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Abstract

Generating a high-quality High Dynamic Range (HDR)
image from dynamic scenes has recently been extensively
studied by exploiting Deep Neural Networks (DNNs). Most
DNNs-based methods require a large amount of train-
ing data with ground truth, requiring tedious and time-
consuming work. Few-shot HDR imaging aims to generate
satisfactory images with limited data. However, it is dif-
ficult for modern DNNs to avoid overfitting when trained
on only a few images. In this work, we propose a novel
semi-supervised approach to realize few-shot HDR imag-
ing via two stages of training, called SSHDR. Unlikely pre-
vious methods, directly recovering content and removing
ghosts simultaneously, which is hard to achieve optimum,
we first generate content of saturated regions with a self-
supervised mechanism and then address ghosts via an itera-
tive semi-supervised learning framework. Concretely, con-
sidering that saturated regions can be regarded as mask-
ing Low Dynamic Range (LDR) input regions, we design a
Saturated Mask AutoEncoder (SMAE) to learn a robust fea-
ture representation and reconstruct a non-saturated HDR
image. We also propose an adaptive pseudo-label selection
strategy to pick high-quality HDR pseudo-labels in the sec-
ond stage to avoid the effect of mislabeled samples. Ex-
periments demonstrate that SSHDR outperforms state-of-
the-art methods quantitatively and qualitatively within and
across different datasets, achieving appealing HDR visual-
ization with few labeled samples.

1. Introduction
Standard digital photography sensors are unable to cap-

ture the wide range of illumination present in natural scenes,
resulting in Low Dynamic Range (LDR) images that often
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Figure 1. The proposed method generates high-quality images
with few labeled samples when compared with several methods.

suffer from over or underexposed regions, which can dam-
age the details of the scene. High Dynamic Range (HDR)
imaging has been developed to address these limitations.
This technique combines several LDR images with different
exposures to generate an HDR image. While HDR imaging
can effectively recover details in static scenes, it may pro-
duce ghosting artifacts when used with dynamic scenes or
hand-held camera scenarios.

Historically, various techniques have been suggested
to address such issues, such as alignment-based methods
[3,10,27,37], patch-based methods [8,15,24], and rejection-
based methods [5, 11, 19, 20, 35, 40]. Two categories of
alignment-based approaches exist: rigid alignment (e.g.,
homographies) that fail to address foreground motions, and
non-rigid alignment (e.g., optical flow) that is error-prone.
Patch-based techniques merge similar regions using patch-
level alignment and produce superior results, but suffer
from high complexity. Rejection-based methods aim to
eliminate misaligned areas before fusing images, but may
result in a loss of information in motion regions.

As Deep Neural Networks (DNNs) become increas-
ingly prevalent, the DNN-based HDR deghosting methods
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[9, 33, 36] achieve better visual results compared to tradi-
tional methods. However, these alignment approaches are
error-prone and inevitably cause ghosting artifacts (see Fig-
ure 1 Kalantari’s results). AHDR [31, 32] proposes spatial
attention to suppress motion and saturation, which effec-
tively alleviate misalignment problems. Based on AHDR,
ADNET [14] proposes a dual branch architecture using
spatial attention and PCD-alignment [29] to remove ghost-
ing artifacts. All these above methods directly learn the
complicated HDR mapping function with abundant HDR
ground truth data. However, it’s challenging to collect a
large amount of HDR-labeled data. The reasons can be at-
tributed to that 1) generating a ghost-free HDR ground truth
sample requires an absolute static background, and 2) it is
time-consuming and requires considerable manpower to do
manual post-examination. This generates a new setting that
only uses a few labeled data for HDR imaging.

Recently, FSHDR [22] attempts to generate a ghost-free
HDR image with only few labeled data. They use a prelim-
inary model trained with a large amount of unlabeled dy-
namic samples, and a few dynamic and static labeled sam-
ples to generate HDR pseudo-labels and synthesize artificial
dynamic LDR inputs to improve the model performance of
dynamic scenes further. This approach expects the model to
handle both the saturation and the ghosting problems simul-
taneously, but it is hard to achieve under the condition of
few labeled data, especially misaligned regions caused by
saturation and motion (see Figure 1 FSHDR). In addition,
FSHDR uses optical flow to forcibly synthesize dynamic
LDR inputs from poorly generated HDR pseudo-labels, the
errors in optical flow further intensify the degraded qual-
ity of artificial dynamic LDR images, resulting in an appar-
ent distribution shift between LDR training and testing data,
which hampers the performance of the network.

