RA-CLIP Image classification result of CLIP 

GT: station wagon
Prediction: station wagon

Image Retrieval

GT: station wagon
Prediction: taxicab

1946 ford super deluxe person dream 
car which would be parked at my dream 
house dragon wagon national car cool 
old cars woody wagon beach

1958 chevrolet station wagons included 
the nomad station wagon brookwood 
station wagon yeoman station wagon and 
the delray 2 door sedan delivery vintage 
cars antique cars station wagon

…

Retrieval Top64 image-text pairs

two ibizan hound dogs play fun 
winter outdoors in the snow

three rescued dogs huddle together in a 
kennel at the circle of friends humane 
society part of a group of nearly 30 taken 
from a rolla home person the herald

Figure 5. Case study for RA-CLIP in image classification. The retrieved images and texts enrich the representation of input image.

Table 4. Zero-shot ROI classification on COCO and LVIS (%).

Method LVIS COCO
AP APs APm APl AP APs APm APl

Regin CLIP 21.6 8.7 31.0 45.7 44.4 21.9 51.0 61.8
Region RA-CLIP 23.2 10.9 34.2 44.9 48.4 29.3 57.9 61.9

We thus random sample 1.6M image-text from YFCC15M
as reference set, and use the other 13M image-text pairs
as train set. We report the performance of RA-CLIP on
all 10 datasets as well as the results of previous methods
CLIP [29], K-lite [33], SLIP [25], DeCLIP [24] and MS-
CLIP [39] shown in Table 3. RA-CLIP shows superior
performance than previous state-of-the-art methods.

We also compare with OpenAI’s CLIP model trained on
400 million image-text pairs. To reduce the training cost,
we use OpenAI’s CLIP-B/32 to initialize the image encoder,
text encoders, φ and ψ of RA-CLIP, then freeze them and
train the other modules on YFCC15M. The model achieves
68.2% top-1 accuracy on ImageNet, significantly better than
OpenAI’s CLIP-B/32 (63.3%).

In Figure 5, we also provide some visualization to help
us understand how RA-CLIP works. The image-text pairs
retrieved from the reference set can introduce additional
important information that can help RA-CLIP make correct
predictions.

Linear probe image classification Following previous
methods, we also conduct linear probe image classification
experiments to test the transferability of the learned image
representation. We fix the pre-trained image encoder of our

trained CLIP and RA-CLIP, then train a linear classifier
to conduct image classification on down-stream datasets.
Experimental results are shown in Table 3. RA-CLIP
achieves better performance than previous methods CLIP,
MS-CLIP, SLIP and DeCLIP, bringing 2.8% (75.1% v.s.
72.3%) averaged improvements.

Zero-shot ROI classification Following previous work
RegionCLIP [43], we transfer the proposed RA-CLIP to
object detection task on COCO [7] and LVIS [15] datasets
to test the performance of ROI classification. Following
RegionCLIP [43], we use ground-truth bounding boxes as
region proposals, then apply RA-CLIP and CLIP to classify
the proposals, following a RCNN [14] pipeline.

We report results on the validation set of LVIS and
COCO in Table 4. We can see that RA-CLIP still out-
performs CLIP on these two benchmarks, bringing 1.6%
improvement on LVIS and 4.0% improvement on COCO.
Note that the proposed RA-CLIP performs much better on
small objects and medium objects.

5. Conclusion

In this paper, we propose a novel and efficient utilization
of image-text pairs. Different from previous Contrastive
Language Image Pre-training methods that only use image-
text pairs to train encoders, we also use image-text pairs to
construct a reference set. Given an input image, we find rel-
evant images as well as corresponding texts in the reference
set and use them to enrich the representation of the input
image. Experiments on zero-shot classification and linear
probe classification validate the effectiveness of our meth-
ods.
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