The above analysis makes it very challenging to di-
rectly generate a high-quality and ghost-free HDR image
with few labeled samples. A reasonable way is to address
the saturation problems first and then cope with the ghost-
ing problems with a few labeled samples. In this paper,
we propose a semi-supervised approach for HDR deghost-
ing, named SSHDR, which consists of two stages: self-
supervised learning network for content completion and
sample-quality-based iterative semi-supervised learning for
deghosting. In the first stage, we pretrain a Saturated Mask
AutoEncoder (SMAE), which learns the representation of
HDR features to generate content of saturated regions by
self-supervised learning. Specifically, considering that the
saturated regions can be regarded as masking the short LDR
input patches, inspired by [6], we randomly mask a high
proportion of the short LDR input and expect the model to
reconstruct a no-saturated HDR image from the remaining
LDR patches in the first stage. This self-supervised ap-
proach allows the model to recover the saturated regions

with the capability to effectively learn a robust represen-
tation for the HDR domain and map an LDR image to an
HDR image. In the second stage, to prevent the overfit-
ting problem with a few labeled training samples and make
full use of the unlabeled samples, we iteratively train the
model with a few labeled samples and a large amount of
HDR pseudo-labels from unlabeled data. Based on the
pretrained SMAE, a sample-quality-based iterative semi-
supervised learning framework is proposed to address the
ghosting artifacts. Considering the quality of pseudo-labels
is uneven, we develop an adaptive pseudo-labels selection
strategy to pick high-quality HDR pseudo-labels (i.e., well-
exposed, ghost-free) to avoid awful pseudo-labels hamper-
ing the optimization process. This selection strategy is
guided by a few labeled samples and enhances the diver-
sity of training samples in each epoch. The experiments
demonstrate that our proposed approach can generate high-
quality HDR images with few labeled samples and achieves
state-of-the-art performance on individual and cross-public
datasets. Our contributions can be summarized as follows:
• We propose a novel and generalized HDR self-supervised

pretraining model, which uses mask strategy to recon-
struct an HDR image and addresses saturated problems
from one LDR image.

• We propose a sample-quality-based semi-supervised
training approach to select well-exposed and ghost-free
HDR pseudo-labels, which improves ghost removal.

• We perform both qualitative and quantitative experi-
ments, which show that our method achieves state-of-the-
art results on individual and cross-public datasets.

2. Related Work

2.1. HDR Deghosting Methods

The existing HDR deghosting methods include four
categories: alignment-based method, patch-based method,
rejection-based method, and CNN-based method.
Alignment-based Method. Rigid or non-rigid registra-
tion is mainly used in alignment-based approaches. Bo-
goni [3] estimated flow vectors to align with the reference
images. Kang et al. [10] utilized optical flow to align
images in the luminance domain to remove ghosting arti-
facts. Tomaszewska et al. [27] used SIFT feature to per-
form global alignments. Since the dense correspondence
computed by alignment methods are error-prone, they can-
not handle large motion and occlusion.
Rejection-based Method. Rejection-based methods detect
and eliminate motion from static regions. Then they merge
static inputs to get HDR images. Grosch et al. [5] estimated
a motion map and used it to generate ghost-free HDR.
Zhang et al. [40] obtained a motion weighting map using
quality measurement on image gradients. Lee et al. [11]
and Oh et al. [19] detected motion regions using rank min-
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imization. However, rejection-based methods remove the
misalignment of regions. It will result in a lack of content
in moving regions.
Patch-based Method. Patch-based methods use patch-
level alignment to merge similar contents. Sen et al. [24]
proposed a patch-based energy minimization approach that
optimizes alignment and reconstruction simultaneously. Hu
et al. [8] utilized a patch-match mechanism to produce
aligned images. Although these methods have good per-
formance, they suffer from high computational costs.
CNN-based Method. Kalantari et al. [9] used a CNN net-
work to fuse LDR images that are aligned with optical flow.
Wu et al. [30] used homography to align the camera motion
and reconstructed HDR images by CNN. Yan et al. [31] pro-
posed an attention mechanism to suppress motion and satu-
ration. Yan et al. [34] designed a nonlocal block to release
the constraint of locality receptive field for global merg-
ing HDR. Niu et al. [18] proposed HDR-GAN to recover
missing content using generative adversarial networks. Ye
et al. [38] proposed multi-step feature fusion to generate
ghost-free images. Liu et al. [14] utilized the PCD align-
ment subnetwork to remove ghosts. However, these meth-
ods require a large number of labeled samples, which is dif-
ficult to collect.

2.2. Few-shot Learning (FSL)

Humans can successfully learn new ideas with rela-
tively little supervision. Inspired by such ability, FSL aims
to learn robust representations with few labeled samples.
There are three main categories for FSL methods: data-
based category [1, 23, 25], which augment the experience
with prior knowledge; model-based category [2, 17, 26],
which shrinks the size of the hypothesis space using prior
knowledge; algorithm-based category [4, 12, 39], which
modifies the search for the optimal hypothesis using prior
knowledge. For HDR deghosting, Prabhakar et al. [22] pro-
posed a data-based category deghosting method, which uses
artificial dynamic sequences synthesis for motion transfer.
Still, it is hard to handle both the saturation and the ghost-
ing problems simultaneously with few labeled data.

3. The Proposed Method
3.1. Data Distribution

Following the setting of few-shot HDR imaging
[22], we utilize 1) N dynamic unlabeled LDR samples
U={LU

1 , . . . , L
U
N}, where each LU consists of three LDRs

(XU
1 ,XU

2 ,XU
3 ) with different exposures. 2) M static labeled

LDR samples S={LS
1 , . . . , L

S
M}, where each LS consists

of three LDRs (XS
1 ,XS

2 ,XS
3 ) with different exposures and

ground truth Y S . 3) K dynamic labeled LDR samples
D={LD

1 , . . . , LD
K}, where each LD consists of three LDRs

(XD
1 ,XD

2 ,XD
3 ) and ground truth Y D. Since it is difficult to

collect labeled samples, we set K to be less than or equal to
5, and M is fixed at 5. While it is easy to capture unlabeled
samples, N can be arbitrary.

3.2. Model Overview

Generating a non-saturated and ghost-free HDR image
with few labeled samples is challenging. It is a proper way
to address saturated problems first and then handle ghost-
ing problems. As shown in Figure 2, we propose a semi-
supervised approach for HDR deghosting. Our approach
consists of two stages: a self-supervised learning network
for content completion and a sample-quality-based iterative
semi-supervised learning for deghosting. In the first stage,
we propose a multi-scale Transformer model based on self-
supervised learning with a saturated-masked autoencoder
to make it capable of recovering saturated regions. In a
word, we randomly mask LDR patches and reconstruct non-
saturated HDR images from the remaining LDR patches.

In the second stage, we propose a sample-quality-based
iterative semi-supervised learning approach that learns to
address ghosting problems. We finetune the pretrained
model based on the first stage with a few labeled sam-
ples. Then, we iteratively train the model with labeled sam-
ples and unlabeled samples with pseudo-labels. Consid-
ering that the HDR pseudo-labels inevitably contain satu-
rated and ghosting regions, which deteriorate the model per-
formance, we propose an adaptive pseudo-labels selection
strategy to pick high-quality HDR pseudo-labels to avoid
awful pseudo-labels hampering the optimization process.

3.3. Self-supervised Learning Stage

Input. Considering that there are more saturated regions in
the medium (XU

2 ) and long exposure frames (XU
3 ) of un-

labeled data U , we first transform the short exposure frame
(XU

1 ) into a new medium (XU
2′

) and long exposure frames
(XU

3′
) by exposure adjustment,

XU
i′

= clip((
(XU

1 )
γ×ti

t1
)

1
γ ), i = 2, 3. (1)

Then following previous work [9, 30], we map the LDR in-
put images XU

1 , XU
2′
, XU

3′
to HDR domain by gamma cor-

rection to get Hi,

Hi′ = (XU
i′
)
γ
/ti. (2)

Note that XU
1′
=XU

1 , ti denotes the exposure time of LDR
image Xi, γ represents the gamma correction parameter, we
set γ to 2.2. Then, we concatenate Xi′ and Hi′ along the
channel dimension to get a 6-channel input Ii=[Xi′ , Hi′ ],
we subsequently mask the input Ii patches to get I

′

i . Con-
cretely, we divide the input into non-overlapping patches
and randomly mask a subset of these patches with a high
mask ratio (75%) (see Figure 3). Note that the patch size
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Figure 2. The overview of our framework.

Figure 3. The detailed procedure of Stage 1. To recover the sat-
urated regions, we utilize the short exposure frame as input and
ground truth.

is 8×8. Considering that the masking strategy is another
way to destruct the saturated regions, we intend the model
to learn a robust representation to recover these saturated
regions. Finally, I

′
={I ′

1, I
′

2, I
′

3} is the input of the model.
Model. Our SMAE self-supervised training-based multi-
scale Transformer consists of a feature extraction mod-
ule, hallucination module, and Multi-Scale Residual Swin
Transformer fusion Module (MSRSTM). The details in our
model are included in the Appendix.

Hallucination Module. We first adopt three convolu-
tional layers to extract shallow feature Fi. Then, we di-
vide the shallow feature Fi into non-overlapping patches Fi,
and map each patch Fi into query, keys and values. Sub-
sequently, we calculate the similarity map between q and
k, and perform the Softmax function to get the attention
weight. Finally, we apply the attention weight to v to get
F i
s ,

q = F2Wq, ki = FiWk, vi = FiWv, i = 1, 3

F i
s = Softmax(qki

T
/
√
d+ b)vi,

(3)

where b represents a learnable position encoding, d denotes
the dimension of q.

MSRSTM. To merge more information from different
exposure regions, inspired by [13], we propose a Multi-
Scale Residual Swin Transformer Module (MSRSTM).
First, F 1

s , F
2
s , F

3
s is concatenated along the channel dimen-

sion to get the input of MSRSTM. Note that F 2
s denotes F2.

Then, MSRSTM merges a long range of information from
different exposure regions. MSRSTM consists of multiple
multi-scale Swin Transformer layers (STL), a few convolu-
tional layers, and a residual connection. Given the input fea-
ture FN−1

out,i of i-th MSRSTM, the output FN
out,i of MSRSTM

can be formulated as follows :

FN
STL,i = Conv((Concat(STLN,l1

i (FN−1
out,i ),

STLN,l2
i (FN−1

out,i ), STL
N,l3
i (FN−1

out,i )),
(4)

FN
out,i = Conv(FN

STL,i) + FN−1
out,i , (5)

where STL
N,lj
i (·) represents the N -th Swin Transformer

layer of the lj scale in the i-th MSRSTM, FN−1
out,i denotes

the input feature of the N -th Swin Transformer layer in the
i-th MSRSTM.
Loss Function. Since unlabeled samples do not have HDR
ground truth labels, we calculate the self-supervised loss in
the LDR domain. We first use function ω to transform the
predicted HDR image Ŷ to short, medium, and long expo-
sure LDR images Ŷi,

Ŷi = ω(Ŷ ) = (Ŷ × ti)
1
γ . (6)

To recover the saturated regions, we transform the short
exposure frame (since the predicted HDR in this stage is
aligned to the short exposure frame) to new short, medium,
and long exposure frames by ground truth generation. Then,
we regard the new exposure frames as the ground truth
XGT

i of the model,
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XGT
i = (

(XU
1 )

γ×ti
t1

)
1
γ , i = 1, 2, 3. (7)

Finally, we calculate L1 self-supervised loss between Ŷi and
XGT

i ,
LSSL =

3∑
i=1

||Ŷi −XGT
i ||1. (8)

3.4. Semi-supervised Learning Stage

Finetune. At the beginning of this stage, to improve the sat-
urated regions and further learn to handle ghosting regions,
we first finetune the pretrained model with a few dynamic
samples D and static labeled samples S. Here we apply
µ-law to map the linear domain image to the tonemapped
domain image,

T (x) =
log(1 + µx)

log(1 + µ)
, (9)

where T (x) is the tonemap function, µ=5000. Then we
calculate the reconstruction loss Lrecon and perceptual loss
Lpercep between the predicted HDR Ŷ D

0 , Ŷ S
0 and ground

truth HDR Y D
0 , Y S

0 ,

Lrecon = ||T (Ŷ D
0 )− T (Y D

0 )||1 + ||T (Ŷ S
0 )− T (Y S

0 )||1,
(10)

Lpercep = ||ϕi,j(T (Ŷ
D
0 ))− ϕi,j(T (Y

D
0 ))||1

+||ϕi,j(T (Ŷ
S
0 ))− ϕi,j(T (Y

S
0 ))||1,

(11)

Lfinetune = Lrecon + λLpercep, (12)

where ϕi,j represents the j-th convolutional layer and the
i-th max-pooling layer in VGG19, λ=1e−2.
Iteration. To prevent the overfitting problem with a few la-
beled training samples and exploit unlabeled samples, we
further generate the pseudo-labels Ŷ U

t of unlabeled data.
Concretely, we iteratively and adaptively train the model
with a few dynamic and static samples D and S and a large
number of unlabeled samples U . Specifically, at timestep
t, we use model Nt to predict the pseudo-labels Ŷ U

t of un-
labeled data. Then, we train the model Nt with a few la-
beled and pseudo-labeled samples to get the model Nt+1 at
timestep t+1. Note that we use finetune model to generate
unlabel HDR pseudo-labels Ŷ U

0 at timestep t=0. Finally,
at each timestep in the refinement stage, we calculate the
reconstruction loss and perceptual loss as follows,

LIteration = LD
recon,t+1 + LS

recon,t+1 +

N∑
i=1

WUi
t+1L

Ui
recon,t+1

+λ(LD
percep,t+1 + LS

percep,t+1 +

N∑
i=1

WUi
t+1L

Ui
percep,t+1),

(13)

where λ=1e−2. WUi
t+1 is the weight factor of unlabeled data

Ui. To get loss weight WUi
t+1, please refer to the next section

in detail.

APSS. Since the HDR pseudo-labels inevitably contain
saturated and ghosted samples, we propose an Adaptive
Pseudo-labels Selection Strategy (APSS) to pick well-
exposed and ghost-free HDR pseudo-labels to avoid awful
pseudo-labels hampering the optimization process. Specif-
ically, at timestep t, we use model Nt to predict HDR im-
ages with dynamic and static labeled samples Ŷ D

t and Ŷ S
t .

Then we use function ω to map the predicted HDR image
to medium exposure image Ỹ D∪S

t and calculate the loss
between Ỹ D∪S

t and original medium exposure LDR image
XD∪S

2,t in well exposure regions to get LD∪S
select,t,

LD∪S
select,t = ||mask(ω(Ŷ D

t ))−mask(ω(XD
2,t))||1

+||mask(ω(Ŷ S
t ))−mask(ω(XS

2,t))||1,
(14)

where mask(·) denotes masking the over and under-
exposure regions. Subsequently, we sort all patches’ losses,
and adopt σ(·, ·) function to get β percentile (85th) loss as
a selection threshold τt,

τt = σ(LD∪S
select,t, β). (15)

Furthermore, we use model Nt to predict pseudo-labels Ŷ U
t

of unlabeled samples, similar to the operation of labeled
data mentioned above. We then use ω function to map Ŷ U

t

to medium exposure to get Ỹ U
t and calculate the loss be-

tween Ỹ U
t and original medium exposure LDR image XU

2,t

to get LU
select,t={LU1

select,t, L
U2

select,t, . . . , L
UN

select,t}. If the
current loss LUi

select,t is greater than τt, we consider the
pseudo-label to be of poor quality, which has more satu-
rated and ghosted regions. Then we will give a lower weight
which tends to decay linearly in the next training iteration.

LU
select,t = ||mask(ω(Ŷ U

t ))−mask(ω(XU
2,t))||1, (16)

mU
t = max(LU

select,t), (17)

WUi
t+1 =

1 LUi

select,t ≤ τt
mU

t −L
Ui
select,t

mU
t −τt

LUi

select,t > τt
(18)

where XU
2,t is the unlabeled medium exposure image in

timestep t, mU
t is the largest selection loss of unlabeled

samples in timestep t, WUi
t+1 is the weight factor of Ui

smaple in the t+ 1 training iteration.

4. Experiments
Datasets. We train all the methods on two public datasets,
Kalantari’s [9] and Hu’s dataset [7]. Kalantari’s dataset in-
cludes 74 training samples and 15 testing samples. Three
different LDR images in a sample are captured with expo-
sure biases of {-2, 0, +2} or {-3, 0, +3}. Hu’s dataset is cap-
tured at three exposure levels (i.e., {-2, 0, +2}). There are
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Figure 4. Examples of Kalantari’s [9] and Hu’s [7] datasets (top row) and Tursun’s [28] and Prabhakar’s [21] datasets (bottom row). Note
that we directly evaluate the methods on Tursun’s and Prabhakar’s datasets with the checkpoint trained on Kalantari’s dataset.

85 training samples and 15 testing samples in Hu’s dataset.
We train all comparison methods with the same set of im-
ages. Concretely, we randomly choose K∈{1, 5} dynamic
labeled samples and Q=5 static labeled samples for train-
ing in all methods. Furthermore, for each K, we evaluate
all methods for 5 runs denoted as 5-way in Table 1. In addi-
tion, since FSHDR [22] and our method exploit unlabeled
samples, we also use the rest of the dataset samples as unla-
beled data U . Finally, to verify generalization performance,
we evaluate all methods on Tursun’s dataset [28] that does
not have ground truth and Prabhakar’s dataset [21].

Evaluation Metrics. We calculate five common metrics
used for testing, i.e., PSNR-L, PSRN-µ, SSIM-L, SSIM-µ,
and HDR-VDP-2 [16], where ‘-L’ denotes linear domain,
‘-µ’ denotes tonemapping domain.

Implementation Details. The window size in MSRSTM is

2×2, 4 ×4 and 8 × 8. In the training stage, we crop the 128
× 128 patches with stride 64 for the training dataset. We
use the Adam optimizer, and set the batch size and learn-
ing rate as 4 and 0.0005, receptively. And we set β1=0.9,
β2=0.999, and ϵ=1e−8 in the Adam optimizer. We imple-
ment our model using PyTorch with 2 NVIDIA GeForce
3090 GPUs and train for 200 epochs.

4.1. Comparison with State-of-the-art Methods

To evaluate our model, we carry out quantitative and
qualitative experiments comparing with several state-of-
the-art methods, including patch-based classical methods:
Sen [24], Hu [8], and deep learning-based methods: Kalan-
tari [9], DeepHDR [30], AHDRNet [31], ADNet [14],
FSHDR [22]. We use the codes provided by the authors.
Evaluation on Kalantari’s and Hu’s Datasets. In Fig-
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Table 1. The evaluation results on Kalantari’s [9] and Hu’s [7] datasets. The best and the second best results are highlighted in Bold and
Underline, respectively.

Dataset Metric Setting Kalantari DeepHDR AHDRNet ADNet FSHDR Ours

Kalantari

PSNR-l 5way-5shot 39.37±0.12 38.25±0.29 40.61±0.10 40.78±0.15 41.39±0.12 41.54±0.10
PSNR-µ 39.86±0.19 38.62±0.27 41.05±0.32 40.93±0.38 41.40±0.13 41.61±0.08
PSNR-l 5way-1shot 36.94±0.44 36.67±0.67 38.83±0.39 38.96±0.35 41.04±0.11 41.14±0.11
PSNR-µ 37.33±1.21 37.01±1.68 39.15±1.04 39.08±1.06 41.13±0.07 41.25±0.05

Hu

PSNR-l 5way-5shot 41.36±0.25 40.73±0.66 46.37±0.76 46.88±0.81 47.13±0.13 47.41±0.12
PSNR-µ 38.95±0.14 39.92±0.22 43.42±0.44 43.79±0.48 43.98±0.27 44.24±0.17
PSNR-l 5way-1shot 38.67±0.43 37.82±0.86 44.64±0.80 44.75±0.84 44.94±0.23 45.04±0.16
PSNR-µ 36.83±0.62 38.49±1.07 42.37±1.42 42.41±1.20 42.50±0.87 42.55±0.44

Table 2. Further evaluation results on Kalantari’s [9], Hu’s [7] and Prabhakar’s datasets [21]. The best and the second best results are
highlighted in Bold and Underline in each setting, respectively.

Kalantari Hu
PSNR-l PSNR-µ SSIM-l SSIM-µ HV2 PSNR-l PSNR-µ SSIM-l SSIM-µ HV2

S1

Sen 38.57 40.94 0.9711 0.9780 64.71 33.58 31.48 0.9634 0.9531 66.39
Hu 30.84 32.19 0.9408 0.9632 62.05 36.94 36.56 0.9877 0.9824 67.58
FSHDR 40.97 41.11 0.9864 0.9827 67.08 42.15 41.14 0.9904 0.9891 71.35
Ours (K=0) 41.12 41.20 0.9866 0.9868 67.16 42.99 41.30 0.9912 0.9903 72.18

S2
Ours (K=1) 41.14 41.25 0.9866 0.9869 67.20 45.04 42.55 0.9938 0.9928 73.23
Ours (K=5) 41.54 41.61 0.9879 0.9880 67.33 47.41 44.24 0.9974 0.9936 74.49

S3

Kalantari 41.22 41.85 0.9848 0.9872 66.23 43.76 41.60 0.9938 0.9914 72.94
DeepHDR 40.91 41.64 0.9863 0.9857 67.42 41.20 41.13 0.9941 0.9870 70.82
AHDRNet 41.23 41.87 0.9868 0.9889 67.50 49.22 45.76 0.9980 0.9956 75.04
ADNET 41.31 41.80 0.9871 0.9883 67.57 50.38 46.79 0.9987 0.9948 76.32
FSHDR 41.79 41.92 0.9876 0.9851 67.70 49.56 45.90 0.9984 0.9945 75.25
Ours 41.68 41.97 0.9889 0.9895 67.77 50.31 46.88 0.9988 0.9957 76.21

S4

Kalantari 25.87 21.44 0.8610 0.9176 60.00 10.23 16.95 0.6903 0.8346 49.10
DeepHDR 25.92 21.43 0.8597 0.9170 60.02 25.48 20.86 0.9215 0.8354 66.83
AHDRNet 26.62 22.08 0.8737 0.9238 58.89 11.44 17.84 0.6732 0.8389 52.79
ADNET 25.76 21.39 0.8686 0.8217 60.36 10.86 18.09 0.6915 0.8399 49.28
FSHDR 28.03 22.01 0.8751 0.9203 60.53 12.82 19.37 0.7442 0.8347 55.34
Ours 27.91 22.45 0.8764 0.9252 61.02 30.29 21.56 0.9440 0.8456 67.07

S5

Kalantari 31.24 33.10 0.9527 0.9593 63.99 19.82 18.63 0.7679 0.8742 59.50
DeepHDR 30.75 29.01 0.9244 0.9223 63.26 19.84 18.70 0.7698 0.8752 59.48
AHDRNet 31.84 33.49 0.9588 0.9606 64.40 20.80 20.51 0.8259 0.9136 59.79
ADNET 31.08 33.50 0.9536 0.9636 63.88 20.78 20.80 0.8268 0.9173 59.71
FSHDR 32.70 32.24 0.9553 0.9465 64.37 20.23 19.71 0.7929 0.9026 59.63
Ours 32.72 34.49 0.9586 0.9713 64.45 20.69 21.96 0.8257 0.9207 59.76

ure 4 (a) and (b), we compare our method with other state-
of-the-art methods in the 5-shot scenario. Due to insuffi-
cient labeled samples, large motion, and saturation, most
comparing methods suffer from color distortion and ghost-
ing artifacts in these two datasets. Kalantari’s method and
DeepHDR produce undesirable artifacts and color distor-
tion (see Figure 4 (a)(b)). There are two reasons behind
that: misalignment of optical flow and homographies and
the lack of labeled data. Although AHDRNet and ADNET
are proposed to suppress motion and saturation with atten-
tion mechanisms, they cannot reconstruct ghost-free HDR
images with few labeled samples. They also produce se-
vere ghosting artifacts (see the red block in Figure 4 (a)(b)).
FSHDR exploits unlabeled data to alleviate ghosts under
the constraint of a few labeled samples, but it is difficult
to handle both ghosting and saturation problems simulta-
neously. We can see that FSHDR still suffers from ghost-
ing artifacts which leaves an obvious hand artifact in the
car (see the red block in Figure 4 (a)). Thanks to the pro-

posed SMAE and sample-quality-based iterative learning
strategy, which first address the saturation problems using
SMAE and then adaptively sample well-exposed and ghost-
free pseudo-labels to handle ghosting problems, we can re-
construct ghost-free HDR images with only a few labeled
samples.

The quantitative results under the constraint of few shot
scenarios on two dataset are shown in Table 1. We report
means and 95% margin of variations for 5 and 1 shot cases
across 5 runs. Our method achieves state-of-the-art per-
formance on all metrics of two datasets, while most other
methods perform poorly with only a few labeled samples.
We show that our proposed method surpasses second-best
method by 0.15db and 0.21db in terms of PSNR-l and
PSNR-µ for 5way-5shot setting on Kalantari’s dataset, and
it also improves by 0.28db and 0.26db for 5way-5shot set-
ting on Hu’s dataset. For 5way-1shot setting, our method
consistently outperforms other approaches on two datasets.

In addition, as shown in Table 2, we further compare our
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Table 3. Ablation study of 5 shot scenario on Kalantari’s dataset.

# Model PSNR-l PSNR-µ HDR-VDP-2

B1 SSHDR 41.54 41.61 67.33
B2 Stage2Net 41.31 41.43 67.21
B3 w/o APSS 41.49 41.45 67.29
B4 AHDR∗ 41.48 41.51 67.30
B5 FSHDR∗ 41.41 41.43 67.26
B6 Vanilla-AHDR 40.61 41.05 66.95
B7 Vanilla-FSHDR 41.39 41.40 67.25

method with major HDR deghosting approaches in zero-
shot setting S1, few-shot setting S2, and fully supervised
setting S3. Note that we use all the dynamic labeled samples
without static and unlabeled samples for plain training in
setting S3. Our zero-shot approach outperforms other meth-
ods in zero-shot setting on two datasets. It also outperforms
some 5-shot and fully supervised methods in most met-
rics. Finally, our few-shot and fully supervised approaches
achieve state-of-the-art performance among two datasets.
Evaluation Generalization Across Different Datasets.
We compare our method against other approaches on Kalan-
tari’s, Hu’s, Tursun’s, and Prabhakar’s datasets to verify
generalization performance. We directly evaluate the meth-
ods with the checkpoint trained on Kalantari’s dataset and
show the qualitative results on Tursun’s and Prabhakar’s
datasets in Figure 4 (c)(d). More results are included in
the Appendix. In Figure 4 (c), since the lady’s motion is
large, all the comparison methods cannot remove the ghost-
ing artifacts. In Figure 4 (d), the comparison methods have
obvious color distortion and ghosting artifacts on the floor
and in the ceil. It shows that other methods have poor gen-
eralization performance across different datasets. All these
methods address both the saturation and ghosting problems
simultaneously. They cannot learn a robust representation
to reconstruct a high-quality HDR image. Thanks to our
SMAE and sample-quality-based iterative learning strategy,
we can learn a robust representation to recover saturated re-
gions and remove ghosting artifacts.

In Table 2, setting S4 denotes that we utilize the check-
point trained on Kalantari’s or Hu’s dataset under 5 shot
scenario to evaluate on Hu’s or Kalantari’s dataset reversely.
Setting S5 represents that we train on Kalantari’s or Hu’s
dataset under 5 shot scenario and evaluate on Prabhakar’s
dataset. Our method achieves better numerical performance
in terms of PSNR-l and PSNR-µ. It demonstrates that our
method generalizes well across different datasets.

4.2. Ablation Studies

We conduct ablation studies on Kalantari’s dataset un-
der the condition of 5 shot scenario across 5 runs and an-
alyze the importance of each component. We use the fol-
lowing variants of our whole SSHDR model: 1) SSHDR:
The full model of SSHDR network trained with two entire
stages. 2) Stage2Net: The model only trained in the second

Figure 5. Visual results of poor pseudo-labels.

stage without SMAE pre-training. 3) w/o APSS: The model
trained with two stages without using sample-quality-based
pseudo-labels selection strategy. 4) AHDR∗: The AHDR
model is trained with our proposed two stages strategy.
5) FSHDR∗: Our model is trained with the FSHDR strat-
egy. 6) Vanilla-AHDR: The vanilla AHDR model trained
in 5 shot scenario. 7) Vanilla-FSHDR: The vanilla FSHDR
model trained with 5 labeled samples.
SMAE Pre-training. As shown in Table 3, the perfor-
mance of Stage2Net is significantly decreased compared
with SSHDR. Since the SMAE learns a robust representa-
tion to generate content of saturated regions, it helps to im-
prove the saturated regions. In a word, it demonstrates that
the SMAE pre-training stage is an effective mechanism.
Pseudo-labels Selection Strategy. Since the sample-
quality-based pseudo-labels selection strategy can exclude
saturated and ghosted samples (see Figure 5), the model
can be guided in a correct optimization direction which is
effective for ghost removal. When we remove the pseudo-
labels selection strategy, the performance of the model with-
out APSS is dropped.
Two Stages Strategy. In Table 3, we report the perfor-
mance of AHDR∗. It achieves a significant increment com-
pared with the vanilla AHDR model, which demonstrates
the effectiveness of the overall two stages strategy.
Proposed Model Architecture. When we replace our two
stages strategy with the FSHDR strategy, the numerical re-
sults increase compared with FSHDR. It shows that our pro-
posed model architecture is also sound.

5. Conclusion

We propose a novel semi-supervised deghosting method
for few-shot HDR problem via two stages of completing
saturation and deghosting. In the first stage, a Saturated
Mask AutoEncoder is proposed to learn a robust represen-
tation and reconstruct a non-saturated HDR image with a
self-supervised mechanism. In the second stage, we pro-
pose an adaptive pseudo-label selection strategy to avoid the
effects of mislabeled samples. Finally, our approach shows
superiority over the existing state-of-the-art methods.
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